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Abstract

The area under the ROC curve (AUC) is a
natural performance measure when the goal
is to find a discriminative decision function.
We present a rigorous derivation of an AUC
maximizing Support Vector Machine; its op-
timization criterion is composed of a convex
bound on the AUC and a margin term. The
number of constraints in the optimization
problem grows quadratically in the number of
examples. We discuss an approximation for
large data sets that clusters the constraints.
Our experiments show that the AUC maxi-
mizing Support Vector Machine does in fact
lead to higher AUC values.

1. Introduction

Receiver Operating Characteristics (ROC) analysis is
now being recognized as a useful tool for machine
learning because it allows to assess uncalibrated de-
cision functions, even when the prior distribution of
the classes is not known (Provost et al., 1998; Bradley,
1997). A decision function can be compared against
a threshold to yield a classifier. The ROC curve de-
tails the rate of true positives against false positives
over the range of possible threshold values. The area
of that curve is the probability that a randomly drawn
positive example has a higher decision function value
than a random negative example; it is called the AUC
(area under ROC curve).

When the goal of a learning problem is to find a deci-
sion function with high AUC value, then it is natural
to use a learning algorithm that directly maximizes
this criterion. Over the last years, AUC maximizing
versions of several learning algorithms have been de-
veloped. We contribute to the field by characterizing
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an AUC maximizing Support Vector Machine (SVM).

We construct an appropriate convex optimization cri-
terion and derive corresponding dual quadratic pro-
grams that can be solved by standard QP solvers. We
study empirically whether the AUC maximizing SVM
optimizes the AUC more effectively than the regular
SVM. Our experiments cover linear and polynomial
kernels. The number of constraints and parameters in
this problem grows quadratically in the sample size.
This increases the relative contribution of the slack
terms to the optimization criterion; we study how this
influences the optimal value of the regularization pa-
rameter. For large samples, the optimization prob-
lem becomes hard. We approximate the optimization
problem by clustering the resulting constraints.

The rest of our paper is structured as follows. We
introduce the problem setting in Section 2 and derive
the AUC maximizing SVM in Section 3. In Section 4,
we apply clustering methods to reduce the number of
constraints in the optimization problem. We present
our experiments in Section 5 and discuss related work
in Section 6. Section 7 concludes.

2. Preliminaries

The ROC curve of a decision function f character-
izes every possible trade-off between false positives and
true positives that can be achieved by comparing f(x)
to a threshold. The ROC curve plots the number of
true positives on the y-axis against the number of false
positives on the x-axis. The area under the ROC curve
– the AUC – is equal to the probability that the de-
cision function f assigns a higher value to a randomly
drawn positive example x+ than to a randomly drawn
negative example x−,

AUC(f) = Pr
(

f(x+) > f(x−)
)

. (1)

The AUC refers to the true distribution of positive
and negative instances, but it can be estimated using
a sample. The normalized Wilcoxon-Mann-Whitney
statistic (Yan et al., 2003) gives the maximum likeli-



hood estimate of the true AUC (Equation 1) given n+

positive and n− negative examples:

ÂUC(f) =

∑n+

i=1

∑n−

j=1 1f(x+

i
)>f(x−

j
)

n+n−
. (2)

The two sums in Equation (2) iterate over all pairs of
positive and negative examples. Each pair that sat-
isfies f(x+) > f(x−) contributes with 1/(n+n−) to
the overall AUC performance. Maximizing the AUC
is therefore equivalent to maximizing the number of
pairs satisfying f(x+) > f(x−).

The AUC is invariant with respect to the a priori class
distribution; it is also independent of decision thresh-
olds because if f(x) > f(x′), then f(x)+ c > f(x′)+ c
for any c. In the remainder of this paper we analyze
AUC maximization with the unthresholded model

f(x) = 〈w, φ(x)〉. (3)

The transformation φ : X 7→ F denotes an implicit
preprocessing of the input data which is equivalent to
mapping the input space X into some feature space
F . However, no explicit representation of φ or F is
required. Like for all other kernel-based learning algo-
rithms, direct computation of the inner product in F
by a kernel function k(x, x′) = 〈φ(x), φ(x′)〉 suffices to
learn in feature space F . We will refer to k as matrix
with elements kij = k(xi, xj).

