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Learning to Rate Player Positioning in Soccer
Uwe Dick* and Ulf Brefeld

Abstract
We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to
lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement
learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly
correlate with dangerousness of actual situations and show that rating of player positioning without expert
knowledge is possible.

Keywords: deep learning; spatiotemporal data; reinforcement learning; scoring function

Introduction
Professional game scouts and soccer coaches assess
video footage to analyze strengths and weaknesses of
opposing teams. For instance, identifying successful at-
tack patterns of an opposing team may assist coaches to
quickly devise strategies to counter those patterns. Due
to the low-scoring nature of the game, successful attack
patterns do not only involve those that lead to actual
goals.1 Instead, it may be sufficient to find those pat-
terns that lead to either clear goal scoring opportunities
or, even more general, allow a team to enter a ‘‘danger
zone,’’ for example, the last 25 m of the pitch.2

From a conceptual point of view, the execution of a
successful (good) attack pattern should raise the likeli-
hood of scoring a goal. That is, the likelihood of scoring
after executing the pattern should be higher than before
executing the pattern. We follow this conceptual line
and explore likelihoods of ‘‘being successful’’ from arbi-
trary game settings. We argue that, by being able to de-
rive such valuations, we will be able to find good (and
bad) attacking patterns by measuring differences in
likelihoods.

In this article, we investigate approaches to valuate
player positioning on a soccer pitch. We aim at assess-
ing a game setting, including all player and ball posi-
tions and current movement vectors at a given time,
with regard to its potential of leading to a successful at-
tack for the team that has possession of the ball. We thus
focus on tracking data of a set of European topflight soc-

cer matches.3,4 The recorded data consist of x=y coordi-
nates of all players of both teams and the ball, measured
at 25 frames per second. An additional flag indicates
which team is in possession of the ball at each time
point and if the ball is in play or if the game is halted,
for example, due to a foul.

We extract sequences of open play where one team
retains ball possession without either losing the ball
or the play being stopped. Each such sequence ends
with either one of these events or with that team per-
forming a ‘‘success action.’’ Following the discussion
above, a ‘‘success action’’ can, for example, consist of
the team entering the final 25 m of the pitch. In case
of a successful action, we label the sequence as posi-
tive, otherwise as negative.

Using these sequences, our approach is to learn a
scoring function that maps game situations to real
numbers using ideas and methods from deep reinforce-
ment learning (RL). RL has gained a lot of attention
over the past years. Particularly, combining RL with
‘‘deep models’’ often leads to impressive performances
on some very hard (and often game-related) learning
problems.5–7

Our contribution is as follows: we (1) model soccer
matches as Markov processes of game settings that in-
clude positional data and movement vectors of all play-
ers and the ball. In this model, these state sequences are
created by actions of the two teams who take the role of
the controller or policy. We (2) propose a convolutional
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neural network to learn the value function of this policy.
The value function thus rates game situations according
to how good they are for a team. (3) Empirical results on
positional data from topflight soccer matches show the
effectiveness of the proposed approach.

Related Work
We pursue a purely data-driven approach by learning
valuations from spatiotemporal data from real topflight
soccer matches. To that end, we do not make use of any
expert knowledge on identifying dangerous situations
or attacking patterns. Instead, we use only raw data
and infer dangerous situations and ‘‘good’’ attacking
patterns using that data alone.

Our approach is somewhat diametral to the one
taken by Link et al.,1 who also presented a measure
of dangerousity of game situations. They defined dan-
gerousity as a function of four aspects, such as the area
where a player is in possession of the ball or the pres-
sure put on a player by the opposing team, respectively.
Those metrics were evaluated using positional data of
real soccer matches. However, the parameters of the
model were adjusted manually based on expert knowl-
edge. The authors derived some performance indicator
metrics from dangerousity, such as action value that is
defined as the difference in dangerousity between ball
possession of two different players. As a limitation,
the article defined dangerousity only inside an area
starting 34 m from the opponents’ goal. They also com-
puted a shot density estimate that calculates some like-
lihood of a successful shot from a certain position.
Lucey et al.4 presented a model for shot success predic-
tion using handcrafted features from spatiotemporal
data. A similar problem for basketball was studied by
Cervone et al.,8 who proposed hierarchical statistical
models to predict the expected number of points
after ball possession.

