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Abstract—Deep learning methods, especially the family of
autoencoder architectures, exhibit state-of-the-art detection rates
in anomaly detection tasks. Additionally, recent results show that
learning latent spaces with deep architectures on Riemannian
manifolds may further improve performances as well as related
interpolation tasks. In this paper, we study the use of Riemannian
manifolds with variational autoencoders (VAEs) for anomaly
detection on data from water providers. Besides traditional
embeddings in Euclidean space, we study embeddings in Poincaré
discc, spheres, and Stiefel manifolds, where in general, the
Poincaré disc is often preferred for data with hierarchical
structures, embeddings in spheres suggests itself for cyclical
structures and the Stiefel manifold is well suited for time-
dependent data well. Data from water providers clearly meets
all three criteria and we report on empirical results with the
different manifolds as latent spaces and compare their detection
performance to that of standard Euclidian embeddings.

Index Terms—anomaly detection, Riemannian manifolds, non-
Euclidean geometry

I. INTRODUCTION

Water is possibly the most basic and, at the same time,
precious resource in the world. Water is not only needed
for our daily hydration, and thus survival, but also preserves
and drives cultural and economic development; without water,
there is no agriculture, no fish, no rivers for transportation of
goods, and no industry.

Modern water providers deploy computer-monitored hard-
ware to be able to control every aspect of their water treatment.
Any intrusion from the outside into the system poses a real
threat to the public as it may have severe impact on the
quality of the drinking water. Water providers thus belong
to the critical infrastructure of any country and need to be
protected against threats accordingly. Since modern attackers
adapt their strategies to finally launch a successful attack, a
constant and never changing defence clearly falls short for lack
of adaptivity. Instead, the system needs to be intelligent and
learn from historic data to adapt quickly to present and future
attacks. A simple strategy to detect intrusions in computer-
based systems is called anomaly detection, where a model of
normality is generated from normal system behaviour. Since
attacks deviate from normality by definition, the model iden-
tifies this deviating behaviour as such and can automatically
trigger counter measures.

Variational autoencoder (VAEs, [1]) have shown to perform
well in a variety of anomaly detection problems ([2]–[4]).

Autoencoders aim to detect and exploit manifold structures in
the data and solve this unsupervised problem by a supervised
setup: The idea is to embed input examples into a lower
dimensional latent space and to reconstruct the original inputs
from that code, so that a supervised loss function between
original input and reconstruction can be optimized. Usually,
autoencoders are implemented by neural networks where the
components responsible for computing the embedding and
reconstruction are called encoder and decoder, respectively.

By contrast, variational autoencoders interpret the latent
space as parameters of a variational distribution. Thus, the
decoder acts as a generator in a statistical sense, that is ini-
tialised with an input example and produces non-deterministic
reconstructions given an input. VAEs are thus considered
generative models.

To have VAEs (and autoencoders in general) perform well,
manifold structures are exploited so that similar input exam-
ples are mapped to similar, neighbouring points in the latent
space. Traditionally, Euclidean distance is used to compute this
relatedness in latent space, however, a Euclidean assumption
may not be appropriate for all data, particularly when those
data exhibit manifold structures.

However, even for scenarios entirely set in Euclidean space,
Arvanatidis et al. [5] showed that Euclidean distances may
be warped which renders the measure consequentially unre-
liable. Inspired by this, different Riemannian manifolds have
been studied as robust alternatives for learning latent spaces.
Examples like hyperbolic geometry with instantiations as
Poincaré balls [6] or hyperboloid spaces [7] have been studied,
especially for data containing hierarchical structures because
the negative curvature of the manifolds allows the space to
expand further, the more distant it is from the origin, leaving
enough room for clusters to be well separated.

Another interesting model using spherical geometry has
been created by Davidson et al., [8], which is preferable when
the data contains cyclical structures, like graph-structures with
loops. The reason is that such loops can also exist in the latent
space in spherical geometry. Figure 1 shows the three different
geometries and their influence on the behaviour of straight
lines. Hence, a Euclidean latent space should only assumed if
the data contains a grid-like structure.