3. AUC Support Vector Learning

In this section we present the AUC maximizing SVM
(AUC SVM). We first derive the optimization problem
whose objective function consists of an upper bound
of the number of examples that violate the constraint
f(x+) > f(x−) and a margin based complexity term.
In a second step we present the complete derivation of
the AUC maximizing SVM with its primal and dual
Lagrangians. We will characterize the relationship be-
tween linear AUC SVM and “vanilla” SVM.

The key concept of AUC support vector learning is
based on the observation that AUC performance de-
pends directly on the number of pairs (x+

i , x−
j ), i =

1, . . . , n+ and j = 1, . . . , n−, that satisfy f(x+
i ) >

f(x−
j ) or, equivalently,

〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉 > 0. (4)

We introduce a margin γ = γ̄/‖w‖ as confidence mea-
sure of an actual solution into Equation (4) and obtain
the hard margin AUC Optimization Problem 1.

Optimization Problem 1 Given n+ positive and
n− negative examples; maximize γ subject to the con-
straints ∀n+

i=1∀
n−

j=1 〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉 ≥ γ̄.

The geometrical margin γ is maximized by either fixing
‖w‖ = const and maximizing the functional margin γ̄
or fixing γ̄ = const and minimizing the norm of w. In
analogy to most kernel based methods we apply the
latter and set γ̄ = 1.

A solution to the hard margin Optimization Problem 1
but also any solution to the regular hard margin SVM
optimization problem always satisfies AUC=1 on the
training data because Equation (4) is always true when
mini f(x+

i ) − maxj f(x−
j ) ≥ γ̄. In general we have to

allow pairwise relaxations of the margin by nonneg-
ative slack variables ξij , leading to the soft margin
Optimization Problem 2.

Optimization Problem 2 Given n+ positive and
n− negative examples, let C > 0 and r = 1, 2; over
all w and ξ, minimize 1

2‖w‖2 + C
r

∑

ξr
ij subject to the

constraints ∀n+

i=1∀
n−

j=1 〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉 ≥ 1− ξij

and ∀n+

i=1∀
n−

j=1 ξij ≥ 0.

Optimization Problem 2 is convex and for r = 1, 2 also
quadratic because of its quadratic objective and linear
constraints. The regularization constant C determines
the trade-off between the complexity term and the sum
of the slacks. According to Theorem 1 the latter may
be interpreted as an upper bound of the number of
pairs that do not satisfy Equation (4).

Theorem 1 Given Optimization Problem 2, the sum
∑

ξr
ij with r = 1, 2 upper-bounds the number of pairs

(x+
i , x−

j ) in the sample that violate f(x+
i ) > f(x−

j ).

Proof. The first set of constraints of Optimization
Problem 2 guarantees Equation (5). For any pair that
violates f(x+

i ) > f(x−
j ), Equation (7) follows and the

pair contributes at least 1 to the sum
∑

ij ξr
ij .

〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉 ≥ 1 − ξij (5)

⇔ ξij ≥ 1 − (〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉) (6)

⇔ ξij ≥ 1 if f(x+
i ) − f(x−

j ) ≤ 0 (7)

All ξij are nonnegative (guaranteed by the nonnega-
tivity constraints), and therefore

∑

ij ξr
ij with r = 1, 2

is greater than or equal to the number of pairs in vio-
lation of f(x+

i ) > f(x−
j ).

The constraints of Optimization Problem 2 can be in-
tegrated into the objective function by introducing a
Lagrange multiplier for each constraint. In the fol-
lowing we describe the derivation of the 1-norm and
2-norm AUC maximizing SVM, respectively.

1-Norm AUC SVM

For the 1-norm AUC maximizing SVM we transform



Optimization Problem 2 for r = 1 into the dual repre-
sentation and resolve the primal Lagrangian

L1
p(w, ξ, α, β) =

1

2
‖w‖2 + C

∑

ij

ξij −
∑

ij

βijξij

−
∑

ij

αij (〈w, φ(xi)〉 − 〈w, φ(xj )〉 − 1 + ξij) .

Since Optimization Problem 2 is convex the Karush-
Kuhn-Tucker (KKT) conditions are necessary and suf-
ficient for w and ξ to be a solution. The KKT condi-
tions are given by

∂L1
p

∂w
= w −

∑

ij

αij (φ(xi) − φ(xj)) = 0 (8)

∂L1
p

∂ξij

= C − αij − βij = 0 (9)

〈w, φ(xi)〉 − 〈w, φ(xj )〉 − 1 + ξij ≥ 0

ξij ≥ 0

αij ≥ 0

βij ≥ 0 (10)

αij [〈w, φ(xi)〉 − 〈w, φ(xj )〉 − 1 + ξij ] = 0 (11)

βij ξij = 0.