Copete et al.9 predicted player and ball movements
in RoboCup 2D Soccer Simulation League games
based on two-dimensional (2D) trajectory data. They
employed two different models for ball movement
and player movements. For ball movement, they used
a feed-forward deep neural network model that takes
as input the current positions and outputs the next po-
sition of the ball. Player movements were predicted
using a recursive deep autoencoder architecture. Bial-
kowski et al.3 learned the roles of players based on
spatiotemporal data that describe their spatial arrange-
ment on the pitch. They used a minimum entropy
model to partition the data into player roles. They

showed that distinct formation classes, such as a 4-1-
4-1 formation, can be discovered automatically using
their method. Spatiotemporal soccer data were used
by Fernando et al.10 to group and compare scoring ap-
proaches of teams. Van Haaren et al.11 used event and
positional data to discover relevant ball possession
phases. They manually assigned weights to certain
events such as shot or cross and scored clustered ball
possession phases according to their summed weights.

A Bayesian topic model was proposed by Wang
et al.12 to learn and infer tactical patterns from event
data, that is, data about which player passed the ball
when and where to another player. The authors
reported on automatically identified tactical patterns,
that is, passing sequences in certain regions of the
pitch for teams. They also tracked the usage of attack-
ing patterns over the course of a game. Knauf et al.2

also aimed to identify tactical patterns. Using positional
data, they devised convolutional kernels to capture
multiple trajectories in space and time and reported
about game initiation and scoring opportunity pat-
terns. If, in contrast to patterns for predefined situa-
tions, all frequent patterns in multiple trajectory data
are of interest, the approach taken by Haase and Bre-
feld13 can be applied.

Van Haaren et al.14 proposed an inductive logic pro-
gramming approach to learn pass sequences that cap-
ture attack regularities. Game event data were also
exploited by Lucey et al.15 to visualize plays that start
from specific areas of the pitch as well as by Brandt
and Brefeld16 who deployed page rank algorithms on
pass sequences to capture team interaction. Rein and
Memmert17 provided a good overview over related ap-
proaches in the context of soccer tactics.

Contribution
This section details the contributions of our work.
We will first specify the kind of data we will be using
to learn ratings of players but postpone details on
statistics of the actual data set that is used in our exper-
iments to the Experimental Setup section. In the
Learning section, we describe the model and the learn-
ing procedure.

Preliminaries and data specification
In our analyses, we use tracking data consisting of a se-
quence of x=y coordinates of all players and the ball for a
set of soccer games, sampled at 25 frames per second.
We additionally make use of indicator variables that
state, at every point in time, which team is in possession
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of the ball and whether the ball is in play or if the game is
halted, respectively.*

We learn to valuate game settings with regard to
their potential of staging a successful attack. We define
a game setting as the positions and moving directions
of all players and the ball and also include the informa-
tion, which team has possession of the ball. That is, a
state is one frame of the input data. As a preprocessing
step, we extract sequences or episodes of open play
where one team retains ball possession without either
losing the ball or the play being stopped due to fouls
or the ball being out of the playing field. Each such
ball possession phase ends with the team controlling
the ball by either losing the ball or the play being stop-
ped, or with that team performing a ‘‘success action.’’

In the experiments, we consider two different ver-
sions of success actions. The first scenario declares a
ball possession phase of a team as a success if that
team carries the ball into the final 25 m of the oppo-
nent’s half. The second scenario defines an episode
as a success if the team has ball possession inside
the area 18 m around the opponent’s goal (2 m outside
the penalty box). Note, however, that other definitions
of success are easily incorporated, such as shots on
target or goals.1

We aim to learn a function that assigns scores to sit-
uations such that situations within a successful episode
should have higher scores than those of unsuccessful
ones. The function thus imposes a ranking of the situ-
ations and the optimal function ranks all successful
situations higher than unsuccessful ones. A natural
performance metric for such binary ranking problems
is the area under the ROC curve (AUC).18

Learning
We learn valuations of game settings by making use of
recent developments in deep RL. Deep RL approaches
have shown impressive performance in a variety of do-
mains recently.5–7 However, most of these approaches
aim to learn an optimal controller based on experience
data that are sampled from interactions of the learned
controller with the environment. This is clearly impossi-
ble for learning from real soccer matches as we cannot
alter player and ball movements realistically. The cur-
rent problem therefore constitutes a batch RL problem.
In batch RL problems, valuations and policies have to be
learned from a fixed set of interactions and rewards that
is sampled before the learning process.

