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Abstract. Exploring different geometries has shown to be useful for
exploiting inherent properties of data at hand, becoming attractive to
compute embeddings therein. For example, hyperbolic geometry shows
superior performance when embedding hierarchical data. This suggests
that the ability to explore different geometries for embedding data might
be an important consideration, just as the models and algorithms used
to perform the embedding. However, utilising non-Euclidean geometries
to embed data can sometimes be a laborious task, as the whole pro-
cess needs to be first analytically derived for each geometry chosen (e.g.,
spherical, hyperbolic) and then adapted to it. This discourages the ex-
ploration of richer spaces to embed data in. Using the framework of
Riemannian manifolds, we explore a new choice of geometry. We con-
sider a modified version of the Poincaré disc to accept individual (per-
dimension) curvatures instead of a single global one, resulting in what
we refer to as the Poincaré ellipsis. We experiment with link prediction
on graph nodes embedded onto these new spaces, showing the perfor-
mance implications and highlighting the ease to explore new variants of
hyperbolic geometry.

Keywords: Riemannian manifolds · non-Euclidean geometries · varia-
tional graph autoencoder

1 Introduction

Learning embeddings for data is a useful way of devising models or algorithms
that extract useful information from this data into a usable representation for
later learning-related downstream tasks. Since most of machine learning is built
upon Euclidean geometry, it is usually expected that those embeddings are com-
puted therein. This, however, must not be the case. Existing work has depicted
the usefulness of different geometries for embeddings, as shown for hyperbolic
geometry [10, 12], or for spherical geometry [3]. The fit between data and ge-
ometry generally leads to improved performance, and it has been shown that
hyperbolic geometry is especially suited for hierarchical data, Euclidean geome-
try fits grid-like data and spherical geometry suits cyclical data.

This encourages research to investigate not only canonical forms of those
geometries, but also variants. Currently explored geometries usually rely on a
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global notion of curvature, which is 0 in the Euclidean case, representing a flat
structure, while being negative in the hyperbolic and positive in the spherical
case. A discouraging aspect of exploring new geometries is the usual difficulty
involved in tweaking the whole learning process around a specific choice of geom-
etry. The framework of Riemannian geometry describes the geometry of man-
ifolds by their metric tensor. This can be utilised to explore new geometries
without analytically deriving all involved concepts like, but not limited to, the
exponential and logarithmic maps.

As an exemplary application, we propose to modify the Poincaré disc model
to accept individual curvatures for each dimension instead of one global curva-
ture. This will result in a variant of the well-known hyperbolic model, which we
call the Poincaré ellipsis, as different curvature values result in different radii,
resembling an elliptical shape. In order to do this, we recap some concepts from
Riemannian geometry. Empirically, using a variational graph autoencoder [7], we
show how to embed node representations of graph data into this new geometry.

Related work Both [10, 12] introduced a variant of the variational autoen-
coder using the Poincaré ball as a latent space. We employ a variational graph
autoencoder and introduce a latent space with novel geometry.

The approach from [14] is to develop a mixed-curvature latent space. Mixed
here means different curvatures for components, a component being a manifold
and the latent space being a product of manifolds. In contrast, we propose to
use with one manifold instead of a product of manifolds.

[1, 15] showed that training neural networks on purely Euclidean geometry
can induce changes in the curvature of the latent space, favouring the use of
non-Euclidean tools. Instead of inducing a different geometry using a seemingly
Euclidean model, we directly approach training with non-Euclidean geometries.

2 Riemannian geometry

For a more extensive introduction to these concepts we confer to [9], notation-
wise we follow [10]. A manifold M is always locally resembling Euclidean space,
Hausdorff and second countable. Furthermore we assume smooth manifolds. For
every point z ∈ M there is a tangent space TzM, which is a real vector space
of same dimensionality as M containing all the possible directions of tangential
movement. A Riemannian metric g(z) assigns the tangent space of each point z
a smoothly varying inner product:

g(z) = ⟨·, ·⟩z : TzM×TzM → R.

