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Abstract

In many applications, unlabelled examples
are inexpensive and easy to obtain. Semi-
supervised approaches try to utilise such ex-
amples to reduce the predictive error. In this
paper, we investigate a semi-supervised least
squares regression algorithm based on the
co-learning approach. Similar to other semi-
supervised algorithms, our base algorithm
has cubic runtime complexity in the number
of unlabelled examples. To be able to handle
larger sets of unlabelled examples, we devise
a semi-parametric variant that scales linearly
in the number of unlabelled examples. Ex-
periments show a significant error reduction
by co-regularisation and a large runtime im-
provement for the semi-parametric approxi-
mation. Last but not least, we propose a dis-
tributed procedure that can be applied with-
out collecting all data at a single site.

1. Introduction

As unlabelled examples are much easier to obtain in
most real-world learning applications than labelled
ones, semi-supervised learning is gaining more and
more popularity among machine learning researchers.
Despite the increasing popularity of such approaches,
so far they have almost exclusively been applied to
classification problems. The empirical results of these
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papers indicate that indeed unlabelled data can be
used to significantly improve the predictive perfor-
mance of classification algorithms.

In this paper we develop the semi-supervised regression
algorithm coRLSR (co-regularised least squares regres-
sion) and propose a semi-parametric variant with im-
proved scalability. CoRLSR is based on casting co-
learning as a regularised risk minimisation problem in
Hilbert spaces. Similar to other kernel methods, the
optimal solution in the Hilbert space can be described
by a linear combination of kernel functions “centred”
on the set of labelled and unlabelled instances. Similar
to other semi-supervised approaches, the solution, i.e.,
the expansion coefficients, can be computed in time
cubic in the size of the unlabelled data. As this does
not reflect our intuition that semi-supervised learning
algorithms should be able to process, and benefit from,
huge amounts of unlabelled data, we furthermore de-
velop a semi-parametric approximation that scales lin-
early with the amount of unlabelled data.

Our experiments on 32 data sets from UCI and on
the KDD-Cup 1998 data set show that both variants
of coRLSR significantly outperform supervised regres-
sion, parallelling the findings made for classification.
Although non-parametric coRLSR outperforms semi-
parametric coRLSR in terms of error rates, in terms of
runtime our experiments confirm that semi-parametric
coRLSR scales very well with the unlabelled data.

Last but not least we also consider co-regression in a
distributed setting, that is, we assume that labelled
data is available at different sites and must not be
merged (the labels need not be on the same instances
and there might be privacy concerns about moving the
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data). In this setting, we propose a distributed itera-
tive procedure that optimises the same objective func-
tion as for centralised co-regression. Assuming that
(different views of) the same unlabelled data are avail-
able at the different sites, the only communication
needed in each iteration is to share the predictions of
each site about the unlabelled data.

In Section 2 we introduce co-learning and discuss re-
lated work. In Section 3 we derive coRLSR and its
semi-parametric approximation. The distributed co-
regularised least squares regression algorithm is then
presented in Section 4. Finally, Section 5 reports on
experimental results and Section 6 concludes.

2. Related Work

Co-classification (Blum & Mitchell, 1998; Nigam &
Ghani, 2000) and co-clustering (Bickel & Scheffer,
2004) are two frameworks for classification and cluster-
ing in domains where independent views — i.e., dis-
tinct sets of attributes — of labelled and unlabelled
data exist. Both are based on the observation that the
rate of disagreement between independent hypothe-
ses upper-bounds their individual error rates (de Sa,
1994). A common application of such approaches is
hypertext classification where it can be assumed that
the links and text of each web page present two inde-
pendent views of the same data. However, minimising
the rate of disagreement increases the dependency be-
tween the hypotheses and the original motivation for
co-learning no longer holds. Nevertheless, the predic-
tive performance of these approaches is often signif-
icantly better than for single-view approaches. More
surprisingly even, in many domains splitting attributes
at random into different views and applying a co-
classification approach outperforms single-view learn-
ing algorithms (Brefeld & Scheffer, 2004).

