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Abstract. Generative models based on normalizing flows are very suc-
cessful in modeling complex data distributions using simpler ones. How-
ever, straightforward linear interpolations show unexpected side effects,
as interpolation paths lie outside the area where samples are observed.
This is caused by the standard choice of Gaussian base distributions
and can be seen in the norms of the interpolated samples as they are
outside the data manifold. This observation suggests that changing the
way of interpolating should generally result in better interpolations, but
it is not clear how to do that in an unambiguous way. In this paper, we
solve this issue by enforcing a specific manifold and, hence, change the
base distribution, to allow for a principled way of interpolation. Specifi-
cally, we use the Dirichlet and von Mises-Fisher base distributions on the
probability simplex and the hypersphere, respectively. Our experimental
results show superior performance in terms of bits per dimension, Fréchet
Inception Distance (FID), and Kernel Inception Distance (KID) scores
for interpolation, while maintaining the generative performance.
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1 Introduction

Learning high-dimensional densities is a common task in unsupervised learning.
Normalizing flows [32,31,28,9,26] provide a framework for transforming complex
distributions into simple ones: a chain of L parametrized bijective functions f =
f1 ◦ f2 ◦ · · · ◦ fL converts data into another representation that follows a given base
distribution. The likelihood of the data can then be expressed as the likelihood of
the base distribution and the determinants of the Jacobians of the transformations
fi. In contrast to generative adversarial networks (GANs) [12], the likelihood
of the data can be directly optimized, leading to a straightforward training
procedure. Moreover, unlike other approaches, such as variational autoencoders
(VAEs) [17,18], there is no reconstruction error since all functions fi within this
chain are bijections.

? Equal contribution.
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Fig. 1. Illustration of different interpolation paths of points from a high-dimensional
Gaussian. The figure also shows that, in high dimensions, points are not concentrated
at the origin.

In flow-based generative models, data are generated by drawing samples from
a base distribution, where the latter is usually given by a simple distribution,
such as a standard Gaussian [23]. The Gaussian samples are then mapped
to real data using the chain f . A prevalent operation is to linearly interpolate
samples and consider the interpolation path in data space. In generative modeling,
interpolations are frequently used to evaluate the quality of the learned model
and to demonstrate that the model generalizes beyond what was seen in the
training data [25].

The consequences for interpolation, however, are not immediately apparent
for Gaussian base distributions. Figure 1 shows a linear interpolation (lerp) of
high-dimensional samples from a Gaussian. The squared Euclidean norms of
the samples follow a χ2

d-distribution as indicated by the dashed black line. Data
points have an expected squared Euclidean norm of length d, where d is the
dimensionality. This implies that there is almost no point around the origin. As
seen in the figure, the norms of a linear interpolation path (green line) of two
samples drop significantly and lie in a low-density area w.r.t. the distribution of
the norms (dashed black line) [33].

Instead of a linear interpolation (green line), an interpolation that preserves
the norm distribution of interpolants is clearly preferable (blue and red lines):
the blue and red interpolation paths stay in the data manifold and do not enter
low-density areas. The observation suggests that interpolated samples with norms
in a specific range should generally result in better interpolations. This can be
achieved, i.e., by shrinking the variance of the density or norms (dashed lines),
which yields a subspace or manifold with a fixed norm.
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Fig. 2. Interpolation of samples from CelebA. Top: a linear interpolation path. The
central images resemble features of the mean face as annotated in red. Bottom: an
alternative interpolation path using a norm-correction. Note that the first and last three
images are almost identical as annotated in blue. Right : decoded expectation of base
distribution, i.e., the mean face.

In this paper, we propose a framework that respects the norm of the samples
and allows for a principled interpolation, addressing the issues mentioned above.
We study base distributions on supports that have a fixed norm. Specifically, we
consider unit p-norm spheres for p ∈ {1, 2}, leading to the Dirichlet (p = 1) and
the von Mises-Fisher (p = 2) distributions, respectively. The conceptual change
naturally implies technical difficulties that arise with restricting the support of
the base distribution to the simplex or the unit hypersphere. We thus need to
identify appropriate bijective transformations into unit p-norm spheres.

The next sections are organized as follows. In Section 2, we propose a simple
heuristic to the problem and discuss its problems before we introduce normalizing
flows in Section 3. Section 4 contains the main contribution, a framework for
normalizing flows onto unit p-norm spheres. Empirical results are presented in
Section 5, and related work is discussed in Section 6. Section 7 provides our
conclusions.