The substitution of Equation (8) and (9) into the pri-
mal Lagrangian removes its dependence on the primal
variables and we resolve the corresponding dual

L1
d(α) = − 1

2

∑

ij,uv

αijαuv (φ(xi) − φ(xj))(φ(xu) − φ(xv))

+
∑

ij

αij

=
∑

ij

αij −
1
2

∑

ij,uv

αijαuv (kiu − kiv − kju + kjv).

Equations (9) and (10) enforce αij < C. Although the
derivative of ξij does not occur in the dual, it bounds
αij implicitly within the box 0 ≤ αij ≤ C. We define
the kernel K ′ = {k′

ij,uv} with k′
ij,uv = kiu−kiv −kju +

kjv and derive the 1-norm AUC maximizing support
vector optimization problem.

Optimization Problem 3 Given n+ positive and
n− negative examples; over all αij , maximize
∑

ij

αij − 1
2

∑

ij,uv

αijαuv k′
ij,uv subject to the constraints

∀n+

i=1∀
n−

j=1 0 ≤ αij < C.

Optimization problem 3 paves the way to an imple-
mentation of the AUC maximizing 1-norm SVM. It
can be solved by a standard QP solver.

The KKT complementarity conditions in Equation
(11) guarantee sparsity in the optimal α∗

ij because
〈w, φ(xi)〉 − 〈w, φ(xj )〉 − 1 + ξij 6= 0 enforces α∗

ij = 0.

Thus, all example pairs (x+
i , x−

j ) for which the corre-
sponding α∗

ij 6= 0 holds are support vectors and the
primal solution w∗ can be written as their linear com-
bination

w∗ =
∑

ij:α∗

ij
6=0

α∗
ij(φ(xi) − φ(xj)).

The solution has a geometric margin of γ = ‖w∗‖−1.

2-Norm AUC SVM

For r = 2 we may drop the nonnegativity constraints
ξij ≥ 0 in Optimization Problem 2 since ξij < 0 satis-
fies 〈w, φ(xi)〉 − 〈w, φ(xj )〉 ≥ 1 − ξij and

∑

ξ2
ij guar-

antees the objective to be positive. The primal La-
grangian is then given by

L2
p(w, ξ, α) =

1

2
‖w‖2 +

C

2

∑

ij

ξ2
ij

−
∑

ij

αij (〈w, φ(xi)〉 − 〈w, φ(xj )〉 − 1 + ξij) .

We omit the complete presentation of the KKT condi-
tions which are similar to the 1-norm case and proceed
directly to the optimal primal variables,

w∗ =
∑

ij

αij (φ(xi) − φ(xj))

ξ∗ij =
1

C
αij .

Again, we derive the corresponding dual by a substi-
tution of the primal variables. The dual is given by

L2
d(α) = −

1

2

∑

ij,uv

αijαuv (kiu − kiv − kju + kjv)

+
∑

ij

αij −
1

2C

∑

ij

α2
ij . (12)

The last summand of Equation (12) may be integrated
into the kernel by K ′′ = K ′ + 1

C
1, where 1 denotes

the identity. The 2-norm AUC maximizing support
vector optimization problem is stated in Optimization
Problem 4.

Optimization Problem 4 Given n+ postive and
n− negative examples; over all αij maximize
∑

ij

αij − 1
2

∑

ij,uv

αijαuv k′′
ij,uv subject to the constraints

∀n+

i=1∀
n−

j=1 αij ≥ 0.

Optimization Problem 4 shows how the AUC maximiz-
ing 2-norm SVM can be implemented using a standard
QP solver. The resulting decision function can be writ-
ten in dual coordinates as

f(x) = 〈w∗, φ(x)〉

=
∑

ij:α∗

ij
6=0

α∗
ij (k(xi, x) − k(xj , x)) .



Analogy to the regular SVM

Theorem 2 characterizes the relation between “vanilla”
SVM and AUC maximizing support vector learning
for the case of a linear kernel. Intuitively, the linear
AUC maximizing SVM can be “emulated” by a reg-
ular SVM without threshold when a new training set
is constructed that consists of n+n− positive exam-
ples zij = x+

i − x−
j . This analogy does not hold for

nonlinear kernels.