De Sa (1994) first observed the relationship between
consensus of multiple hypotheses and their error rate
and devised a semi-supervised learning method by cas-
cading multi-view vector quantisation and linear clas-
sification. Blum and Mitchell (1998) introduced the
co-training algorithm for semi-supervised learning that
greedily augments the training sets of two classifiers.
Alternatively, a variant of the AdaBoost algorithm has
been suggested in (Collins & Singer, 1999) that boosts
the agreement between two views on unlabelled data.

Dasgupta et al. (2001) and Leskes (2005) give bounds
on the error of co-training in terms of the disagree-
ment rate of hypotheses on unlabelled examples in
two independent views. This allows the interpretation
of the disagreement as an upper bound on the error

solely on the basis of unlabelled examples and justifies
the direct minimisation of the disagreement. The co-
EM approach to semi-supervised learning probabilis-
tically labels all unlabelled examples and iteratively
exchanges those labels between two views (Nigam &
Ghani, 2000). Recently, Hardoon et al. (2006) propose
a fully supervised variant of a co-support vector ma-
chine that minimises the training error as well as the
disagreement between two views.

Most studies on multi-view and semi-supervised learn-
ing consider classification problems, while regres-
sion remains largely under-studied. Generally, semi-
supervised graph-based classification methods can be
viewed as function estimators under smoothness con-
straints (see Zhu, 2005, for an overview). Zhou and Li
(2005) apply co-training to kNN regression. Instead
of utilising two disjoint attribute sets they use dis-
tinct distance measures for the two hypotheses. An
approach similar to non-parametric coRLSR has been
proposed by (Sindhwani et al., 2005) for classification.

3. Efficient Co-Regression

Given training data {(x, y(x))}x∈X , X ⊆ X , y(x) ∈ R,
the general approach of kernel methods is to find

arg min
f(·)∈H

∑

x∈X

V (y(x), f(x)) + νΩ[f(·)] (1)

where Ω[f(·)] is a regularisation term, H is a Hilbert
space of functions often called the hypothesis space,
V (y, ·) is a convex loss function, and ν ≥ 0 is a param-

eter. Often the regularisation term ‖f(·)‖2H is used.

For M -view learning we are essentially looking for M
functions from different Hilbert spaces Hv (possibly
defined by different instance descriptions — views —
and/or different kernel functions) such that the error
of each function on the training data and the disagree-
ment between the functions on the unlabelled data
is small. Note, we are considering a setting slightly
more general than most other co-learning approaches:
firstly, we directly consider M ≥ 1 views and sec-
ondly, the instances described by different views may
differ. Thus given M finite sets of training instances

Xv ⊆ X ,
∣

∣

∣

⋃M
v=1 Xv

∣

∣

∣ labels y(x) ∈ R, and a finite set

of instances Z ⊆ X for which the labels are unknown
we want to find f1 : X → R, . . . , fM : X → R, i.e.,
f = (f1, . . . , fM ) ∈ H1 × · · · × HM that minimise

Q(f) =

M
∑

v=1

[

∑

x∈Xv

V (y(x), fv(x)) + ν ‖fv(·)‖
2

]

+ λ

M
∑

u,v=1

∑

z∈Z

V (fu(z), fv(z))

(2)
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where the norms are in the respective Hilbert spaces
and λ is a new parameter that weights the influence of
pairwise disagreements. To avoid cluttering the nota-
tion unnecessarily, we omit the obvious generalisation
of allowing different ν for different views.

A simple application of the representer theorem
(Wahba, 1990; Schölkopf et al., 2001) in this context
shows that the solutions of (2) always have the form

f∗
v (·) =

∑

x∈Xv∪Z

cv(x)kv(x, ·), (3)

where kv(·, ·) is the reproducing kernel of the Hilbert
Space Hv.

This allows us to express (fv(x1), fv(x2), . . .)
t
xi∈Xv∪Z

as Kvcv and ‖fv(·)‖
2 as ct

vKvcv, where [Kv]ij =
kv(xi, xj) and [cv]i = cv(xi). Here Kv forms a (strictly)
positive definite kernel matrix, i.e., it is symmetric and
has no negative (and no zero) eigenvalues. Similarly,
we use the notation yv = (y(x1), y(x2), . . .)

t
xi∈Xv

.