2 An Intuitive Solution

The blue path in Figure 1 is obtained by a norm correction of the linear interpo-
lation via also interpolating the norms. Mathematically, that is

γ(λ) = ((1− λ)za + λzb)︸ ︷︷ ︸
linear interpolation

· (1− λ)‖za‖2 + λ‖zb‖2
‖(1− λ)za + λzb‖2︸ ︷︷ ︸

norm correction

, (1)

for endpoints za, zb and λ ∈ [0, 1]. We refer to this approach as norm-corrected
linear interpolation (nclerp). However, the depicted red lines also stay within
the manifold, hence it remains unclear how a unique interpolation path can be
obtained.

Figure 2 depicts two interpolation paths for faces taken from CelebA [14]
created using Glow [19], a state-of-the-art flow-based model that uses a standard
Gaussian as base distribution. The leftmost and rightmost faces of the paths are
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endpoints lerp nclerp

Fig. 3. Two examples showing the issues caused by a norm-corrected linear interpolation
(nclerp).

real data, while the other ones are computed interpolants. The face on the right
depicts the so-called mean face, which is given by the mean of the Gaussian base
distribution and is trivially computed by decoding the origin of the space. The
top row shows a linear interpolation similar to the green line in Figure 1. The
interpolation path is close to the origin, and the interpolants consequentially
resemble features of the mean face, such as the nose, mouth, chin, and forehead
shine, which neither of the women have. We highlighted those features in red in
Figure 2.

By contrast, the bottom row of Figure 2 shows the norm-corrected inter-
polation sequence (as the blue line in Figure 1): the background transition is
smooth and not affected by the white of the mean face, and also subtleties like
the shadow of the chin in the left face smoothly disappears in the transition.
The norm correction clearly leads to a better transition from one image to the
other. However, the simple heuristic in Equation (1) causes another problem: the
path after norm correction is no longer equally spaced when λ values are equally
spaced in [0, 1]. Implications of this can be seen in blue in the bottom row of
Figure 2, where the first and last three faces are almost identical. We provide
additional examples in the supplementary material.

In Figure 3, we illustrate two examples, comparing a linear interpolation (lerp)
and a norm-corrected linear interpolation (nclerp) between points from a high-
dimensional Gaussian (green points). For equally-spaced λ values in [0, 1], a linear
interpolation yields an equally-spaced interpolation path (red line). Evidently, the
norm-corrected interpolation (blue line) keeps the norms of interpolants within
the range observed in data.

However, the interpolants are no longer evenly spaced along the interpolation
path. Hence, control over the interpolation mixing is lost. This problem is more
pronounced on the left example, where points 1 through 3 are closer to the start
point, while points 4 and 5 are closer to the endpoint. Consequently, evaluations
such as Fréchet Inception Distance (FID) scores [13] will be affected. Such
scores are computed by comparing two sets of samples, in this case, the real
data and interpolated data. As those points will be clearly more similar to the
endpoints, which are samples from the data set itself, the scores are in favor of
the norm-corrected interpolation.
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Fig. 4. An example of a one-dimensional normalizing flow.

3 Normalizing Flows

Let X = {x1, . . . ,xn} ⊂ Rd be instances drawn from an unknown distribution
px(x). The goal is to learn an accurate model of px(x). Let f (θ) : Rd → Rd be
a bijective function parametrized by θ. Introducing z = f (θ)(x) and using the
change of variable theorem allows us to express the unknown px(x) by a (simpler)
distribution pz(z), defined on z ∈ Rd, given by

px(x) = pz

(
f (θ)(x)

) ∣∣∣det J
(θ)
f (x)

∣∣∣ ,
where J

(θ)
f (x) is the Jacobian matrix of the bijective transformation f (θ). We

denote pz(z) as the base distribution and drop the subscript of the distribution p
whenever it is clear from the context.

Representing f (θ) as a chain of L parametrized bijective functions, i.e., f (θ) =

f
(θ)
L ◦ f (θ)L−1 ◦ · · · ◦ f

(θ)
1 , creates a normalizing flow that maps observations x into

representations z that are governed by the base distribution p(z). Let z0 = x
be the input data point and zL = z be the corresponding output of the chain,
where every intermediate variable is given by zi = fi(zi−1), where i = 1, . . . , L. A
one-dimensional example is depicted in Figure 4. The data log-likelihood can then
be expressed as the log-likelihood of the base distribution and the log-determinant
of the Jacobians of each transformation as

log p(x) = log p(z) +

L∑
i=1

log
∣∣∣det J

f
(θ)
i

(zi−1)
∣∣∣ .

Flow-based generative models can be categorized by how the Jacobian structure
of each transformation fi is designed since computing its determinant is crucial
to its computational efficiency. The Jacobians either have a lower triangular
structure, such as autoregressive flows [20], or a structured sparsity, such as
coupling layers in RealNVP [10] and Glow [19]. Transformations with free-form
Jacobians allow much higher expressibility by replacing the computation of the
determinant with another estimator for the log-density [6]. For more information
regarding flow-based generative models, we refer the reader to [23].