Theorem 2 In case of a linear kernel
k(x, x′) = 〈x, x′〉 the optimization problem of
an unthresholded one class SVM with train-
ing examples (z11, +1), . . . , (zn+n− , +1) where

∀n+

i=1∀
n−

j=1 zij = x+
i − x−

j is equivalent to Optimization
Problem 2.

Proof. The soft margin optimization problem of the
SVM is given by

min
w,ξ

1
2‖w‖2 + C

r

∑

ξr
ij

s.t. yij(〈w, zij〉 + b) ≥ 1 − ξij

ξij ≥ 0,

for 1 ≤ i ≤ n+ and 1 ≤ j ≤ n−. The substitution
of zij = x+

i − x−
j , b = 0 and yij = 1 leads to the

optimization problem

min
w,ξ

1
2‖w‖2 + C

r

∑

ξr
ij

s.t. 〈w, x+
i − x−

j 〉 ≥ 1 − ξij

ξij ≥ 0,

for 1 ≤ i ≤ n+ and 1 ≤ j ≤ n−. The choice of k = 〈·, ·〉
implies φ(x) = x. Therefore,

〈w, x+
i − x−

j 〉 = 〈w, x+
i 〉 − 〈w, x−

j 〉

= 〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉

which is exactly Optimization Problem 2.

The linear AUC SVM has a simple geometric inter-
pretation. Its primal weight vector w is the normal
of a hyperplane that passes through the origin. The
training procedure adjusts the hyperplane such that
the margin to the vectors zij = x+

i −x−
j is maximized.

Implementation and Execution Time

Optimization Problems 3 and 4 can be solved using
a standard QP solver. Theorem 2 reveals the main
disadvantage not only of the AUC maximizing SVM
but of all methods whose criterion is based on the
Wilcoxon-Mann-Whitney statistic. The number of
constraints and parameters in the optimization prob-
lem grows quadratically in the number of examples.

The execution time of SVM training is estimated to be
in O(n2). Since the number of constraints and param-
eters grows quadratically in the number of examples

Table 1. Approximate linear AUC maximizing SVM.

Input: n+ positive and n− negative examples, trade-
off parameter C.

1. Generate all zij = x+
i − x−

j . This results in

(n+n−) vectors.

2. Clustering: Employ a linear clustering procedure
to find n+ + n− clusters. Let cu be the cluster
centers.

3. Define kernel matrix as ku,v = 〈cu, cv〉.

4. Solve Optimization Problem 3 for 1-norm SVM
or 4 for 2-norm SVM; i.e., learn unthresholded
one-class SVM using the cu as positive examples.

Return decision function.

n, training the AUC SVM incurs an execution time
of roughly O(n4). This execution time is feasible for
small samples but unsatisfactory for large databases.
Therefore, we discuss how the number of constraints
can be reduced by clustering in Section 4.

4. Approximate AUC Maximization

An approximate execution time of O(n4) is accept-
able for small samples but unsatisfactory for large
databases. We will now study a method that reduces
the number of constraints by clustering. The method
requires a linear kernel. In order to achieve an overall
complexity of O(n2) we have to reduce the number of
constraints and parameters from n+n− to n+ + n−.

In primal coordinates, we have one constraint for each
pair of instances (Equation 13). In the linear case, this
simplifies to Equation 14.

〈w, φ(x+
i )〉 − 〈w, φ(x−

j )〉 ≥ 1 − ξij (13)

= 〈w, x+
i − x−

j 〉 ≥ 1 − ξij (14)

Our strategy for approximating this problem is to rep-
resent the n+n− many pairs x+

i −x−
j by only n+ +n−

cluster centers and thereby reduce the number of con-
straints and parameters. Table 1 details this method.
The execution time is O(n2) for the generation of
all pairs, at most O(n2) for a clustering method and
O(n2) for the consecutive optimization procedure of
the AUC SVM. Thus, the overall execution time is
back in O(n2). The method is only feasible for linear
kernels because we calculate differences of instances;
this requires explicit representation of φ(x).

The k-means algorithm meets these requirements. It



can be implemented such that it converges after usu-
ally one or very few scans of the data set (Goswami
et al., 2004). Their Fast and Exact k-Means (FEKM)
algorithm estimates initial cluster centers on a small
sample. Starting from these approximate clusters, the
FEKM algorithm then computes exact cluster centers
using one or very few passes over the entire data. “Ex-
act” here refers to those cluster centers that would be
the result of the regular k-means algorithm.