3.1. Non-Parametric Least Squares Regression

In the remainder of this paper we will concentrate on
squared loss V (y, ŷ) = (y − ŷ)2. For standard kernel
methods (1), this is known as ridge regression (Saun-
ders et al., 1998) or regularised least squares regression
(RLSR). With nv training examples in view v and m
unlabelled examples, we can rephrase (2) and obtain
the exact (non-parametric) coRLSR problem :

Definition 3.1 Let for each view v ∈ {1, . . . , M} two
matrices Lv ∈ R

nv×(nv+m) and Uv ∈ R
m×(nv+m) be

given, such that

Kv =

(

Lv

Uv

)

is strictly positive definite. For fixed λ, ν ≥ 0 the
coRLSR optimisation problem is to minimise

Q(c) =

M
∑

v=1

[

‖yv − Lvcv‖
2

+ νct
vKvcv

]

+ λ
M
∑

u,v=1

‖Uucu − Uvcv‖
2

over c = (c1, . . . , cM ) ∈ R
n1+m × · · · × R

nM+m.

This optimisation problem has been considered in
(Sindhwani et al., 2005) for two-view classification. In
the remainder of this section we propose a closed form
solution and analyse its runtime complexity.

Proposition 3.1 The solutions cv of the coRLSR op-
timisation problem can be found in time O

(

M3m3
)

(assuming m ≥ n = maxv nv).

Proof With

Gv = Lt
vLv + νKv + 2λ(M − 1)U t

vUv

we get

∇cv
Q(c) = 2Gvcv − 2Lt

vyv − 4λ
∑

u:u6=v

U t
vUucu .

At the optimum

(∇c1
Q(c),∇c2

Q(c), . . .)t = 0

holds and we can find the exact solution by solving







G1 −2λU t
1U2 · · ·

−2λU t
2U1 G2 · · ·

...
...

. . .













c1

c2

...






=







Lt
1y1

Lt
2y2

...






.

This requires the inversion of a strictly positive definite
matrix as







G1 − 2λU t
1U1 0 · · ·

0 G2 − 2λU t
2U2 · · ·

...
...

. . .







is strictly positive definite for M ≥ 2 and







λU t
1U1 −λU t

1U2 · · ·
−λU t

2U1 λU t
2U2 · · ·

...
...

. . .







is positive definite.1 The solution can thus be found in
time O

(

(Mm + Mn)3
)

. Using m > n we obtain the
bound as stated above. �

For 2-view co-regression we can use the partitioned
inverse equations to obtain

c1 =
(

G1 − 4λ2U t
1U2G2

−1U t
2U1

)−1

(

Lt
1y1 + 2λU t

1U2G2
−1Lt

2y2

)

.

3.2. Semi-Parametric Approximation

While cubic time complexity in the number of labelled
examples appears generally acceptable (supervised al-
gorithms like SVMs, RLSR, etc. all have cubic time
complexity), cubic time complexity in the number of
unlabelled examples renders most real-world problems
infeasible as typically m ≫ n (still, most state-of-
the-art semi-supervised or transductive learning al-
gorithms have cubic or worse time complexity). To
achieve lower complexity in the number of unlabelled

1For the case M = 1 the problem reduces to invert-
ing G1 which is strictly positive definite as K1 is strictly
positive definite by definition.
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instances, we resort to a semi-parametric approxima-
tion. In particular we optimise over functions that can
be expanded in terms of training instances only. With
nv training examples in view v and m unlabelled ex-
amples, we can phrase the semi-parametric approxi-
mation to the coRLSR optimisation problem as

Definition 3.2 Given for each view v ∈ {1, . . . , M}
a strictly positive definite matrix Lv ∈ R

nv×nv and an
arbitrary matrix Uv ∈ R

m×nv . For fixed λ, ν ≥ 0 the
semi-parametric coRLSR optimisation problem is to
minimise

Q(c) =

M
∑

v=1

[

‖yv − Lvcv‖
2

+ νct
vLvcv

]

+ λ

M
∑

u,v=1

‖Uucu − Uvcv‖
2

over c = (c1, . . . , cM ) ∈ R
n1 × · · · × R

nM .