The Riemannian metric can be rewritten to a matrix representation G(z) as
follows:

∀u,v ∈ TzM, ⟨u,v⟩z = g(z)(u,v) = u⊺G(z)v.

A manifold M equipped with a Riemannian metric gz is called a Riemannian
manifold (M, gz), which is sufficient to describe the local geometry. From this,
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concepts of global geometry can be constructed. The inner product gives rise to
a norm on TzM given by ∥·∥z =

√
⟨·, ·⟩z, the metric tensor allows for a measure

dM(z) =
√
|G(z)|dz with dz being the Lebesgue measure. For constructing the

shortest-length paths, which generalise the notion of a straight line in Euclidean
space, typically a curve is parametrised. Given a curve γ : t 7→ γ(t) ∈ M its
length is given by

L(γ) =

∫ 1

0

∥γ′(t)∥1/2
γ(t). (1)

Now take γ∗ = arg min L(γ) with two points z,y ∈ M and γ(0) = z, γ(1) = y.
The result γ∗ is the geodesic from z to y. There are different methods to find
the geodesic. Analytical direct solutions are known for some models, but in the
general case one can solve the differential equation associated with the geodesics,
for this we recommend appendix A of [1]. The geodesic length can be used for
defining a global distance dM(z,y) = inf L(γ). To move along a geodesic is called
following the exponential map. For every starting point z with initial velocity
v there is a unique geodesic γ with γ(0) and γ′(0) = v. If the exponential map
is defined for every point z ∈ M, then M is geodesically complete. Given two
ponts z,y ∈ M, the logarithmic map moves from y to z and computes the
velocity v at point z.

3 Embedding data into a Riemannian manifold

We take a variational autoencoder (VAE) [13] as a way of embedding arbitrary
data into a lower-dimensional Euclidean space to illustrate an analogous process
with any Riemannian manifold described by a smoothly-changing metric tensor.

Without taking its statistical perspective into account, one can consider a
simplified view of the encoding process of a VAE as follows. First, it maps a
given data point xi using an encoder neural network into the parameters of a
Gaussian distribution. Let Z denote the set of latent space points, µi and σi

denote the parameters of the Gaussian modeled by the encoder (approximate
posterior). In Euclidean space, one can consider this process done and proceed to
decoding, which consists of drawing a sample (or multiple) zi ∼ N(µi,diag(σ

2
i )),

then mapping the point(s) back into input space via the decoder neural network.
Inspired by previous approaches [10, 12], we consider mapping into a Rieman-

nian manifold as moving around in that manifold. In other words, the encoder
and decoder do not directly place points in the manifold, but rather start at
the origin and work with the velocities (i.e., points in the tangent space at the
origin) from there, leveraging the exponential map as the mechanism to com-
pute the final location of the point. In addition, one needs to also consider the
sampling process described above, which should also behave differently for a dis-
tribution defined on the manifold. Statistically, we consider the so-called wrapped
Gaussian distribution, the result of “wrapping” a Gaussian distribution into a
Riemannian manifold by means of a diffeomorphism, also used in earlier work
as the Riemannian analogous of a Gaussian distribution. We note this distribu-
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tion is not to be confused with the Riemannian Gaussian distribution, which is
slightly different and more native to Riemannian geometry.

We start by letting µi = exp0(vi), where vi denotes the mean predicted
by the encoder instead and exp0 is the exponential map at the origin. Then,
zi is computed in two steps. First, let σi work as a standard deviation, using
it to sample a new velocity v

(σ)
i ∼ N(0,diag(σ2

i )) at the tangent space of µi.
With the same analogy as before, we use that second velocity to find the final
sampled point, zi, by letting zi = expµi

(v
(σ)
i ). This means that the encoded

point zi is found by moving from the predicted mean µi by a certain standard
deviation σi, represented concretely as the velocity v

(σ)
i . Usually, moving from

the origin to µ is done using parallel transport because this preserves the norm
of the transported vector. In our case, apart from parallel transport being more
complex to approximate than the exponential map, preserving the norm is not
intended, as we sample from µ.