Note that we are not focusing on learning optimal
controllers as this translates to learning how players
would behave optimally on the pitch, which is not in
the scope of this article. Instead, we are interested in
how good real players behave on the pitch and how
likely the behavior results in a success.

RL is a learning paradigm for learning controllers
or policies that perform optimally in an environment
that can be modeled as a Markov decision process.
However, as discussed above, the aim of this article is
to learn valuations instead of controllers. Such cases
can be modeled as Markov reward processes (MRP),
for example, van Seijen et al.19 An MRP consists of a
state space S, a transition function p(s, s¢) 2 [0, 1] that
describes the likelihood of transitioning from state s 2 S
to state s¢ 2 S, and a reward function R(s, s¢) 2 R that de-
termines the expected immediate reward for transition-
ing from s to s¢. A discount factor c 2 [0, 1) determines
the relative influence of future rewards over the immedi-
ate reward.

For the task at-hand, sequences of states are sepa-
rated into episodes e = (s1, s2, . . . , sT). Episodes have
episode-dependent start and end states and length or
number of time steps T per episode, and at the end of
every episode, there is a positive reward of 1 if, and
only if, the episode is successful and 0 otherwise. The
return G is defined as the cumulative discounted re-
ward that is observed after starting in state st until
the end of an episode

G(st) = +
T � 1

t¢ = t

ct� t¢R(st¢, st¢þ 1): (1)

We aim at finding the value function V, which maps
each state st to its expected return over all possible state
transitions—and therefore all possible episodes that
contain st

V(st) = Ep, T G(st)½ �: (2)

The remainder of this section is structured as fol-
lows. We will first present the deep convolutional
model that takes a representation of a game situation—
or state—as input and outputs a rating—or value func-
tion V—of that state. A batch RL algorithm is presented
next, and in a last step, we show the exact learning
procedure.

Deep model. The great resurgence of RL methods
comes from its impressive performance when used
with deep learning models as state, state-action, and/*A game is for instance halted by a foul.
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or policy representation.5–7 We follow the same line
and model states—which in our case are game settings
as described in the Preliminaries and Data Specification
section—using deep convolutional networks. To this
end, game settings are represented as ‘‘2D images’’
with nine channels, that is, a three-dimensional tensor
with dimensions (image width, image height, 9). The
first channel has a value of one at each pixel where a
player of the team playing from left to right is located.
The second channel represents the team playing from
right to left, and the third channel encodes the position
of the ball. Channels 4 and 5 encode partial speeds in x
and y directions of players of the team playing from left
to right. That is, if player A of that team is located at
pixel (px, py) and has a current movement vector of
(sx, sy), then the location (px, py) has the value sx in
channel 4 and sy in channel 5. The movements of the
other team are encoded in channels 6 and 7, the ball
movement in channels 8 and 9. All other values are
set to 0. We additionally input which team has posses-
sion of the ball as a single input, which is either +1 or
�1. In our experiments, we also use a second input rep-
resentation to investigate the influence of movement
vectors on the predictive performance of the proposed
model. This representation only uses the first three
channels of the ‘‘input image,’’ that is, the positions
of both teams and the ball.

Figure 1 shows the general architecture of the deep
model. The image-like input is fed into a three-layer
convolutional network with each layer having 32 ker-
nels of size 6 · 6 and ReLu activation units.20 The last
convolutional layer is followed by one fully connected
layer with 256 nodes and ReLu activation units. The
output of the deep model consists of one node repre-
senting the predicted value V of the input game setting.

Batch RL. Several methods for estimating value func-
tions from data were investigated and used in the liter-
ature over the years.19,21–24 Temporal difference (TD)
methods are among the most popular of those; they
minimize the difference of values between states and
future states to learn the value function. For conve-
nience, in the remainder of this section, we present
the k-return algorithm,25 which can be considered
the forward view of the TD(k) algorithm19 that we
use—in combination with the deep model described
above—in the experimentations.