Typically, Lv and Uv are computed from a strictly pos-
itive definite kernel function and form a positive defi-
nite kernel matrix Kv ∈ R

(nv+m)×(nv+m) as

Kv =

(

Lv U t
v

Uv ∗

)

where the part marked by ∗ is not needed.

Proposition 3.2 The solutions cv of the semi-
parametric coRLSR optimisation problem can be
found in time O

(

M3n2m
)

(assuming m ≥ n =
maxv nv).

Note that the matrices Lv, Uv, and Gv in the following
proof are different from the corresponding matrices in
the proof of Theorem 3.1. The symbols are overloaded
as they play corresponding roles in either proof. Fur-
thermore, this enables us to prove two theorems at
once in the next section.

Proof With

Gv = L2
v + νLv + 2(M − 1)λU t

vUv

we get

∇cv
Q(c) = 2Gvcv − 2Lvyv − 4λ

∑

u:u6=v

U t
vUucu .

At the optimum

(∇c1
Q(c),∇c2

Q(c), . . .)t = 0

holds and we can find the exact solution by solving






G1 −2λU t
1U2 · · ·

−2λU t
2U1 G2 · · ·

...
...

. . .













c1

c2

...






=







L1y1

L2y2

...






.

This requires the inversion of a strictly positive definite
matrix as







G1 − 2λU t
1U1 0 · · ·

0 G2 − 2λU t
2U2 · · ·

...
...

. . .







is strictly positive definite for M ≥ 2 and






λU t
1U1 −λU t

1U2 · · ·
−λU t

2U1 λU t
2U2 · · ·

...
...

. . .







is positive definite. The solution can thus be found in
time O

(

(Mn)3 + M2m
)

. Using m > n we obtain the
bound as stated above. �

For 2-view co-regression we can again make use of the
partitioned inverse equations to obtain

c1 =
(

G1 − 4λ2U t
1U2G2

−1U t
2U1

)−1

(

L1y1 + 2λU t
1U2G2

−1L2y2

)

.

3.3. Relation to RLSR

It turns out that the above two optimisation problems
from Definitions 3.1 and 3.2 are natural generalisa-
tions of regularised least squares regression. In both
cases for m = 0 we obtain M independent regularised
least squares solutions. In the semi-parametric case we
also obtain M independent regularised least squares
solutions for λ = 0. For M = 1 the agreement term
(the second part of the objective function in Defini-
tion 3.2) vanishes and we recover a single regularised
least squares solution. In the non-parametric case for
λ = 0 or M = 1 the optimisation problem still ap-
pears different from the regularised least squares opti-
misation problem as the regularisation term for each
view includes a regularisation over the unlabelled data.
However, applying the representer theorem to this case
shows immediately that all components of cv corre-
sponding to unlabelled data will be zero for the min-
imiser of the optimisation problem. This shows that
non-parametric as well as semi-parametric coRLSR
contain traditional RLSR as a special case and can
hence both be seen as natural generalisations.

4. Distributed coRLSR

Machine learning traditionally considers application
scenarios where the data is available at a single site
(computer/cluster) to a single machine learning algo-
rithm. Novel problems and challenges arise whenever
this is not the case and the data is distributed over
many sites and must not be collected at a single site,
e.g., for privacy reasons. In this section we devise a
distributed coRLSR algorithm for this scenario.
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Algorithm 1 Distributed CoRLSR

Require: Matrices as in Definition 3.1 and Propo-
sition 4.1, or matrices as in Definition 3.2 and
Proposition 4.2. At each site ŷu = 0.