Using the exponential maps to move around, we ensure that every point
produced in the process properly exists in the manifold and follows its geometry,
while backpropagating through the exponential map is enough for the neural
networks used in the process to learn to leverage this to embed points into the
manifold. For decoding, we use the analogous reverse operator of the exponential
map, letting every vi = log0(zi) and then proceeding with those velocities as
input to the decoder.

The advantage of approaching the embedding of data into Riemannian mani-
folds as proposed here is to be able to handle any Riemannian manifold by simply
defining the operations in terms of geodesics, exponential, and logarithmic maps.
This also implies that the exponential map and logarithmic map must not be
analytically known, which is usually the main technical reason when consider-
ing new Riemannian manifolds to use as the target embedding space. For this
reason, we solve the differential equations associated with the geodesics with
stochman, a package to numerically approximate geodesics, exponential maps
and logarithmic maps [4].

4 From Poincaré disc to Poincaré ellipsis

There are different models to construct the d-dimensional hyperbolic space Hd

such as the hyperboloid model, the Poincaré half-plane model, the Beltrami-
Klein model, the southern hemisphere model and the Poincaré disc model [2].
For d > 2 instead of Poincaré disc the model is also called Poincaré ball model.

Poincaré ball The Poincaré ball model is a d-dimensional Riemannian manifold
with constant negative curvature c defined as Bd

c = (Bd
c , g

c
b) with Bd

c being the
open ball of radius 1/

√
c and gcb, the Poincaré ball metric tensor, given by

gcb(z) = (λc
z)

2 ge(z), λc
z =

2

1− c∥z∥2
, (2)
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where λc
z is the conformal factor and ge is the Euclidean metric tensor. The

Euclidean metric tensor is the usual dot product or in a matrix representation
the identity matrix with diagonal 1. Following is a depiction of the matrix rep-
resentation of gcb(z):

Gc
b(z) =



(λc
z)

2 · · · 0
. . .

... (λc
z)

2
...

. . .
0 · · · (λc

z)
2


The distance function, exponential map and logarithmic map for the Poincaré
ball are analytically known, cf. [10].

Poincaré ellipsis In the Poincaré ball the curvature value c of the metric tensor
is a scalar. We propose a novel Riemannian manifold that works with a vector
c = (c1, . . . , cd) instead of a scalar, which we will refer to by Pd

c = (Ed
c , g

c
p), where

Ed
c is the ellipsoid with radii 1/√ci depending on the curvature ci associated with

the dimension. Applying the same change from scalar c to vector c to the metric
tensor results in:

gcp(z) = (λc
z)

2 ge(z), λc
z =

2

1− c∥z∥2
. (3)

The closeness to the metric tensor shown in equation (2) is obvious. It can also
be observed in the matrix representation of the gcp(z):

Gc
p(z) =



(λc1
z )2 · · · 0

. . .
... (λci

z )2
...

. . .
0 · · · (λcd

z )2


Even though the change from c to c is simple, the implications of it are not. One
can follow the general technique to parametrise a curve γ and solve equation (1)
to use the length of the geodesic as distance. To the best of our knowledge, the
analytical solution is not known.

Another implication of c is that the Poincaré ball, which typically has a
global radius of 1/

√
c, now has this radius split up for each dimension, which is

indicated by the metric tensor even without defining the space explicitly. This
changes, for d = 2, the disc to become an ellipsis or for d > 2, the ball to become
an ellipsoid. For the ellipsis this can be seen in the plots of the latent spaces in
section 5. The different structure of this geometry results in distance becoming
larger at different speeds in different dimensions, which suits different rates of
volume growth in the latent space.
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5 Experiments

Experimentally, we explore the behaviour of the new geometry in a link predic-
tion task on two widely known graph data sets. We consider three geometries as
latent space Z: Rd as Euclidean space, Bd

c as standard Poincaré ball and Pd
c as

Poincaré ellipsis, thus Z ∈ {Rd,Bd
c ,P

d
c}.

