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Abstract

Discriminative learning techniques for sequen-
tial data have proven to be more effective than
generative models for named entity recognition,
information extraction, and other tasks of dis-
crimination. However, semi-supervised learning
mechanisms that utilize inexpensive unlabeled
sequences in addition to few labeled sequences
– such as the Baum-Welch algorithm – are avail-
able only for generative models. The multi-view
approach is based on the principle of maximizing
the consensus among multiple independent hy-
potheses; we develop this principle into a semi-
supervised hidden Markov perceptron algorithm.
Experiments reveal that the resulting procedure
utilizes unlabeled data effectively and discrimi-
nates more accurately than its purely supervised
counterparts.

1 Introduction
The problem of labeling observation sequences has appli-
cations that range from language processing tasks such as
named entity recognition, part-of-speech tagging, and in-
formation extraction to biological tasks in which the in-
stances are often DNA strings. Traditionally, sequence
models such as the hidden Markov model and variants
thereof have been applied to the label sequence learning
problem. Learning procedures for generative models ad-
just the parameters such that the joint likelihood of training
observations and label sequences is maximized. By con-
trast, from the application point of view the true benefit of
a label sequence predictor corresponds to its ability to find
the correct label sequence given an observation sequence.

In the last years, conditional random fields[Lafferty et
al., 2001; 2004], hidden Markov support vector machines
[Altun et al., 2003b] and their variants have become popu-
lar; their discriminative learning procedures minimize cri-
teria that are directly linked to their accuracy of retriev-
ing the correct label sequence. In addition, kernel condi-
tional random fields and hidden Markov support vector ma-
chines utilize kernel functions which enables them to learn
in very high dimensional feature spaces. These features
may also encode long-distance dependencies which cannot
adequately be handled by first-order Markov models. Ex-
periments uniformly show that discriminative models have
advanced the accuracy that can be obtained for sequence la-
beling tasks; for instance, some of the top scoring systems
in the BioCreative named entity recognition challenge used
conditional random fields[McDonald and Pereira, 2004].

In the training process of generative sequence models,
additional inexpensive and readily available unlabeled se-
quences can easily be utilized by employing Baum-Welch,
a variant of the EM algorithm. But since EM uses gener-
ative models, it cannot directly be applied to discrimina-
tive learning. Text sequences are often described by high-
dimensional attribute vectors that include, for instance,
word features, letter n-grams, orthographical and many
other features. These vectors can be split into two dis-
tinct, redundant views and thus the multi-view approach
can be followed. Multi-view algorithms such as co-training
[Blum and Mitchell, 1998] learn two initially independent
hypotheses, and then minimize the disagreement of these
hypotheses regarding the correct labels of the unlabeled
data[de Sa, 1994]. Thereby, they minimize an upper bound
on the error rate[Dasguptaet al., 2001].

The rest of our paper is structured as follows. Section
2 reports on related work and Section 3 reviews input out-
put spaces and provides some background on multi-view
learning. In Section 4 we present the dual multi-view hid-
den Markov kernel perceptron and report on experimental
results in Section 5. Section 6 concludes.

2 Related Work
In a rapidly developing line of research, many variants of
discriminative sequence models are being explored. Re-
cently studied variants include maximum entropy Markov
models[McCallumet al., 2000], conditional random fields
[Lafferty et al., 2001], perceptron re-ranking[Collins,
2002], hidden Markov support vector machines[Altun et
al., 2003b], label sequence boosting[Altun et al., 2003a],
max-margin Markov models[Taskaret al., 2003], case-
factor diagrams[McAllesteret al., 2004], sequential Gaus-
sian process models[Altun et al., 2004], kernel conditional
random fields[Laffertyet al., 2004] and support vector ma-
chines for structured output spaces[Tsochantaridiset al.,
2004].

De Sa[de Sa, 1994] observes a relationship between
consensus of multiple hypotheses and their error rate and
devises a semi-supervised learning method by cascading
multi-view vector quantization and linear classification.A
multi-view approach to word sense disambiguation com-
bines a classifier that refers to the local context of a word
with a second classifier that utilizes the document in which
words co-occur[Yarowsky, 1995]. Blum and Mitchell
[Blum and Mitchell, 1998] introduce the co-training algo-
rithm for semi-supervised learning that greedily augments
the training set of two classifiers. A version of the Ad-
aBoost algorithm boosts the agreement between two views
on unlabeled data[Collins and Singer, 1999].