Ensure: cv become the optimal solution of the respec-
tive coRLSR optimisation problem

1: repeat

2: for each view v sequentially do

3: cv ← G−1
v

[

Lt
vyv + 2λU t

v

∑

u6=v ŷu

]

4: ŷv ← Uvcv

5: send ŷv to all
6: end for

7: until convergence

4.1. Motivation

Consider a situation in which different companies have
similar prediction problems and could greatly benefit
from better predictive accuracy. This is for example
the case for different loan providers each trying to pre-
vent fraud using some prediction technique. Another
example is companies trying to protect their com-
puters from attacks over the internet using a learned
model of internet connections.

In both cases sharing the data or their models could in-
crease the quality of the predictions but the companies
are rather unlikely to do that. In this section we con-
sider the case that the different companies, however,
agree on a set of unlabelled data and to exchange their
predictions on this unlabelled data. As the unlabelled
data may even be (appropriately generated) synthetic
data, it is realistic to assume that companies do this.

4.2. Block Coordinate Descent CoRLSR

In this section we show that the above non-parametric
and semi-parametric coRLSR optimisation problems
can be solved by an iterative, distributed algorithm
that only communicates the predictions of each site
about the unlabelled data.

Proposition 4.1 The non-parametric coRLSR opti-
misation problem can be solved by Algorithm 1 with
Gv = Lt

vLv + νKv + 2(M − 1)λU t
vUv.

Proposition 4.2 The semi-parametric coRLSR opti-
misation problem can be solved by Algorithm 1 with
Gv = L2

v + νLv + 2(M − 1)λU t
vUv.

With all variables defined as in the corresponding non-
parametric and semi-parametric coRLSR definitions
and proofs, we can prove both propositions together.
Note, however, the slight notational difference between

the gradient in the following proof and the gradient in
the proof of Proposition 3.1. In the following we use
the symmetry of Lv to replace it by its transpose Lt

v

for notational harmony with the gradient in the proof
of Proposition 3.2.

Proof From the respective proofs we have

∇cv
Q(c) = 2Gvcv − 2Lt

vyv − 4λ
∑

u:u6=v

U t
vUucu.

Now, we can compute the gradient directions using
predictions (ŷu = Uucu) on the unlabelled data as

∇cv
Qv (cv, yv, {ŷu}u) =

2Gvcv − 2Lvyv − 4λU t
v

∑

u:u6=v

ŷu.

While the gradient direction itself is only given jointly

− (∇c1
Q1 (c1, y1, {ŷu}u) ,∇c2

Q2 (c2, y2, {ŷu}u) , . . .)t ,

the global minimum can also be found by block co-
ordinate descent (Bertsekas, 1999) over each view v.
This only requires setting the block gradient to zero,
i.e., solving

Gvcv = Lt
vyv + 2λU t

v

∑

u:u6=v

ŷu .

As Gv is strictly positive definite and the objective
function is convex, block coordinate descent converges.
�

4.3. Analysis of Distributed CoRLSR

Block coordinate descent has similar convergence
properties as steepest descent (Bertsekas, 1999) which
reduces the error rate in each iteration by a factor
depending on the largest and the smallest eigenvalue
of the Hessian. Assuming that this factor is 1/∆, the
error after N ∈ N iterations is reduced by a factor
1/∆N . Let n = maxv nv. Given that all labels are
from the interval [−1, 1], we can upper bound the
starting error Q(0) − Q(c∗) ≤ Mn, where c∗ is the
optimal solution. Let c(N) be the solution of Algo-
rithm 1 after N iterations. To achieve an error re-
duction factor of at least ǫ, i.e., an upper bound on
the error of Q

(

c(N)
)

− Q(c∗) ≤ Mnǫ, we must have
N ≥ log1/∆ ǫ = log∆

1
ǫ iterations.

The matrices G−1
v in Algorithm 1 can be computed

in time O(m3) and O(mn2) for non-parametric and
semi-parametric coRLSR, respectively. It needs to
be computed only once and can be computed at
the same time for all sites. Step 3 of Algorithm
1 can then be computed in time O

(

M(m + n)2
)
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and O(Mmn), respectively. As each step has to
be performed at each site, each iteration takes
O

(

M2(m + n)2
)

and O(M2mn) time, respectively.
Thus to achieve an error reduction factor of at least
ǫ, Algorithm 1 takes O

(

m3 + M2(m + n)2
⌈

log∆
1
ǫ

⌉)

and O
(

mn2 + M2mn
⌈

log∆
1
ǫ

⌉)

time, respectively.