In this paper, we study whether VAEs on Riemannian
manifolds allow for better detection rates on SWaT water data



than traditional Euclidean assumptions. We focus on the three
aforementioned manifolds, the Poincaré ball, a model of spher-
ical geometry as well as a Stiefel manifold, a characterisation
of the orthonormal bases of a vector space. All three manifolds
provide characteristics that fit well to water data and SWat in
particular due to an unusual mixture of continuous and discrete
variables as well as its autoregressive nature. Our empirical
results suggest that replacing the standard Euclidian way of
computation by a Riemannian manifold generally leads to
higher detection rates of attacks for most manifols. Particularly
the Stiefel manifold seems to match the unique structure of
SWaT very well and clearly outperforms its competitors.

The remainder of this paper is structured as follows. Sec-
tion II summarises related work and Section III reviews the
concepts of Riemannian manifolds. Section IV presents our
learning methodologies. We report on the empirical setup in
Section V and present the results in Section VI. Section VII
concludes.

II. RELATED WORK

Anomaly detection for water data has recently been drawing
a lot of attention in the community and there exist a subs-
tiantial body of related work that have been tried out on water
data, particularly SWaT and WADI [9]. For brevity, we focus
on only the subset of approaches that employ autencoders [2],
[3], [10].

One of the best performances on SWaT stems from Xie et
al. [4], who combine 1D convolutional and gated recurrent
units to construct a network to learn the dependencies in the
data so that statistical deviations in new data can be computed
afterwards using the network output. Another very interesting
method has been proposed by Fährmann et al. [10] who use
lightweight LSTM-VAE architectures on SWaT and WADI
to achieve computationally efficient models while preserving
most of the predictive power of much larger architectures.

Zhou et al. [3] challenge the standard assumption that train-
ing data resembles a perfect model of normality by proposing
a robust variant of autoencoders for anomaly detection. Based
on the assumption that some anomalies may exist also in the
training data, they utilise a decomposition of the training data
using proximal gradients in fixed intervals during training to
filter those anomalies out, and only then continue to assemble
their model of normality.

Another paper that is concerned about the robustness of
autoencoders has been presented by Arvanitidis et al. [5], who
inspects the latent space of autoencoders. They observe that
the distance function, which is assumed to be Euclidean, often
is not really Euclidean anymore. Instead, the latent space is
deformed through the training process and their contribution
aims to measure this deformation of the latent space.

Instead of measuring the deformation, Mathieu et al. [6]
propose to use a Riemannian manifold directly as latent space;
in their case they deploy the Poincaré ball of hyperbolic
geometry. In contrast to Arvanitidis et al. [5], the model is
restricted to not change the nature of the latent space. This
is achieved through switching from encoding positions to

encoding velocities and utilising the velocities to move around
the specified manifold.

Nagano et al. [7] propose to improve training on manifolds.
By focusing on the hyperboloid model, they also choose a
member of the hyperbolic geometry, but also generalize their
results to other manifolds. Their hyperbolic models share
the property that the latent space fits data with hierarchical
structures well, and, as the space grows with distances, offers
enough ’newly claimed’ space for a growing density of clus-
ters. This strategy is also possible in other geometries, such
as hyperspheres [8], that constitute a good choice for latent
spaces when the data meets cyclical structures.

An interesting work by Tran et al. [11] does not deal
with VAEs but proposes to use Stiefel manifold together with
variational Bayes. Their extension to the Stiefel manifold using
a time series application performss well in comparison to the
standard Euclidean model. Following this result, we utilise the
Stiefel manifold for the autoregressive nature of water data.

In this paper, we study different manifolds for anomaly
detection on SWaT, the ’standard’ Euclidean one, two typ-
ical Riemannian manifolds, i.e. models for hyperbolic and
spherical geometry and additionally the Stiefel manifold as
a representative of the matrix manifold family. The Stiefel
manifold can also be seen and used as a Riemannian manifold,
but is contained in the more precise grouping of matrix
manifolds, so we utilise the canonical version of it. These
manifolds serve us as latent spaces for LSTM-VAEs, which
are suited for the sequential nature of the data.