In the remainder, we simplify the notation by dropping the superscript θ
from f . We also note that a normalizing flow defines a generative process. To
create a new sample x, we first sample z from the base distribution p(z) and
then transform z into x using the inverse chain of transformations f−1.
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4 Base Distributions on p-Norm Spheres

Motivated by earlier observations illustrated in Figures 1 and 2, we intend to
reduce ambiguity by shrinking the variance of the norms of data. We achieve this
by considering base distributions on restricted subspaces. More specifically, we
focus on unit p-norm spheres defined by

Sdp =

z ∈ Rd+1

∣∣∣∣∣ ‖z‖pp =

d+1∑
j=1

|zj |p = 1

 . (2)

We distinguish two choices of p and discuss the challenges and desirable properties
that ensue from their use. We consider p ∈ {1, 2} as those allow us to use well-
known distributions, namely the Dirichlet distribution for p = 1 and the von
Mises-Fisher distribution for p = 2.

4.1 The Case p=1

For p = 1, the Dirichlet distribution defined on the standard simplex ∆d is a
natural candidate. Its probability density function is given by

p(s) =
1

Z(α)

d+1∏
k=1

sαk−1k ,

with Z(α) =

∏d+1
k=1 Γ (αk)

Γ
(∑d+1

k=1 αk

) ,
where Γ is the gamma function and αk > 0 are the parameters. In order to
make use of it, we also need to impose a non-negativity constraint in addition to
Equation (2).

Let z ∈ Rd be an unconstrained variable. The function φ : Rd → (0, 1)d

transforms z into a representation s by first transforming each dimension zk into
intermediate values vk with

vk = σ (zk − log (d+ 1− k))

which are used to write s as

sk =

(
1−

k−1∑
l=1

sl

)
· vk,

where σ(·) denotes the sigmoid function. We note a few details of this transfor-

mation. First, a property of φ is that 0 <
∑d
k=1 sk < 1. Therefore, a point in

∆d can be obtained with an implicit additional coordinate sd+1 = 1−∑d
k=1 sk.

Second, the difference in dimensionality does not pose a problem for computing
its Jacobian as φ establishes a bijection within Rd while the mapping to ∆d is
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given implicitly. Third, φ maps z = 0 to the center of the simplex s = (d+ 1)−11.
Fourth, since s consists of solely positive numbers which sum up to one, numerical
problems may arise for high-dimensional settings. We elaborate on this issue in
Section 5.

The Jacobian Jφ has a lower triangular structure and solely consists of
non-negative entries. Hence, the log-determinant of this transformation can be
efficiently computed in O(d) time via

log |det Jφ| =
d∑
k=1

log (vk (1− vk))

+ log

(
1−

k−1∑
l=1

sl

)
.

The inverse transformation φ−1 : Rd → Rd is given by

zk = σ−1

(
sk

1−∑k−1
l=1 sl

)
+ log(d+ 1− k).

The interpolation of two points a,b ∈ ∆d within the unit simplex is straight-
forward. A linear interpolation (1− λ)a + λb using λ ∈ [0, 1] is guaranteed to
stay within the simplex by definition.

4.2 The Case p=2

For p = 2, data points lie on the surface of a d-dimensional hypersphere. The von
Mises-Fisher (vMF) distribution, defined on Sd2, is frequently used in directional
statistics. It is parameterized by a mean direction µ ∈ Sd2 and a concentration
κ ≥ 0, with a probability density function given by

p(s) = Cd+1(κ) exp(κµ>s),

with Cν(κ) =
κν/2−1

(2π)ν/2Iν/2−1(κ)
,

where Iw denotes the modified Bessel function of the first kind at order w.

Again, let z ∈ Rd be an unconstrained variable. We employ a stereographic
projection, for both its invertibility and its Jacobian, whose log-determinant can
be efficiently computed. The transformation ψ : Rd → Sd2 maps a point z ∈ Rd
to a point s ∈ Sd2 ⊂ Rd+1 on the hypersphere via

ψ(z) = s =

[
zρz

1− ρz

]
, with ρz =

2

1 + ‖z‖2 .
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z ∈ R1

s ∈ S1
2

µ ∈ S1
2

Fig. 5. A stereographic projection
mapping z ∈ R1 to s ∈ S1

2 using
the north pole depicted as a black
dot. The mean direction µ ∈ S1

2 is
shown in orange.