5. Empirical Studies

We study which of the regular and AUC maximizing
Support Vector Machine maximizes the AUC more ef-
fectively. We investigate the execution time and ex-
plore the benefit of the k-means AUC SVM.

We focus on problem domains for which the SVM is
known to be a good solution and the AUC is a fre-
quently used evaluation metric. We select text classifi-
cation (the Reuters-21578 corpus) for the linear SVM
and hand-written character recognition (the MNIST
benchmark data set) for the polynomial kernel.

Our experimental setting is as follows. We use a varia-
tion of bootstrapping that allows us to vary the train-
ing sample size. We separate each of the six most fre-
quent classes of the Reuters corpus from their comple-
mentary class. We draw a specified number of training
examples and 1000 distinct holdout examples without
replacement at random in each iteration. We average
the performance on the holdout set over 100 iterations.

We discriminate hand-written digits 4 and 9 of the
MNIST data set because they are the most similar pair
of characters. We draw 50 examples from the training
part and 500 holdout examples from the testing part
that was written by distinct authors. We average 100
iterations. Error bars indicate the standard error. Our
QP solver is the Loqo implementation by Alex Smola
for the nonlinear and SVMlight for the linear case.

Does the AUC SVM maximize the AUC better

than the regular SVM, and how should C be ad-

justed? We explore the space of values for parameter
C using 25, 50, 100, 250, and 500 training examples.
Figure 1 shows the results for Reuters using 100 exam-
ples, Figure 2 for MNIST using 50 training instances.
Figure 4 summarizes the parameter value that maxi-
mizes the average AUC over all studied Reuters prob-
lems, for all studied sample sizes. The AUC SVM re-
quires C between 0.0001 and 0.001, the regular SVM
roughly between 0.01 and 0.1.

For each problem and each studied sample size we fix
the apparently optimal C for both methods and re-

0.0001

0.001

0.01

0.1

1

25 50 100 250 500

tr
ad

e-
of

f C

sample size

average optimal trade-off parameter

k-means AUC SVM
AUC-SVM

SVM

Figure 4. Optimal trade-off parameter averaged over all
Reuters problems.

evaluate the AUC for these parameter settings by av-
eraging 100 iterations with distinct resampled training
and holdout samples. We compare equally many pa-
rameter values for regular and AUC maximizing SVM.
Table 2 compares the resulting AUC values for SVM
and regular SVM for 100 examples. In two out of
six cases, we can reject the null hypothesis that both
methods perform equally well at a confidence level of
α = 0.05 in favor of the AUC SVM.

Figure 3 details the AUC of regular and AUC max-
imizing SVM with optimized trade-off parameter for
various sample sizes. For all problems and sample
sizes, we conduct a two-sided test at a 5% confidence
level. There is one single case in which the regular
SVM is significantly better; in 9 out of 30 comparisons
the AUC SVM performs significantly better than the
SVM.

Table 2. AUC for Reuters; 100 examples, optimal C.

AUC SVM SVM
aquisition 88.51%± 0.27 % 88.17%± 0.24%

crude 87.71%± 0.63 % 89.18%± 0.48%
earn 94.40%± 0.13 % 94.15%± 0.14%

grain 89.71%± 0.69 % 88.60%± 0.61%
interest 86.20% ± 0.68% 84.68%± 0.72%

money-fx 89.89% ± 0.46% 87.77%± 0.53%

Figure 2 compares the AUC for MNIST using a poly-
nomial kernel of degree d = 2, 3, 4 and 50 training ex-
amples. Table 3 details the observed AUC values. The
AUC SVM appears to perform better, but the results
are not significant.

From these experiments with the Reuters and MNIST
problems, we conclude that, on average, the AUC
SVM achieves a higher AUC than the regular SVM.
In addition, the AUC SVM requires the trade-off pa-
rameter to be adjusted to roughly 1% of the optimal
value for the SVM.
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Figure 1. Exploration of trade-off values C for Reuters, 100 examples.
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Figure 2. Exploration of trade-off values C for MNIST “4 vs. 9”, 50 examples.

Table 3. AUC for MNIST; 50 examples, optimal C.