Dasgupta et al.[Dasguptaet al., 2001] and Abney[Ab-
ney, 2002] give PAC bounds on the error of co-training in
terms of the disagreement rate of hypotheses on unlabeled
data in two independent views. This justifies the direct min-
imization of the disagreement. The co-EM algorithm for
semi-supervised learning probabilistically labels all unla-
beled examples and iteratively exchanges those labels be-
tween two views[Nigam and Ghani, 2000; Ghani, 2002].
Muslea et al.[Musleaet al., 2002] extend co-EM for active
learning and Brefeld and Scheffer[Brefeld and Scheffer,
2004] study a co-EM wrapper for the support vector ma-
chine.

3 Background
In this section we review “input output spaces”[Altun et
al., 2004] and the consensus maximization principle that
underlies multi-view algorithms for the reader’s conve-
nience. In the remainder of our paper we adopt the clear
notation proposed by[Altun et al., 2003b].

3.1 Learning in Input Output Space
The setting of thelabel sequence learning problemis
as follows. The labeled sample consists ofn pairs
(x1,y1), . . . , (xn,yn), wherexi ∈ X denotes thei-th
input or observation sequence of lengthTi; i.e., xi =
〈xi,1, xi,2, . . . , xi,Ti

〉, andyi ∈ Y the corresponding la-
bel sequence withyi = 〈yi,1, . . . , yi,Ti

〉. We denote the set
of all labels byΣ; i.e.,yi,t ∈ Σ.

In label sequence learning, joint features of the input and
the label sequence play a crucial role (e.g.,“is the previous
token labeled a named entity and both the previous and cur-
rent token start with a capital letter”?). Such joint features
of input and output cannot appropriately be modeled when
the hypothesis is assumed to be a function from input to
output sequences. The intuition of the input output space
is that the decision functionf : X × Y → R operates on
a joint feature representationΦ(xi,yi) of input sequence
xi and output sequenceyi. Given an input, the classifier
retrieves the output sequence

ŷ = argmax
ȳ

f(xi, ȳ). (1)

This step is referred to as decoding. Given the sample, the
learning problem is to find a discriminatorf that correctly
decodes the examples. We utilize thew-parameterized lin-
ear modelf(x,y) = 〈w,Φ(x,y)〉. The joint feature repre-
sentationΦ(x,y) allows capturing non-trivial interactions
of label-labelpairs

φσ,τ (yi|t) = [[yi,t−s = σ ∧ yi,t = τ ]], σ, τ ∈ Σ, (2)

([[cond]] returns 1 if cond is true and 0 otherwise) and
label-observationpairs

φ̄σ,j(xi,yi|t) = [[yi,t = σ]]ψj(xi,t−s), (3)

where many featuresψj(xi,t−s) extract characteristics of
tokenxi,t−s; e.g., ψ234(xi,t−s) may be 1 if tokenxi,t−s

starts with a capital letter and0 otherwise. We will refer
to the vectorψ(x) = (. . . , ψj(x), . . .)

T and denote the dot
product by means ofk(x, x̄) = 〈ψ(x), ψ(x̄)〉.

The feature representationΦ(xi,yi) of thei-th sequence
is defined as the sum of all feature vectorsΦ(xi,yi|t) =
(. . . , φσ,τ (yi|t), . . . , φ̄σ,j(xi,yi|t), . . .)

T extracted at time
t

Φ(xi,yi) =

Ti
∑

t=1

Φ(xi,yi|t). (4)

Restricting the possible features to consecutive label-
label (Equation 2 withs = 1) and label-observation (Equa-
tion 3 with s = 0) dependencies is essentially a first-order
Markov assumption and as a result, decoding (Equation 1)
can be performed by a Viterbi algorithm in timeO(T |Σ|2),
with transition matrixA = {aσ,τ} and observation matrix
Bx = {bs,σ(x)} given by

aσ,τ =
X

i,ȳ

αi(ȳ)
X

t

[[ȳt−1 = σ ∧ ȳt = τ ]] (5)

bs,σ(x) =
X

i,t,ȳ

[[ȳt = σ]]αi(ȳ)k(xs, xi,t). (6)

We utilize a kernel functionK((x,y), (x̄, ȳ)) =
〈Φ(x,y),Φ(x̄, ȳ)〉 to compute the inner product of two ob-
servation and label sequences in input output space. The
inner product decomposes into

〈Φ(x,y),Φ(x̄, ȳ)〉 =
∑

s,t

[[ys−1 = ȳt−1 ∧ ys = ȳt]]

+
∑

s,t

[[ys = ȳt]]k(xs, x̄t). (7)

3.2 The Consensus Maximization Principle
In the multi-view setting that we discuss here the available
attributesX are decomposed into disjoint setsX 1 andX 2.
An example(xi,yi) is therefore viewed as(x1

i ,x
2
i ,yi),

wherexv
i ∈ X v, with v = 1, 2.