The transformation ψ, which has no additional
parameters, ensures that its image is on the
unit hypersphere, allowing the use of a vMF
distribution to model p(s). Two points in Sd2
are of special interest, namely the south pole
and the north pole, where the last coordinate
of s is either −1 or 1, respectively. By construc-
tion, the transformation is symmetric around
zero and sends z = 0 to the south pole, which
we choose as the mean direction µ. Further-
more, it is bijective up to an open neighbor-
hood around the north pole, as ρz → 0 when-
ever ‖z‖2 → ∞. For this reason, we avoid
choosing a uniform distribution on the hyper-
sphere, which is obtained for κ = 0. Figure 5
shows an example.

Contrary to the previous case, the log-determinant of Jψ alone is not enough
to accommodate the density change when transforming from Rd to Sd2 [11]. The

correct density ratio change is scaled by
√

det J>ψ Jψ instead, whose logarithm

can be computed in O(d) time as

log
√

det J>ψ (z)Jψ(z) = d log
2

1 + ‖z‖2 = d log ρz,

with ρz given as stated above. The inverse function ψ−1 : Sd2 ⊂ Rd+1 → Rd is

ψ−1(s) = z =
[s]1:d

1− [s]d+1
,

where [s]1:d denotes the first d coordinates of s and [s]d+1 is the (d + 1)-th
coordinate of s.

To interpolate points on the hypersphere, a spherical linear interpolation
(slerp) [30] can be utilized. It is defined as follows. Let sa and sb be two unit
vectors and ω = cos−1(s>a sb) be the angle between them. The interpolation path
is then given by

γ(λ) =
sin((1− λ)ω)

sin(ω)
sa +

sin(λω)

sin(ω)
sb, for λ ∈ [0, 1].

5 Experiments

We now evaluate the restriction of a normalizing flow to a unit p-norm sphere and
compare them to a Gaussian base distribution. As we focus on a principled way
of interpolating in flow-based generative models, we employ a fixed architecture
per data set instead of aiming to achieve state-of-the-art density estimation. We
use Glow [19] as the flow architecture for the experiments in the remainder of this
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section. However, our approach is not limited to Glow, and the transformations
and changes in the base distribution can also be used in other architectures. We
also do not compare against other architectures as our contribution is a change
of the base distribution, allowing for better interpolations.

5.1 Performance Metrics and Setup

Performance is measured in terms of bits per dimension (BPD), calculated using
log2 p(x) divided by d; Fréchet Inception Distance (FID) scores, which have been
shown to correlate highly with human judgment of visual quality [13]; and Kernel
Inception Distance (KID) scores [3]. KID is similar to FID as it is based on
Inception scores [29]. While the FID first fits a Gaussian distribution on the scores
of a reference set and a set of interest and then compares the two distributions,
the KID score is non-parametric, i.e., it does not assume any distribution and
compares the Inception scores based on Maximum Mean Discrepancy (MMD).
We follow previous work [3] and employ a polynomial kernel with degree three
for our evaluations.

We measure bits per dimension on the test set and on interpolated samples.
FID and KID scores are evaluated on generated and interpolated samples and
then compared to a reference set, which is the training data. When generating
data, we draw as many samples from the base distribution as we have for training.
For interpolation, we focus on interpolation within classes and adopt regular
linear interpolation for Gaussian-distributed samples, while using a spherical
linear interpolation on the sphere for vMF-distributed samples. In this operation,
we sample n/5 pairs of images from the training set and generate five equally
spaced interpolated data instances per pair, resulting in n new images. From those
interpolation paths, we only use the generated points and not the points which
are part of training data. Hence, we are only considering previously unseen data.

We also compare against the norm-corrected linear interpolation (nclerp)
defined in Equation (1). Note that a linearly spaced interpolation path is no
longer linearly spaced after norm correction. The resulting interpolation paths are
composed of images located closer to the endpoints and thus bias the evaluation.
We include the results nevertheless for completeness.

The reported metrics are averages over three independent runs and include
standard errors. The code is written in PyTorch [24]. All experiments run on an
Intel Xeon CPU with 256GB of RAM using an NVIDIA V100 GPU.

5.2 Data

In our experiments, we utilize MNIST [22], Kuzushiji-MNIST [7], and
Fashion-MNIST [34], which contain gray-scale images of handwritten dig-
its, Hiragana symbols, and images of Zalando articles, respectively. All MNIST
data sets consist of 60,000 training and 10,000 test images of size 28 × 28. In
addition, we evaluate on CIFAR10 [21], which contains natural images from ten
classes. The data set has 50,000 training and 10,000 test images of size 32× 32.
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Table 1. Results for generative modeling averaged over three independent runs including
standard errors.