Similarly, in each iteration, Mm numbers have to be
broadcasted. If we consider the machine precision a
constant, this requires broadcasting O

(

Mm
⌈

log∆
1
ǫ

⌉)

bits to achieve an error reduction by the factor ǫ.

5. Empirical Evaluation

In this section we summarise experiments compar-
ing regular RLSR with non-parametric and semi-
parametric coRLSR on benchmark regression datasets.

In all experiments we use a Gaussian kernel k(x, x′) =
exp(−‖x − x′‖2/σ) with σ = 1/n2

∑n
i,j=1 ‖xi − xj‖

2

and ν = (
∑n

i=1 ‖xi‖/n)−1 as regularisation parame-
ter. Note, that σ and ν depend only on the labelled
examples; in case of multiple views, σv and νv are com-
puted from the attributes in the respective view v. We
report scaled root mean square errors (rmse)

rmse(f) =
1

max yi

√

√

√

√

1

m

m
∑

i=1

(f(xi)− yi)2.

which allows viewing all results in the same figure.

5.1. UCI Experiments

The UCI repository (Newman et al., 1998) contains 63
data sets with continuous target attributes. We omit
data sets containing less than 50 examples and/or less
than 4 attributes. We leave out the largest 20 data sets
because of memory problems in Matlab with inverting
the matrices for the non-parametric case. On the re-
maining 32 data sets we perform a 10-fold ‘inverse’
cross validation, i.e., in each run we use one fold as la-
belled examples and the other 9 folds as unlabelled and
holdout examples. In each run the available attributes
are split randomly into two disjoint sets. The results
are averages over 20 such runs. In all experiments we
use λ = 1/10. The results are shown in Figure 1 where
error bars indicate the standard error.

In Figure 1 (left) we plot the rmse of regular RLSR
for all 32 UCI problems (x-axis) against the corre-
sponding rmse values of non-parametric coRLSR (y-
axis). Thus, each point refers to a UCI problem. The
dashed line marks the threshold where both meth-
ods perform equally well. Points below this line in-
dicate that non-parametric coRLSR has a lower rmse
for these data sets compared to regular RLSR. Figure

1 (middle) shows the analogue for regular RLSR and
semi-parametric coRLSR. Both comparisons show that
the multi-view algorithms outperform the baseline in
most of the 32 problems. Figure 1 (right) compares
the two multi-view methods. Semi-parametric coRLSR
performs slightly worse than non-parametric coRLSR.

While the Figures indicate that coRLSR outperforms
the baseline RLSR method over all datasets, we want
to confirm this hypothesis in a sound statistical test.
We use the null hypotheses that the algorithms per-
form equally well. As suggested recently by Demšar
(2006) we use the Wilcoxon signed ranks test.

The Wilcoxon signed ranks test is a nonparametric test
to detect shifts in populations given a number of paired
samples. The underlying idea is that under the null
hypothesis the distribution of differences between the
two populations is symmetric about 0. It proceeds as
follows: (i) compute the differences between the pairs,
(ii) determine the ranking of the absolute differences,
and (iii) sum over all ranks with positive and neg-
ative difference to obtain W+ and W−, respectively.
The null hypothesis can be rejected if W+ (and W−

depending on whether we need a one-sided or a two-
sided test) is located in the tail of the null distribution
which has sufficiently small probability.

The critical value of the one-sided Wilcoxon signed
ranks test for 32 samples on a 0.5% significance level
is 128. The test statistic for comparing non-parametric
coRLSR against RLSR is 54 < 128, the test statistic
for comparing semi-parametric coRLSR against RLSR
is 66 < 128, and finally the test statistic for comparing
parametric coRLSR against semi-parametric coRLSR
is 63 < 128. Hence on this significance level we can
reject all three null hypotheses. We conclude that the
multi-view algorithms significantly outperform regular
RLSR and that non-parametric coRLSR is the best
regression method of our study.