III. SPECIFIC RIEMANNIAN MANIFOLDS

We introduce necessary concepts from Riemannian geome-
try before turning to different specific Riemannian manifolds.
For a more thorough treatment of Riemannian manifolds we
confer to [12]. Every at least differentiable manifold M
possesses for each point z ∈ M a tangent space TzM of
same dimensionality of the manifold. A Riemannian manifold
is a manifold M equipped with a Riemannian metric gz which
assigns every point z of the manifold a smoothly varying inner
product:

g(z) = ⟨·, ·⟩z : TzM×TzM → R. (1)

The Riemannian metric can be rewritten to be represented as
a tensor which we denote by G(z):

∀u,v ∈ TzM, ⟨u,v⟩z = g(z)(u,v) = u⊺G(z)v. (2)

From the Riemannian metric one can construct a norm on
TzM given by ∥ · ∥z =

√
⟨·, ·⟩z . A measure can be defined

using the metric tensor:

dM(z) =
√
|G(z)|dz (3)

with dz being the Lebesgue measure. Note that shortest paths
between two points on manifolds are not necessarily straight
lines between them, but should be though of curves since
curvature deforms the space and hence, also shortest paths.

Geodesics are the generalisation of ”straight” lines on
Riemannian manifolds. In general, a parameterised curve on a



Fig. 1. A visualisation of three different geometries, from left to right: Hyperbolic geometry, Euclidean geometry and spherical geometry. The influence of
curvature on the behaviour of ”straight” lines can be observed, in hyperbolic geometry the negative curvature drives the lines apart, in Euclidean the curvature
of zero does not influence the lines, in spherical geometry the positive curvature drives the lines together.

Riemannian manifold is denoted by γ : t 7→ γ(t) ∈ M. Let γ
be a connecting curve between two points z,y ∈ M of length

L(γ) =

∫ 1

0

√
∥γ′(t)∥γ(t). (4)

The shortest path between z and y is then given by γ∗ =
arg min L(γ) with γ(0) = z, γ(1) = y and called the geodesic
from z to y. This length of the shortest joining curve is
often used to measure distances on Riemannian manifolds.
For the specific manifolds used in this work the solutions to
find geodesics are analytically known, however in the general
case geodesics can also be found by optimising the associated
differential equation [13].

Euclidean geometry, the standard workhorse of machine
learning models, naturally possesses a description as Rieman-
nian manifold. The corresponding metric tensor is, straight
forwardly, the identity matrix I. On the Euclidean manifold,
the position described by a vector and the velocity to reach that
position from the origin coincide, is given by its metric. This
is not the case for other manifolds, resulting in the need for
operators to move on the manifold. For unrolling a velocity
v ∈ TzM from a tangent space, we utilise the exponential
map expµ(v) to unroll it at point µ on the manifold. The
inverse logarithm map v = logµ(z) takes two points (µ, z)
and calculates the velocity v needed to move from µ to z.
Both operators follow the associated geodesic γ∗ between µ
and z. Parallel transport is not restricted to be done only along
geodesics, it is however possible and useful in the proposed
models of this work.

We study three different manifolds for embedding purposes
as latent spaces, namely the Poincaré ball, a model of hyper-
bolic geometry, the sphere manifold and the Stiefel manifold.

A. Poincaré ball

The Poincaré ball Bd
c is a model of hyperbolic geometry,

which is especially useful for embedding data with hierarchical
structures, as demonstrated by [6]. This is due to the property
of the space expanding when influenced by negative curvature,
resulting in larger distances the more points move away from
the origin. As hierarchical data can be represented as trees,
embeddings of those trees tend to get sprawled close together
in Euclidean, but not in hyperbolic space as the growing space

offers more area for the leaves. The metric tensor of the
Poincaré ball is given by:

gcb(z) = (λcz)
2 ge(z), λcz =

2

1− c∥z∥2
, (5)

where λcz is the conformal factor and ge is the Euclidean
metric tensor.

The exponential map is given by:

expcµ(v) = µ⊕ (tanh
√
c
λcz||v||

2

v√
c||v||

) (6)

where ⊕ is denoting the Möbius addition [14]. The Möbius
addition composes velocities, which is possible in spaces that
are equipped with a gyrovector-structure, which the hyperbolic
and spherical manifold do. The inverse operation for the
exponential map, the logarithm map is given by:

logcµ(y) =
2√
cλcz

tanh−1(
√
c|| − z ⊕c y||)

−z ⊕c y

|| − z ⊕c y||
(7)

Distance on the Poincaré ball is given by:

dc(z,y) =
1√
c
cosh−1(1+2c

||z − y||2

(1− c||z||2)(1− c||y||2)
) (8)

B. Spherical geometry

In contrast to the negative-curvature hyperbolic space,
spherical geometry is influenced by positive curvature. The
spherical manifold is denoted by Sdc . This results in space
becoming more dense, to the extend of forming spheres, thus
allowing for loops. These loops make the space attractive for
embedding data which exhibits cyclical structures, as shown
by [8]. As points can now be connected by a path that loops
around the sphere, geodesics have to choose the quicker path.
From this follows an important detail of the exponential, the
injectivity radius. This radius specifies the neighbourhood in
which the exponential map is a diffeomorphism [12].