Test Sample

Base dist. BPD FID KID

M
N

IS
T

Gaussian 1.59 ± 0.06 34.53± 0.83 0.033± 0.001

vMF κ = 1d 1.46± 0.07 40.07 ± 2.46 0.037 ± 0.001

vMF κ = 1.5d 1.54 ± 0.09 40.39 ± 1.40 0.036 ± 0.001

vMF κ = 2d 1.82 ± 0.08 39.82 ± 0.26 0.038 ± 0.001

Dirichlet α = 2 1.76 ± 0.12 40.08 ± 0.72 0.039 ± 0.001

K
-M

N
IS

T

Gaussian 2.58 ± 0.11 35.34 ± 0.76 0.041 ± 0.001

vMF κ = 1d 2.63 ± 0.06 36.63 ± 0.37 0.041 ± 0.001

vMF κ = 1.5d 2.48± 0.06 35.00± 0.61 0.040± 0.001

vMF κ = 2d 2.51 ± 0.04 36.45 ± 0.42 0.041 ± 0.001

Dirichlet α = 2 2.50 ± 0.05 35.54 ± 0.39 0.040± 0.001

F
-M

N
IS

T Gaussian 3.24 ± 0.04 66.64 ± 1.29 0.064 ± 0.003

vMF κ = 1d 3.16± 0.03 60.45± 3.34 0.055± 0.005

vMF κ = 1.5d 3.30 ± 0.07 61.89 ± 1.29 0.056 ± 0.002

vMF κ = 2d 3.22 ± 0.06 60.60 ± 3.47 0.055± 0.004

C
IF

A
R

1
0 Gaussian 3.52 ± 0.01 71.34 ± 0.45 0.066± 0.001

vMF κ = 1d 3.43 ± 0.00 71.07 ± 0.78 0.069 ± 0.001

vMF κ = 1.5d 3.42± 0.00 70.58± 0.40 0.068 ± 0.001

vMF κ = 2d 3.42± 0.01 71.00 ± 0.28 0.068 ± 0.001

5.3 Architecture

We employ the Adam optimizer [16] with a learning rate of 10−3, clip gradients
at 50, and use linear learning rate warm-up for the first ten epochs. Models were
trained on MNIST data and CIFAR10 using mini-batches of size 256 and 128,
respectively. All models are trained for 100 epochs without early stopping. We
keep all architectures as close as possible to Glow, with the following deviations.
For MNIST data, we use random channel permutations instead of invertible 1× 1
convolutions. The number of filters in the convolutions of the affine coupling
layers is 128. In Glow terms, we employ L = 2 levels of K = 16 steps each.
For CIFAR10, our models have L = 3 levels of K = 24 steps each, while the
affine coupling layers have convolutions with 512 filters. The architecture is
kept the same across base distributions, except for the additional parameterless
transformations to the restricted subspaces introduced in Section 4.

When comparing base distributions, we consider the following hyperparame-
ters. For the vMF distribution, we use concentration values for which the partition
function is finite. For consistency, the values we use are the same multiples of
the data dimensionality d for each data set. The concentration values for the
Dirichlet distribution are set to α = 2, which refers to 2 · 1d+1 ∈ Rd+1.
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Table 2. Results for interpolation averaged over three independent runs including
standard errors. Interpolations are in-class only and use five intermediate points; lerp
refers to a linear interpolation; nclerp refers to the norm-corrected linear interpolation
(Section 1) and slerp refers to the spherical interpolation.