As model we choose a VGAE, following the experimental setup by the authors
[7]. Let Ã ∈ Rn×n be the normalised adjacency matrix of the input graph with n
nodes [8]. As in [7], we use as encoder X(µ) = X ′ÃW (µ) and X(σ) = X ′ÃW (σ),
with X ′ = ÃW0. The parameter W0 is n × 32, while both W (µ) and W (σ) are
32 × d, resulting in d-dimensional latent spaces. As decoder we also follow the
original methodology and use the Euclidean inner product ⟨vi,vj⟩E to predict
the probability that the two nodes represented by them are connected after
transforming the inner product through a sigmoid function.

Data set We use the cora [11] and citeseer [5] data sets. cora contains
information about 2708 publications from 7 classes and 5429 links (citations)
between them. citeseer consists of 3312 publications from 6 classes and 4732
links between them. Again, we follow the data processing procedure from [7].

Experimental setup We utilise d = 2 and train the models for 800 epochs,
validating every 10 epochs, on a training version of the data with certain links
masked, again following [7], optimising the parameters with Adam in its default
setting [6]. Our evaluation metrics follow existing similar work [10, 3]: area under
the ROC curve (AUC) and average precision (AP). In each scenario, we choose
the best model checkpoint in the validation set to be used for testing.

Table 1. AUC and AP results on a link prediction task on cora and citeseer.
Confidence intervals are computed over X runs.

cora citeseer
Models AUC AP AUC AP

R2–VGAE 0.67±0.02 0.70±0.02 0.68±0.01 0.73±0.01

B2
1.0–VGAE 0.70±0.02 0.73±0.02 0.69±0.02 0.73±0.02

P2
(0.8,1.15)–VGAE 0.71±0.02 0.73±0.01 0.68±0.02 0.72±0.02

Results Preliminary empirical results on link prediction are shown in Table 1.
Generally it should be noted that these models are not tuned in an extensive
manner. On the cora data set the hyperbolic models outperform the Euclidean,
but show similar performances between the models with global constant and
individual curvatures. It could well be possible that the effects of individual
curvature are more visible with better tuned models.
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Fig. 1. From left to right: The latent space of a Euclidean space, a Poincaré disc, a
Poincaré ellipsis. Data set is cora.

The citeseer shows no significant difference in performance between all the
models, which hints at the models not revealing their full potential. More tuning
and experiments are in need here.

As both cora and citeseer are citation networks, they have relatively clear
structures in them. More difficult data sets which contain more complicated
hierarchies could benefit from the individual curvature model.

The aforementioned change in latent spaces from disc to ellipsis in the case
of individual curvatures can be observed in Figure 1. Distributing the curva-
ture over dimensions allows the model to allocate the growth of distance per
dimension, which can help with embedding quality.

6 Conclusions and future work

We showed an approach to explore a novel geometry using the framework of
Riemannian manifolds, introducing a variant of hyperbolic geometry we refer
to as Poincaré ellipsis. Individual curvature per dimension allow for different
growths in distance in different directions, which can be explored by the models
performing embeddings to encode more complex information. The model using
the Poincaré ellipsis shows potential to perform on par with the model using the
Poincaré ball, hinting at the potentional of improving embedding quality. This
seems to adhere to previous insights that the geometry should fit the structure of
the data. In many hierarchical data sets the hierarchies are not perfectly regular
or behave differently across different children, these data sets should benefit from
individual curvatures per dimension.

As motivated earlier, the exploration of new geometries, e.g. modifications to
spherical geometries are natural continuations of this work. Additionally, com-
bining our approach with [14], the mixed-curvature VAEs, could allow for even
more complex structures in latent spaces. If the components, i.e. the submani-
folds, getting multiplied already have non-constant curvature, the resulting man-
ifolds should be even more flexible.
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