Spherical geometry can be realised in many different no-
tations, as one can choose to either work intrinsically on the
sphere or restrict a n+ 1 dimensional euclidean space to the
sphere. The Riemannian metric of a sphere of radius r as
canonically given by [12]:

r2gs(x/r) =
4r4(dx21 + . . .+ dx2n)

(||x||2 + r2)2
(9)



Fig. 2. A schematic of our model. The autoencoder architecture of reducing the dimensionality can be clearly seen, in our case there is a single entity in the
middle of the model indicating the chosen manifold M. The sampling in the latent space is on the manifold.

This is the metric of the stereographic projection model, which
is used in this work. One advantage of this is that distances
are now measured again on a flattened surface, so they are
relatively simple to measure by just measuring the curve of
the geodesic restricted in euclidean space. A possible way to
calculate this is a standard polar representation of spheres and
calculate the arc length therein.

C. Stiefel manifold

The Stiefel manifold is parameterising the orthonormal
bases of a vector space. It is defined as:

Vk(Rn) = {A ∈ Rn×k : A⊺A = Ik} (10)

with n < k. Another description of the Stiefel manifold is
the set of orthonormal k-frames. One can define a Stiefel
manifold over other spaces then R, we only use this version of
the manifold. This is a fundamentally different manifold from
both the hyperbolic and the spherical one, following from the
definition over vector spaces of R. There is no immediately
shared understanding of curvature with both aforementioned
manifolds. It offers advantages over a normal vectors space as
the Stiefel manifold can be more adaptive.

In comparison to the spherical manifold, the visualisation
of 10 would also resemble a spherical condition like 9. The
sphere manifold restricts the points to exist on the manifold,
i.e. the sphere. Contrasting that, in a Stiefel manifold the
condition ensures that the matrix characterises the orthonormal
bases. If one visualises the norm, it appears similar, but it
functions in a wholly different manner.

It should be noted that there exist versions of this manifold,
one can not only choose a different space than R, it is
also possible to choose the inner product [15]. We choose

the canonical one over the Euclidean one to accentuate the
difference in the latent space.

IV. METHODOLOGY

A. Variational Autoencoder
In the scenario of unsupervised learning, variational autoen-

coder are a popular approach to learn a model of normality
and utilise that for anomaly detection [1]. The key idea is to
train a neural network to reproduce the input as target whilst
reducing the model dimensionality typically in the middle
of the network, creating a bottleneck. Given a dataset Xd

of d dimensions, a variational autoencoder learns a mapping
φ : Xd 7→ Zk to a latent space Zk called an encoder.
This latent space has k ≪ d, creating the aforementioned
bottleneck. For each dimension of the latent space a Gaussian
distribution N (µ, σ) is parameterised by approximating a
mean µ and a variance σ using the decoder φ, resulting in
a variational embedding of the data. From these distributions,
zk ∈ Zk samples are drawn and decoded via an mapping
ψ : Zk 7→ Xd. This decoder tries to reconstruct the original
data xd ∈ Xd, we denote the reconstruction by x̂d.

As the target is known, we can quantify the deviation of
the reconstruction using a loss, often the mean squared error
is used:

MSE =
1

N

N∑
1

(x̂i − xi)
2 (11)

The complete objective for optimisation is typically given by
this reconstruction loss combined with a regularisation term
for the distributions, in a variational autoencoder usually the
Kullback-Leibler divergence is used:

KL(P,Q) =
∑
x∈X

p(x)(
p(x)

q(x)
) (12)



The prior is a standard normal Gaussian prior N (0, 1). Com-
bining the KL-divergence and the reconstruction loss results
in the evidence lower bound (ELBO).

In order to utilise the VAE for anomaly detection the fact
that, given a well-trained model, normal samples are recon-
structed quite well is exploited. Anomalous examples are not
reconstructed as well, resulting in a higher reconstruction error.
A threshold is chosen which classifies the examples as normal
or anomalous, typically a percentile of the reconstruction
losses of the training or validation data.