Base dist. Type BPD FID KID

M
N

IS
T

Gaussian lerp 1.33 ± 0.05 5.10 ± 0.14 0.003 ± 0.000

Gaussian nclerp 1.44 ± 0.06 5.12 ± 0.30 0.003 ± 0.000

vMF κ = 1d slerp 1.31± 0.09 3.84± 0.36 0.002 ± 0.000

vMF κ = 1.5d slerp 1.40 ± 0.10 4.22 ± 0.12 0.002 ± 0.000

vMF κ = 2d slerp 1.63 ± 0.10 4.45 ± 0.06 0.002 ± 0.000

Dirichlet α = 2 lerp 1.61 ± 0.10 5.81 ± 0.36 0.004 ± 0.001

K
-M

N
IS

T

Gaussian lerp 1.91 ± 0.17 19.71 ± 1.59 0.021 ± 0.002

Gaussian nclerp 2.15 ± 0.15 17.60 ± 1.48 0.020 ± 0.002

vMF κ = 1d slerp 2.08 ± 0.15 17.93 ± 3.72 0.020 ± 0.004

vMF κ = 1.5d slerp 1.80± 0.07 22.72 ± 2.65 0.025 ± 0.003

vMF κ = 2d slerp 2.03 ± 0.14 14.54± 2.51 0.016± 0.003

Dirichlet α = 2 lerp 1.81 ± 0.04 24.09 ± 2.35 0.026 ± 0.003

F
-M

N
IS

T

Gaussian lerp 2.84 ± 0.10 13.06 ± 0.62 0.007 ± 0.001

Gaussian nclerp 2.93 ± 0.03 7.80± 0.13 0.004 ± 0.000

vMF κ = 1d slerp 2.66± 0.03 12.16± 0.13 0.006± 0.000

vMF κ = 1.5d slerp 2.84 ± 0.07 12.19 ± 1.07 0.006± 0.001

vMF κ = 2d slerp 2.70 ± 0.05 15.11 ± 0.85 0.008 ± 0.001

C
IF

A
R

1
0

Gaussian lerp 2.64 ± 0.06 58.63 ± 1.26 0.053 ± 0.001

Gaussian nclerp 3.32 ± 0.01 14.29± 0.16 0.010 ± 0.000

vMF κ = 1d slerp 2.78 ± 0.05 51.08± 0.37 0.010 ± 0.000

vMF κ = 1.5d slerp 2.66 ± 0.05 55.23 ± 5.14 0.047 ± 0.005

vMF κ = 2d slerp 2.58± 0.08 52.65 ± 3.34 0.044 ± 0.004

5.4 Quantitative Results

We first evaluate the generative modeling aspects of all competitors. Table 1
summarizes the results in terms of bits per dimension on test data and FID and
KID scores on generated samples for all data sets. Experiments with the Dirichlet
base distribution were not successful on all data sets. The restrictions imposed
to enable the use of the distribution demand a high numerical precision since
every image on the simplex is represented as a non-negative vector that sums up
to one. Consequently, we only report results on MNIST and Kuzushiji-MNIST.
Using the vMF as a base distribution clearly outperforms the Gaussian in terms
of bits per dimension on test data. As seen in the FID and KID scores, we
perform competitive compared to the Gaussian for generating new data. Hence,
the generative aspects of the proposed approach are either better or on par with
the default choice of a Gaussian. Note that lower bits per dimension on test
data and lower FID/KID scores on generated data might be obtained with more
sophisticated models.
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1 2 3 4 5start end

Fig. 6. Five interpolation paths of the norm-corrected linear interpolation (nclerp)
depicting the problem of almost repeated endpoints (highlighted in blue) and thus a
biased evaluation on CIFAR10.

We now evaluate the quality of interpolation paths generated via various
approaches. Table 2 shows the results in terms of bits per dimension, FID, and
KID scores for all data sets. The experiments confirm our hypothesis that an
interpolation on a fixed-norm space yields better results as measured in bits per
dimension, FID, and KID scores. The norm-corrected interpolation yields better
FID and KID scores for Fashion-MNIST and CIFAR10. However, this heuristic
produces interpolation paths that are biased towards the endpoints (cf. Figure 3)
and hence are naturally closer to observed data, thus yield better FID and KID
scores. This is depicted in Figure 6 where the first and last interpolant is very
close to real data. More results on general interpolations within classes and across
classes are provided in the supplementary material.

5.5 Qualitative Results

Figure 7 displays interpolation paths with five interpolants of four pairs of data
from CIFAR10, created using the same architecture trained on different base
distributions. We pick the best-performing model on BPD on test data from
the multiple training runs for each base distribution. We visually compare a
linear interpolation using a Gaussian base distribution against a spherical linear
interpolation using a vMF base distribution with different concentration values.
Naturally, the images in the center show the difference and the effects resulting
from the choice of base distribution and, hence, the interpolation procedure.

Overall, the linear interpolation with a Gaussian tends to show mainly darker
objects on brighter background (almost black and white images) in the middle
of the interpolation path. This is not the case for the spherical interpolations
using a vMF base distribution. Specifically, in the second example showing dogs,
the checkerboard background of the left endpoint smoothly fades out for the
vMF (κ = 2d) model while the Gaussian shows an almost white background. A
similar effect happens in the last pair of images, highlighting the weaknesses of a
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Fig. 7. Interpolation paths of four pairs of data from CIFAR10 using different models.
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Fig. 8. Interpolation paths of two pairs from Fashion-MNIST using different models.

linear interpolation once again. By contrast, the vMF models generate images
where those effects are either less prominent or non-existent, suggesting a path
that strictly follows the data manifold. We provide more interpolation paths on
CIFAR10 in the supplementary material.

Figure 8 depicts interpolation paths with five interpolants on two pairs of data
from Fashion-MNIST. In both cases, the Gaussian model produces suboptimal
images with visible color changes, which is not consistent with the endpoints.
Furthermore, there is visible deformation of the clothing items.