The estimated n-step return on a sample episode
e = (s1, s2, . . . , sT) of state st , 1 � t � T , based on an es-
timate V̂ of the value function is defined for n < T � t as

Gn
V̂ (st) = +

n

t¢ = 1

ct¢� 1R(stþ t¢� 1, stþ t¢)þ cnV̂(stþ n) (3)

and for n � T � t, it is defined as the real return
G(st) in Eqn. 1. The k-return algorithm updates estima-
tes of the value function by computing the k-return

Gk
V̂ (st) = (1� k) +

T � t� 1

n = 1
kn� 1Gn

V̂ (st)þ +
1

m = T � t
kmGT � t

V̂ (st),

(4)

where the last term GT � t
V̂

(st) is the real return as de-
fined above. The infinite sum +1m = T � tk

m accounts
for the intuition that we should not look beyond the
end of the episode. Note that this definition is slightly
different from the one used, for example, in the study
of van Seijen et al.19

Our model learns V̂ by minimizing the mean squared
TD error over the training data set D = e1, . . . , em

min +
e2D

+
Te

i = 1
DV̂(se

i )
� �2

(5)

with TD error

DV̂(s) = V̂(s)�Gk
V̂ (s): (6)

FIG. 1. Visualization of the state model.
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Learning. The learning procedure works as follows.
For an episode consisting of states e = (s1, s2, . . . , sT),
we first compute a forward pass of the net for each of
the states s2, . . . , sT to compute value function values
V̂(s2), . . . , V̂(sT). We then compute k-returns for all
states Gk

V̂
(s1), Gk

V̂
(s2), . . . , Gk

V̂
(sT). Note that we assume

that the last state of an episode sT is followed by a vir-
tual state sE that has a value V̂(sE) = 0. Thus, to stay in
sync with notation in the Batch RL section, episodes
now have a virtual length of T þ 1 with sT þ 1 = sE.
Only transitions from sT to sE may yield rewards of 1
if the episode ends in a success. R(st, stþ 1) = 0 in all
other cases. Also note that it follows that for state sT,
k-returns consist of either 0 if the episode does not
end in a success or 1 otherwise (c.f. Eqn. 4). As a last
step, we use these k-returns as targets for the squared
loss of Eqn. 5 and perform back propagation to com-
pute gradients and update all parameters h of the
deep model. Figure 2 shows a visualization for the com-
putation of Gk

V̂
(st).

This approach is similar to that of Harb and Pre-
cup,26 who used a recurrent NN to learn a deep recur-
rent Q-network (DRQN). Hausknecht and Stone27 also
leveraged DRQNs to learn Atari games, whereas Foer-
ster et al.28 used DRQN-like networks in a multiagent
learning setting.

Empirical Results
Experimental setup
The data used in our experiments consist of five games
of topflight European soccer. Preprocessing of data is
described in the Preliminaries and Data Specification
section. As mentioned, we consider two different ver-
sions of success actions, one that declares an episode
a success if the team carries the ball into the final
25 m of the opponent’s half. The second one considers
ball possession inside the area 18 m around the oppo-
nent’s goal a success. The final data sets consist of
380 successful episodes and 715 unsuccessful episodes
with an overall number of 11,045 states for the first suc-
cess measure and 224 successful episodes and 866 un-
successful episodes with 11,340 states for the second
success measure. During training, all frames of an epi-
sode are randomly flipped in x and/or y direction to
boost training sample size. The ball possession flag is
flipped accordingly. Boosting virtual training size is
common practice in (deep) machine learning, for ex-
ample, He et al.29 for image recognition.

To evaluate how well the learned value functions
reflect the actual likelihood of success, we compare pre-
dictions to actual outcomes of ball possession se-
quences. To that end, we compute the value function
at certain points in time for a ball possession phase,

FIG. 2. Visualization of computation of Gk
V̂

(st) for an episode of length T.
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for example, 5 seconds before the end of the phase, and
evaluate whether the possession phase ends in a suc-
cess. This renders the evaluation a binary ranking
problem and we use the AUC18 to quantify the quality
of the scoring functions.

As a second measure, we evaluate valuations at cer-
tain regions of the pitch. We compute the value func-
tion when the ball is at a certain distance from the
opponents’ goal line and again compare to actual suc-
cess rates by means of AUC.