B. LSTM

As the water data is of sequential nature, it needs to be
handled accordingly. The appropiate neural network architec-
ture for this was already introduced in 1997 [16], the long
short-term memory cells. This architecture also addresses an
important problem when training recurrent neural networks,
the problem of vanishing gradients. When training a recurrent
neural network with backpropagation, especially if the error is
traced through sequences, the gradient of the error can vanish.
This follows from being multiplicated by the learning rate,
typically a small quantity, repeatedly.

Fig. 3. An example of a LSTM cell. The σ here denotes the sigmoid activation
function, x is the input, ct is the cell state and ht the hidden state. t denotes
the time step of the optimisation.

The remedy devised by [16] is a cell architecture that
learns how much information to remember and how much to
forget while also leaving the gradient in its original form, thus
effectively working against the vanishing gradient problem.
In order to achieve this, different gates are used to modify
the amount of information being passed on, as well as a
hidden state and cell state that is modified between different
activations of the cell. For more details we refer to [16].

LSTMs are the best-practice approach to handling se-
quences with temporal dependencies. Because of its sequential
nature water data is often handled with LSTMs [10], [17].

C. VAEs on manifolds

In this section we describe how to utilise a Riemannian
manifold as a latent space for a VAE. A visualisation of this
process is given in figure 4. Usually a VAE learns a mean µ

and a variance σ from the data into in order to parameterise a
Gaussian distribution. σ is pushed through a softplus function
to ensure positive variance.

On a manifold, we do not sample µ directly, but a velocity
vµ that leads from the origin to a point used as mean on the
manifold. We use the exponential map exp0(vµ) to reach µ
on the manifold. The variance σ is parallel transported from
the origin to µ. It is not directly assumed to be estimated at
µ because then scale would be dependent on the location of
µ, which would create a delay in optimisation which can be
negated this way. Also, it eases the calculation of the Kullback-
Leibler divergence because p(x) and q(x) are in the same
tangent space at T0M.

At µ, using the transported σ, a sample is drawn from
a normal distribution. For this we use the wrapped normal
distribution, i.e. we sample velocities vz and use the expo-
nential map expµ(vz) to unroll the velocity onto the manifold
[7]. There are other generalisations of Gaussian distributions
for specific manifolds, [18], [19] show a entropy-maximising
generalisation. However such a generalisation is not readily
available for all used manifolds. To ensure comparability
during training and inference time a wrapped normal approach
is chosen for all models.

When a sample z is generated, we use the logarithm map
log0(z) to calculate vz , which is given to the decoder. This
scheme ensures that the embeddings generated by the encoder
are in the chosen Riemannian manifold, which allows the
models to profit from the different behaviour of space.

V. EXPERIMENTAL SETUP

A. Dataset description

The dataset used is the SWaT dataset from [9]. It is a
downscaled but fully functional testbed that mimics a real-
world water purification plant. Contained in the dataset is not
only the data from the actuators and sensors, but also from the
network traffic. In this work we focus solely on the physical
data, as our aim is to identify fitting manifolds to embed the
data to, the network information would quite probably need
another type of manifold, which exceeds the scope of this
work.

The dataset contains a week of normal behaviour which
result in 496,800 data points over 51 variables. These features
span different continuous variables like flow meters, level and
pressure sensors, and discrete variables like binary signals if
pumps and valves are open or activated. Four additional days
of operation were recorded, adding 449,919 data points during
which time 36 attacks were executed. 28 of those attacks were
on singular points, 8 were multiple attacks simultaneously.
They manipulated sensor values and/or directly manipulated
the functioning of the testbed. Duration and interval were
mixed, for more details we refer to [9].

B. Data preprocessing

For the data processing and feature selection we follow
[10], which in turn follow [2]. They propose a similarity test
between the probability distributions of the training and the



validation set to ensure that the training set and validation
set are efficient when used in the usual training procedure,
e.g. early stopping on the validation loss. Additionally, they
use the test to show that the validation set is a good proxy
for the test set, but don´t utilise this information, as the test
set should not be known ahead of test time. Variables that
have mismatching distributions are removed from the data
sets, as training on these is assumed to hurt the model. That
means specifically that we remove the following features:
AIT201, AIT202, AIT203, P201, AIT401, AIT402, AIT501,
AIT502, AIT503, AIT504, FIT503, FIT504, PIT501, PIT502,
PIT503. Additionally the first 6 hours of the training data were
removed, as the system needed that time to stabilise itself. The
training data was split using an 80% - 20% split into training
and validation data. All of training, validation and test set was
normalised by removing the mean and scaling to unit variance
of the training data.