6 Related Work

Interpolations are commonplace in generative modeling, being particularly useful
for evaluating them. Spherical linear interpolations [30] are also proposed [33]
to circumvent the problems depicted in Figure 1 in GANs and VAEs. However,
as the Gaussian is kept as a base distribution, the difference in norms causes
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problems similar to the norm corrected approach. The problem of interpolation
is also investigated for GANs [1]. Specifically, they show that the quality of the
generated images in the interpolation path improves when attempting to match
the distribution of norms between interpolants and the GAN prior. The problem
with the distribution mismatch while interpolating is also studied in [15].

Simultaneously learning a manifold and corresponding normalizing flow on it
is also possible [5]. By contrast, in this paper, we employ a prescribed manifold,
i.e., a p-norm sphere, on which the interpolation can be done in a principled way.
Using a vMF distribution as a prior of VAEs is also used to encourage the model
to learn better latent representations on data with hyperspherical structure [8,35].
While results show improvements over a Gaussian prior, properties of our interest,
such as interpolation, are not addressed.

Employing normalizing flows on non-Euclidean spaces, such as the hypersphere,
was first proposed by [11]. They introduce a mapping for doing normalizing flows
on hyperspherical data. The main difference from our setting is that the data
is already on a sphere and is moved to Rd, an unrestricted space, performing
the entire flow in there instead, before moving back to the sphere. This avoids
defining a flow on the sphere, which is studied in [27] for tori and spheres. Besides,
normalizing flows on hyperbolic spaces are beneficial for graph-structured data [4].

A geometric analysis of autoencoders, showing that they learn latent spaces,
which can be characterized by a Riemannian metric, is provided by [2]. With
this, interpolations follow a geodesic path under this metric, leading to higher
quality interpolations. Compared to our contribution, these approaches do not
change the standard priors but propose alternative ways to interpolate samples.
In contrast, we propose an orthogonal approach by changing the base distribu-
tion and imposing constraints on the representation in our training procedure.
Consequently, standard interpolation procedures, such as the spherical linear
interpolation, can be used in a principled way.

7 Conclusion

This paper highlighted the limitations of linear interpolation in flow-based gener-
ative models using a Gaussian base distribution. As a remedy, we proposed to
focus on base representations with a fixed norm where the interpolation naturally
overcomes those limitations and introduced normalizing flows onto unit p-norm
spheres. Specifically, we showed for the cases p ∈ {1, 2} that we could operate on
the unit simplex and unit hypersphere, respectively. We introduced a computa-
tionally efficient way of using a Dirichlet distribution as a base distribution for the
case of p = 1 and leveraged a von Mises-Fisher distribution using a stereographic
projection onto a hypersphere for the case p = 2. Although the former suffered
from numerical instabilities in a few experiments, our experimental results showed
superior performance in terms of bits per dimension on test data and FID and
KID scores on interpolation paths that resulted in natural transitions from one
image to another. This was also confirmed by visually comparing interpolation
paths on CIFAR10 and Fashion-MNIST.
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Fig. 9. Left: Linear (1st and 3rd row) and norm-corrected (2nd and 4th row) interpola-
tions paths. Right: decoded expectation of base distribution, i.e., the mean face.

A More Interpolation Paths on CelebA

Figure 9 depicts two additional interpolation paths of images taken from CelebA.
Analogously to Figure 2, the top row shows a linear interpolation and the bottom
row an interpolation with norm correction as introduced in Equation (1). While
this correction guarantees that the norms of interpolants stay within the observed
range of data, we note that this is a rather ad-hoc way to perform the interpolation
as we will point out in the remainder.

The leftmost and rightmost faces in Figure 9 are real data while the remaining
ones are interpolants. The mean face shown on the right hand side is clearly
visible in the central interpolants; e.g., the glasses disappear in the top row
around the center and then reappear while the lips in the third row become more
prominent towards the center. We credit both to the properties of the mean face.
In contrast, the norm-corrected interpolation does not suffer from distortions by
the mean face and has many desirable properties, but also a major limitation.
The first and last interpolants are very close to the end points, which are real
data. Figure 6 depicts the same phenomenon for CIFAR10.

B Interpolations both across and within classes

Table 3 depicts the same experiments as shown in Table 2. The difference,
however, is that the interpolations are no longer restricted to be within classes
but uniformly sampled and thus also contain interpolations across classes. Using
the vMF as a base distribution clearly outperforms the Gaussian in terms of
bits per dimension on test data. The only exception is a tie on MNIST. This
is caused by the same effect that caused Figure 1: since the norm drops when
conducting a linear interpolation, the interpolants are much closer to the mean.
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Table 3. Results for interpolation averaged over three independent runs including
standard errors. Interpolations are within and across classes and use five intermediate
points; lerp refers to a linear interpolation; nclerp refers to the norm-corrected linear
interpolation (Section 2) and slerp refers to the spherical interpolation.