Training procedure
We implemented the model of the Learning section
using the TensorFlow library.{ We set the batch size
to 30 episodes and train the model using the Adam op-
timization algorithm.30 We set discount factor c = 0:95
as defined in the Learning section and use k = 0:7 for
the k-return algorithm in Eqn. 4 due to a grid-search.
We employ an early stopping criterion by using
a leave-one-game-out (LOGO) cross-validation (see
the Results section) on the training set and choosing
the best number of training batches for training on
the complete training set.

Results
Our experiment aims to shed light on how well the
learned value functions transfer between games and
teams.

Quantitative evaluation. We implement a ‘‘LOGO’’
cross-validation where training is performed on four
of the five games and evaluation metrics are com-
puted on the remaining game. We test both input rep-
resentations as described in the Learning section,
namely one that uses only the positional data of all
players and the ball—which we name Positions in
the figures—and one that also encodes the current
movement vectors (Movements).

Time-dependent AUC. We vary the time of evaluating
game states before the end of a ball possession phase
between 3 and 15 seconds. Figure 3 shows the averaged
AUCs on the test data over all five games for both in-
put representations and both success definitions. As
expected, the AUC becomes smaller the earlier in a
possession phase we score the game state. However,
even 13 seconds before the end of a phase, the AUC
is still strictly above 0.5, which would indicate unin-
formed guessing. Considering the inherently random
nature of soccer, the AUC scores show that the learned
value functions indeed capture important aspects of
player and ball positioning and movement vectors.
We can also see that the results are roughly comparable
for both considered success measures.

Area-dependent AUC. The AUCs for scores taken in
specific areas on the pitch are shown in Figure 4. Our
approach is able to learn value functions of player po-
sitioning for all areas of the pitch. Not surprisingly, the
closer the ball possessing team is to the opponent’s goal,

FIG. 3. Average AUC and standard errors for differing time points before the end of an episode as computed
in LOGO setting. We compare the model using movement information with the one that uses positions only.
The x-axis determines seconds before the end of an episode. AUC, area under the ROC curve; LOGO, leave-one-
game-out.

{https://www.tensorflow.org/
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the higher the average AUC. The closer a team gets to
the dangerous zone, the less chance influences entering
into it; often, a single pass or straight run does the job.
The left figure also shows that using only positions with-
out movement information performs worse than using
all available information. A similar tendency can also
be observed in Figure 3; however, the differences are
not significant. The right figure shows that AUC results
for the second success measure (18 m around the goal)
are comparable, although not as good as the ones for
the first success measure (25 m in front of the goal).
This is likely due to a reduced number of positive train-
ing episodes (see the Experimental Setup section) and
due to an increased influence of chance on the outcomes
of episodes (see the Visualization of Outcomes section).

Note that a trivial baseline would simply be the ball’s
distance from the goal as a measure of dangerousity.
Figure 4 shows that our approach easily beats this base-
line because this heuristic would be a diagonal line and
yield an AUC of 0.5.

Visualization. To get an idea of situations rated with
high scores, we show eight such settings in Figure 5.
They all show settings from of one game where the
red team has ball possession 5 m into the opponent’s
half, playing from left to right. Figures are sorted accord-
ing to decreasing scores. Note that these valuations were
used for computing the corresponding AUC in Figure 5.

We can see that in most of the high-scoring valuations
(2–7 in Fig. 5), the ball is played to a relatively open
player on the wing. In several of the situations, the
game is in a ‘‘dynamic’’ state (2, 6, 7, and 8 in Fig. 5)
where defensive players of the defending team and of-
fensive players of the attacking team are running with
high pace toward the goal. Only two situations are
more ‘‘classical’’ built-up plays where most of the de-
fenders are positioned behind the ball (3 and 5 in Fig. 5).

Figure 6 shows six lowest scoring situations, also 5 m
into the opponent’s half. We can see that all six game
situations contain a pass that is played to a white player
that is tightly covered and does not seem to have any
promising passing options into the forward direction.
In fact, all the depicted episodes end with a failure
shortly after the shown game situations.