5.2. KDD Cup Experiments

In the KDD Cup data set, the task is to predict the
amount of money donated to a charity. The original
data set comes with 479 attributes. We use a binary en-
coding of nominal attributes with less than 200 distinct
values. Since there are many missing values we add an
indicator attribute for each continuous attribute. The
indicator equals 1 if the actual value is missing and 0
otherwise. The modified data set contains 95412 train-
ing examples with 5551 attributes. We use a resam-
pling approach to adjust λ. For a fixed λ we draw a
specified number of labelled and unlabelled examples
and distinct holdout examples at random in each iter-
ation. We average the rmse on the holdout set over 25
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Figure 1. Pairwise rmse for non-parametric coRLSR, semi-parametric coRLSR, and regular RLSR over 32 UCI data sets.

runs with distinct, randomly drawn attribute splits.
We compare equally many parameter values for all
methods. For each problem we fix the apparently op-
timal λ for all methods and reevaluate the rmse for
these parameter settings by again averaging over 25
runs with distinct resampled training and holdout sets.

In order to explore the influence of unlabelled exam-
ples we use 100 labelled and 200 holdout examples
and vary the number of unlabelled examples. The re-
sults are shown in Figure 2. For 100 labelled and no
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Figure 2. Results on the KDD Cup 98 data set with 100
labelled instances and varying numbers of unlabelled ones.

unlabelled examples both multi-view algorithms have
lower rmse compared to the baseline by simply aver-
aging the predictions of the two views. As the num-
ber of unlabelled examples increases, the advantage

of multi-view over single-view regression increases fur-
ther. Again, non-parametric coRLSR turns out to be
the best regression method.

The performance of semi-parametric coRLSR can be
further improved by increasing the number of un-
labelled instances. We observe average rmse values
of 0.1312 ± 0.006 for 10,000 unlabelled instances,
0.1078 ± 0.004 for 50,000 unlabelled instances, and
0.1253 ± 0.006 for 90,000 unlabelled instances. Note,
that non-parametric coRLSR is not feasible for these
sample sizes.

Figure 2 also compares the execution time of regular
RLSR, non-parametric, and semi-parametric coRLSR.
The figure shows execution time for a fixed number
of labelled and different numbers of unlabelled exam-
ples and fitted polynomials. The empirical results con-
firm our theoretical findings. Non-parametric coRLSR
is costly in terms of computation time (the degree of
the fitted polynomial is 3). Its approximation is con-
siderably faster (the fit of semi-parametric coRLSR is
a linear function of the number of unlabelled exam-
ples as shown in Proposition 3.2). For any number of
unlabelled datapoints, the runtime of semi-parametric
coRLSR is comparable to that of regular RLSR.

6. Conclusions

In this paper we proposed co-regularised least squares
regression (coRLSR), a semi-supervised regression al-
gorithm based on the co-learning framework. While
coRLSR like many other semi-supervised or trans-
ductive approaches has cubic runtime complexity in
the amount of unlabelled data, we proposed a semi-
parametric approximation of coRLSR which scales lin-
early in the amount of unlabelled data.

Both non-parametric and semi-parametric coRLSR
have closed form solutions in the usual centralised
learning setting. Additionally, both can be solved in
the less common distributed learning setting where the
labelled data must not be joined at a single site. This
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can be achieved by an iterative distributed algorithm
that only communicates the predictions about the un-
labelled data at each iteration.

Empirical results showed that coRLSR as well as
its semi-parametric approximation clearly outperform
traditional regularised least squares regression even on
problems where there is no given obvious feature split.
The observed improvements were achieved by apply-
ing co-learning based on a random feature split and
thus might even be more pronounced when natural
groups of features are available. While non-parametric
coRLSR outperforms its semi-parametric approxima-
tion in predictive accuracy, in terms of runtime semi-
parametric coRLSR is clearly more desireable than the
exact, non-parametric, version.
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