Base dist. Type BPD FID KID
M

N
IS

T
Gaussian lerp 1.34 ± 0.06 9.78 ± 0.50 0.007 ± 0.001

Gaussian nclerp 1.50 ± 0.12 11.66 ± 1.06 0.009 ± 0.001

vMF κ = 1d slerp 1.34 ± 0.10 6.70 ± 0.46 0.005 ± 0.001

vMF κ = 1.5d slerp 1.41 ± 0.09 6.65 ± 0.20 0.004 ± 0.000

vMF κ = 2d slerp 1.65 ± 0.09 8.31 ± 0.20 0.006 ± 0.000

Dirichlet α = 2 lerp 1.61 ± 0.10 8.96 ± 0.32 0.006 ± 0.000

K
-M

N
IS

T

Gaussian lerp 2.00 ± 0.16 31.51 ± 2.53 0.034 ± 0.003

Gaussian nclerp 1.85 ± 0.18 29.76 ± 2.44 0.033 ± 0.003

vMF κ = 1d slerp 2.15 ± 0.13 29.39 ± 5.66 0.032 ± 0.006

vMF κ = 1.5d slerp 1.65 ± 0.06 37.35 ± 3.49 0.041 ± 0.004

vMF κ = 2d slerp 2.09 ± 0.13 23.74 ± 4.41 0.026 ± 0.005

Dirichlet α = 2 lerp 1.90 ± 0.04 37.80 ± 4.30 0.042 ± 0.005

F
-M

N
IS

T

Gaussian lerp 2.84 ± 0.04 16.93 ± 0.06 0.011 ± 0.000

Gaussian nclerp 2.86 ± 0.03 13.61 ± 0.52 0.009 ± 0.000

vMF κ = 1d slerp 2.69 ± 0.02 20.10 ± 2.11 0.012 ± 0.001

vMF κ = 1.5d slerp 2.78 ± 0.05 17.56 ± 1.46 0.009 ± 0.001

vMF κ = 2d slerp 2.72 ± 0.06 21.41 ± 0.79 0.013 ± 0.001

C
IF

A
R

1
0

Gaussian lerp 2.82 ± 0.04 63.17 ± 0.99 0.059 ± 0.001

Gaussian nclerp 3.33 ± 0.01 16.83 ± 0.24 0.013 ± 0.000

vMF κ = 1d slerp 2.93 ± 0.04 56.13 ± 0.38 0.049 ± 0.000

vMF κ = 1.5d slerp 2.85 ± 0.04 59.89 ± 4.95 0.054 ± 0.004

vMF κ = 2d slerp 2.79 ± 0.06 57.14 ± 3.45 0.051 ± 0.004

Hence, they possess higher likelihoods in terms of the base distribution and yield
better scores, because bits per dimension is a rescaled negative log-likelihood.
The results in terms of FID and KID scores on general interpolations are in line
with the results in Table 2: the vMF base distribution yields better scores on
MNIST and K-MNIST. The norm-corrected linear interpolation (nclerp) yields
lower FID and KID scores on K-MNIST and CIFAR10. We credit this to the
biased evaluation as discussed in Section 2.

C Samples from the models

Figure 10 shows twelve samples per model. The figure essentially shows that the
choice of the base distribution does not influence the quality of the generated
samples. Changing the base distribution thus leads to more natural interpolations
without sacrificing generative performance. Note that better looking samples can
be produced with a more sophisticated architecture, but this is not the goal of
this paper.
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Fig. 10. Samples generated from the models for CIFAR10 (first block), Fashion-MNIST
(second block), Kuzushiji-MNIST (third block), and MNIST (fourth block). Per data
set, we show one row of samples from Gaussian, vMF (κ = 1d), vMF (κ = 1.5d), and
vMF (κ = 2d), where the order is top to bottom.

D More interpolations on CIFAR10

Figure 11 shows interpolation paths on four additional pairs of images from
CIFAR10. The order is the same as in Figure 7. The first row shows the Gaussian,
the second, third, and fourth rows depict the vMF with κ ∈ {1d, 1.5d, 2d}, respec-
tively. Within the top left part, the Gaussian prior yields the worst interpolation
path since the airplane loses its wings. The vMF (κ = 1d) shows the most natural
transition. While a meaningful transition of the images in the top right and
bottom left parts is not obvious, the Gaussian base distribution fails to produce
a smooth transition of the background and falls back to white. In contrast, all
vMF models yield a smooth change of background. The interpolation of the cars
depicted in the bottom right part shows an example where both the Gaussian as
well as the vMF (κ = 1.5d) have issues.
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Fig. 11. Interpolation paths of four pairs of data from CIFAR10 using different models.
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