Visualization of outcomes. To get a better idea of the
influence of player decisions and chance on soccer re-
sults, Figure 7 shows three high-scoring situations 10 m
into the opponent’s half on the left and corresponding
outcomes of the episodes on the right (success mea-
sure 18 m around the goal). The first row shows an un-
successful episode where the ball possessing player is
pushed to the corner, nicely reflected by a decrease
in the valuation, and in fact looses the ball for a goal
kick. The second episode yields a success because
the white player crosses the ball to his teammate

FIG. 4. Average AUC and standard errors for different valuation areas as computed in LOGO setting. The
x-axis determines how deep into the opponents’ half the valuations are computed. Left: Scenario with
success definition of 25 m in opponent’s half. We compare the model using movement information with
the one that uses positions only. Right: Ball control no more than 2 m outside opponent’s box is considered
success.
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FIG. 5. Game situations with white team playing from left to right and having ball possession 5 m into the
opponent’s half. Figures are sorted and numbered according to valuation, which is placed above each subfigure.
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successfully, and the last episode is unsuccessful because
the ball is actually headed away by the dark gray de-
fender. Nevertheless, valuations for the last two episodes
are very similar because both end with high balls into the
penalty box, but only one is successful.

Visualization of score development. A frequent
quantity of interest is to identify ‘‘surprising’’ elements
in a game. In the context of the presented investiga-
tion, ‘‘surprising’’ patterns correspond to those that
change the valuation of positional settings dramati-
cally and in a favorable way. Based on the learned val-
uations, we compare valuations taken at different
timestamps during a ball possession phase and pick
only situations realizing the largest TDs. Figure 8 de-
picts three patterns from the white team that took 4
seconds each and where the valuations change the

most. The white team plays again from left to right.
The middle and right panels of Figure 8 show long di-
agonal balls that are played to an open player on the
right wing. In both situations, the player, if able to
control the ball, gets possession in or very close to
the dangerous zone. The left panel of Figure 8 shows
a white player who gets possession of the ball close
to the last line of defense with another open player
free on the wing. The play starts in the own half and
consists of two passes through the center. Appendix
contains a more fine-grained visualization of temporal
changes of valuations during a ball possession phase.

Conclusion
We proposed a deep RL approach to learn valuations
of multiplayer positionings using positional data. The
purely data-driven approach did not rely on any

FIG. 6. Game situations with white team playing from left to right and having ball possession 5 m into the
opponent’s half. Figures are sorted in increasing order according to valuation, which is placed above each
subfigure.
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FIG. 7. Three snapshots (numbered 1 to 3) of ball possession phases of white team playing from left to right. Left:
Snapshots when ball is located 10 m into the opponent’s half. Right: End of the respective ball possession phase.

FIG. 8. Largest changes in valuation over a 4 second span. White team plays from left to right.
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prior knowledge of the domain and successfully learnt
valuations, which can often be interpreted in a mean-
ingful way. To the best of our knowledge, this work
constitutes the first purely data-driven approach to ma-
chines that read and understand games and, thus,
bridges the gap toward computational tactics.

For instance, correlations between our dangerousness
metric and traditional performance indicators like play-
ing speed, passing, or expansion of teams could be used
to group historic episodes against an opponent. These
groups could then be used to automatically devise strate-
gic insights for this opponent, for example, indicating
that counterattacks were more promising than slow play-
making or that cross passes led to more dangerous situ-
ations. These insights could then be implemented in the
respective game plan.
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Appendix
To help getting a better understanding of how valuations
change during a ball possession phase, in Appendix
Figure A1, we show three pictures that depict valuations
over the span of 15 seconds. Scores are shown close to
where the ball is once every second of the possession
phase. Again, valuations are generally smaller the further
away the red team is from the danger zone. However,
other factors also influence the valuation, as can be
seen, for example, by looking at the beginning of the

phase (Appendix Fig. A1, top), where the play starts
with a valuation of 0.300 but rapidly declines while the
ball is played to the left wing. From there the score
gets smaller still until it is played to a defender. However,
in Appendix Figure A1 (bottom), the score gets larger
again despite the ball being roughly the same distance
from the goal line. The difference is that in the latter
stages, the ball carrying player is not as closely marked
and has options to play the ball wide while he was closely
marked in the earlier stages.

Appendix Fig. A1 Figures show temporal differences during 15 seconds of a ball possession phase where the white
team playing from left to right has the ball: initial 5 seconds of the phase (top), followed by next 5 seconds (center), and
final 5 seconds (bottom). Valuations are printed once every second close to the respective position of the ball.
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