As the data naturally exhibits temporal dependencies and
the model is specific towards that fact, the data is prepared
using sliding windows of size ω. Concretely, we slide a fixed-
size window over the datasets and from that process generate
sequences, which we use as samples. A common side effect of
sliding windows is the loss of ω−1 samples, as just completely
filled windows are tolerated. Once again following [10], we
choose a window size of ω = 4 and a stride of 1, so the
created windows can overlap.

The reconstruction loss is aggregated over features and
windows, resulting in a calibration of the model only to the
exactness of windows or respectively the window size ω. In
the test set we label a window as anomalous if it contains one
sample which is marked as attack, thus creating more sensitive
testing scenario.

C. Model specifications

We follow the experimental setup of [10] and use
lightweight LSTM-VAEs, in our case we modify the latent
space to be on a specific manifold. The set of manifolds
is M = {R,B,S,V} and we denote the models with R–
VAE, B–VAE, S–VAE and V–VAE for the latent space choices
of Euclidean, Poincaré ball, spherical and Stiefel manifold
respectively. Architectures of the neural networks used are
given in the following table:

TABLE I
THE ARCHITECTURES OF THE USED VAES. THE BATCH SIZE IS NOT

WRITTEN EXPLICITLY TO EASE READABILITY.

Layer Output Activation
LSTM (4,32) ReLU
Dense(µ) 16 Identity
Dense(σ) 16 Softplus
Sampling on M 16 Identity
LSTM (4,32) ReLU
Dense (4,36) Identity

The used batch size is 128, the latent space has the dimen-
sionality of 16 and the hidden dimension of 32. Optimisation
is done using the Adam optimiser [20], with a learning rate
of 0.05, and betas of β = (0.7, 0.9), as the authors indicated
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Fig. 4. A visualisation of the sampling procedure in the latent space on a
manifold. First, using a velocity vi estimated by the encoder is pushed onto
the manifold using an exponential map exp0(vi to reach µi. At µ, using the
parallel transported σ, a sample zi is drawn from a Gaussian. For this zi the
logarithm map log0(zi) is calculated and returns the velocity ṽi that leads
from the origin to zi, which is given to the decoder.

this typically shows better performance when using geoopt
[21], as it needs to retract gradients to the manifold. Also
following the strong suggestion of [21], the used data type was
Float64, as moving on manifold can be demanding on the
numerical precision. All models were trained for 50 epochs,
with selection of the best validating model enabled.

For implementation we use PyTorch, an automatic differen-
tiation framework [22]. Regarding the manifolds, we use the
unofficial implementation of [23] by [21], which the authors
describe astutely as a ”manifold-aware pytorch.optim”.
The package utilises the stereographic projection model for
both the Poincaré ball and for the sphere manifold. They are
provided a curvature of −1.0 and 1.0, respectively. The Stiefel
manifold does not share a choice of curvature, as it is defined
over R, but it has a choice of inner product. We choose the
canonical inner product over the Euclidean inner product.

D. Reconstruction scores

The loss already mentioned in 11 is slightly modified for
handling sequences instead of singular data points as samples.
The average over the window and over the features is taken,
resulting in a single loss value for a window, usually termed
reconstruction loss or reconstruction score. This reconstruction
score is not only used for optimisation of the model, as it
measures the deviation from the learned normality, we use
it for anomaly detection. All reconstruction scores above a
certain threshold are classified as anomaly. This threshold
can be either found empirically or by some heuristic, we



TABLE II
PRECISION, RECALL AND F1 SCORES ON SWAT

SWAT
Models Precision Recall F1
R–VAE 0.932 0.643 0.761
B−1.0–VAE 0.931 0.643 0.760
S1.0–VAE 0.932 0.643 0.761
V–VAE 0.959 0.635 0.764

orient ourselves at [10] and use the 99th percentile of the
reconstructed training data.