AUC SVM SVM
d = 2 95.80%± 0.18% 95.52%± 0.18%
d = 3 95.42%± 0.18% 95.06%± 0.21%
d = 4 93.90%± 0.24% 93.47%± 0.26%

How effective is the approximate optimization

based on clustering? Figure 3 compares regular
SVM, AUC SVM, and approximate AUC SVM us-
ing k-means clustering. We conduct two-sided tests
at a 5% level and compare the k-means AUC SVM to
the regular SVM. The k-means SVM beats the regular
SVM significantly in 4 out of 24 cases, the regular SVM
is not significantly better in any case. We conclude
that, on average, the k-means AUC SVM achieves a
higher AUC than the regular SVM. In addition, Figure
4 suggests that the optimal regularization parameter
lies between that of regular and AUC SVM.

How do the execution time of AUC SVM and

k-means AUC SVM compare to regular SVM?

Figure 5 compares the execution time of regular SVM,
AUC SVM, and approximate AUC SVM using fast k-
means with one pass over the data. The figure shows
the averaged execution time over four iterations with
up to 1000 examples and fitted polynomials. The AUC
SVM is slow for large samples, the fitted curve has an
n4 term. The k-means approximation is substantially
faster, the fitted curve is quadratic in the sample size n.
Although the regular SVM is quadratic in the sample
size (computing the kernel matrix is already quadratic)
the linear term dominates the observed curve. The
regular SVM is faster than even the k-means AUC
SVM with only one single pass over the data.

6. Related Work

ROC analysis is widely used in radar technology
(Egan, 1975), psychology (Swets, 1996), medicine
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(Lusted, 1971), pattern recognition (Bradley, 1997),
and, more recently, in machine learning (Provost et al.,
1998). Provost and Fawcett (2001) argue that ROC
analysis is useful, for instance, when class-specific costs
of misclassification are not known, or the class dis-
tribution is unknown or skewed. ROC analysis is
helpful to visualize, and understand the relationship
between, various possible evaluation metrics (Flach,
2003, Fürnkranz & Flach, 2005).

When the learning goal is to maximize the AUC per-
formance, it appears more appropriate to employ al-
gorithms that directly maximize this criterion, rather
than, for instance, the error rate. Therefore, AUC
maximizing variants of almost all learning methods
have been developed, including decision trees (Ferri
et al., 2002), rules (Fawcett, 2001), boosting (Freund
et al., 1998, Cortes & Mohri, 2003), logistic regression
(Herschtal & Raskutti, 2004) and subgroup discovery
(Kavšek et al., 2004).

In the light of previous work, an AUC maximizing ker-
nel classifier is overdue. In this paper, we present the
first rigorous derivation of an AUC SVM that in fact
maximizes the AUC more effectively than the SVM.
Previous efforts to implement an AUC maximizing
kernel classifier (Rakotomamonjy, 2004) have so far
only lead to methods that are worse at maximizing
the AUC than the regular SVM.

Classification with the goal of AUC maximization can
be seen as a special case of ordinal regression (Herbrich
et al., 1999); the quadratic optimization problem that
one encounters for ordinal regression correspondingly
resembles Optimization Problem 3.

In AUC maximization problems, quadratically many
terms contribute to the optimization function. Ran-
dom or heuristic sampling has been proposed as a so-
lution strategy (Herschtal & Raskutti, 2004). For large
databases, even the execution time of the regular SVM
can be unpleasant and clustering has been proposed as
a strategy of reducing the number of optimization con-
straints and parameters (Yu et al., 2003).

7. Conclusion

We developed an AUC maximizing kernel machine
that optimizes a bound on the AUC and a margin
term. Starting from this optimization criterion, we
derived the corresponding convex quadratic optimiza-
tion problems for 1-norm and 2-norm machines that
can be handled by standard QP solvers.



Our experiments with different types of kernels show
that the AUC SVM generally incurs a higher AUC
performance than the regular SVM. The optimal set-
ting of the trade-off parameter is smaller than for the
regular SVM. The execution time of the AUC SVM
is approximately in O(n4). Direct AUC maximiza-
tion is feasible for small samples; for large databases,
it can be approximated. The approximate k-means
AUC SVM is more effective at maximizing the AUC
than the SVM for linear kernels. Its execution time is
quadratic in the sample size, but empirically we still
observe the regular SVM to be substantially faster.

ROC analysis can be extended to multi-class prob-
lems; the volume under the multi-class ROC surface
(Mossman, 1999) can be approximated by averaging
multiple one-versus-one (Hand & Till, 2001) or one-
versus-rest curves (Provost & Domingos, 2003). To
directly maximize these criteria, the AUC SVM can
be applied to the corresponding binary one-versus-one
or one-versus-rest problems.
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