VI. RESULTS

We evaluate the models on following metrics: precision, re-
call and F1-score. Given the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN), the metrics
are given by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 · Precision · Recall
Precision + Recall

The empirical results are presented in table II. Our modifica-
tion is the choice of latent space from the set of manifolds
M = {R,B,S,V}.

Using a Stiefel manifold as latent space in V–VAE out-
performs the other models. The increase in performance is
highly significant with respect to a t-test on the reconstructions
given by the models toward each of the other models, with test
statistic ranging from 7 to 367. This could be due to the nature
of a Stiefel manifold as characterisation of orthonormal bases
of a vector space - thus improving the adaptability of the space
as compared to a normal vector space. A Stiefel manifold
latent space seems to be more suited for the structures of water
data, which are naturally of mixed structures.

Utilising a Poincaré disc as latent space as in the B–VAE
does appear detrimental to the performance. As hyperbolic
geometry is especially suitable for hierarchical structures in
data, this seem to hint at the mismatch for water data.
The embeddings of the model seem to challenge the proper
reconstruction even more, as more distance must be learned
and properly placed in the latent space.

The model using spherical geometry, S–VAE, seems to
perform equivalent to the benchmark model. Allowing the
model to embed cycles does not seem to offer advantages to
the model, however it also does not set the model back. As
the SWaT data contains a week of normal behaviour data, the
question remains open wether cycles of longer datasets like
weekly or monthly rythms would be better embedded in this
geometry.

The model using Euclidean geometry, R–VAE, is the
comparison model to [10] and our benchmark model. In
comparison our models report higher precision and lower

recall. A special interest is often shown not only for the
general performance indicated by the F1-score, but also for the
precision and recall as to recognise the tendencies of the model
in specific directions of mistakes. As we do not include the
network traffic data of SWaT it is more challenging to detect
all anomalies, still this is a clear shift even of our benchmark
model compared to [10].

Our main comparison is between our own models, but to en-
sure applicability for models we modify the architecture from
[10], especially the architecture they call ”Lightweight-LSTM-
VAE-S”. The authors of [10] report slightly higher numbers,
even though the architecture is strictly congruent, this could
follow from numerical details of the implementation. As the
numbers are comparable, we assume the model to be valid
and follow through with our inspection of the modifications.

It should be noted that there exist models which report a
higher performance, like [4], which use a combination of sta-
tistical deviation analysis, 1D-convolutional neural networks
and gated recurrent units. This is naturally more computation
and storage demanding, which our work purposefully needs
to avoid. As we operate with this limitation in mind, we
orient and compare with [10], as their ”lighweight” models
are applicable in wider circumstances.

VII. CONCLUSION

Water facilities are critical to protect and a crucial com-
ponent of government infrastructure. Anomaly detection sys-
tems are a last-layer safety measure against malfunctions and
attacks. For the virtual part of the cyber-physical system
postulated by a water facility many tools exist like Intrusion-
Detection-Systems (IDS). However for the physical part, there
is need for smart, adaptive defence systems that need to be
exceptionally robust, as false-positives can result in direct
costs.

We studied the use of LSTM-VAEs as anomaly detectors
together with different manifold assumptions, because recent
research has shown an increase in robustness and performance
when the latent space is fitting to the structure contained in
the data [5]. Secondly, hierarchical structures are known to
match assumptions in hyperbolic geometry, while for cyclical
structures spherical geometries are preferred and grid-like data
is well suited for the standard Euclidean geometry [6], [8].
We conducted a series of experiments to answer the question
whether manifold assumptions are justified for the structures
contained in water data.

The empirical results showed that the Stiefel manifold
outperforms its competitors, particularly the standard Eu-
clidean way of computation. This could indicate that the
characterisation of orthonormal bases of vector spaces is
especially matches charactersitic traits of water data. The lack
of improvement of the spherical and Poincaré manifold seem
to indicate a smaller prevalence of hierarchies and cyclical
structures in the data. As water data often contains a difficult
mixture of discrete and continuous variables as well as an
autoregressive nature, the improved adaptability of a Stiefel
manifold over a Euclidean vector space is plausible.



With this in mind and the challenges posed by water data, it
may be possible to find a better suited manifold outside of the
known, analytically solved ones, by directly exploiting traits
of the mixed structure in the data. This manifold, however, yet
remains to be found.
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