A characteristic of multi-view methods is the natural
inclusion of unlabeled examples(x1

1,x
2
1), . . . , (x

1
m,x

2
m)

which leads directly to semi-supervised techniques. Das-
gupta et al.[Dasguptaet al., 2001] have studied the rela-
tion between the consensus of two independent hypotheses
and their error rate. One of their results that holds under
some mild assumptions is the inequality

P
(

f1 6= f2
)

≥ max{P
(

err(f1)
)

, P
(

err(f2)
)

}. (8)

That is, the probability of a disagreement of two indepen-
dent hypotheses upper bounds the error rate of either hy-
pothesis. Thus, the strategy of semi-supervised multi-view
learning is: Minimize the error for labeled examples and
maximize the agreement for unlabeled examples.

In the following the setDl containsn labeled examples
(x1

i ,x
2
i ,yi), i = 1, . . . , n, andDu consists ofm unlabeled

sequences(x1
i ,x

2
i ), i = n+1, . . . , n+m, where in general

n < m holds.

4 Multi-View Hidden Markov Perceptrons
In this section we present the dual multi-view hid-
den Markov perceptron algorithm. For the reader’s
convenience, we briefly review the single-view hid-
den Markov perceptron[Collins and Duffy, 2002;
Altun et al., 2003b] and extend it to semi-supervised
learning.

The Hidden Markov Perceptron
The goal is to learn a linear discriminant functionf : X ×
Y → R given by

f(x,y) = 〈w,Φ(x,y)〉, (9)

that correctly decodes any example sequence(xi,yi) ∈ D;
i.e.,

yi = argmax
ȳ

f(xi, ȳ). (10)



Table 1: Dual Hidden Markov Perceptron Algorithm

Input: n labeled sequencesDl

1. Initialize allαi(y) = 0.

2. Repeat: For i = 1, . . . , n

3. Viterbi decoding: retrievêyi (Eq. 10 and 11).

4. If yi 6= ŷi then

5. αi(yi) = αi(yi) + 1

6. αi(ŷi) = αi(ŷi) − 1

7. End if .

8. End for i; Until no more errors.

Output: Trained hypothesisf(x,y)

Equation 9 can be transformed into its equivalent dual for-
mulation given by

f(x,y) =
∑

i

∑

ȳ

αi(ȳ)〈Φ(xi, ȳ),Φ(x,y)〉, (11)

where the relationw =
∑

i

∑

ȳ
αi(ȳ)Φ(xi, ȳ) is used.

The dual depends only on the inner product in input out-
put space that can be computed efficiently by means of a
kernel (Equation 7) and dual variablesαi(ȳ) ∈ Z. The lat-
ter weight the importance of sequenceȳ for the prediction
of observationxi.

The dual perceptron algorithm consecutively decodes
each input in the training sample. When the decoding
(Equation 11) yields an incorrectly labeled sequenceŷ for
the i-th example, instead of the correct sequenceyi, then
the correspondingαi are updated according to

αi(yi) = αi(yi) + 1; αi(ŷ) = αi(ŷ) − 1. (12)

Thus, after an error has occurred, the correct sequence
receives more, the incorrect prediction receives less
influence. Since all initialαi = 0 it suffices to store only
those sequences in memory that have been used for an
update. The dual hidden Markov perceptron algorithm is
shown in Table 1.

The Multi-View Hidden Markov Perceptron
We now have labeled examples(x1

i ,x
2
i ,yi) ∈ Dl and

unlabeled examples(x1
i ,x

2
i ) ∈ Du, whereψ1(x1

i,t) and
ψ2(x2

i,t), t = 1, . . . , Ti, live in distinct vector spaces.
We have decision functionsf(x1,x2,y) = f1(x1,y) +
f2(x2,y) with

fv(xv,y) =

n+m
∑

i=1

∑

ȳ

αv
i (ȳ)〈Φv(xv

i , ȳ),Φv(xv,y)〉, (13)

wherev = 1, 2. According to the consensus maximiza-
tion principle, the perceptron algorithm now has to min-
imize the number of errors for labeled examples and the
disagreement for unlabeled examples. Each viewv = 1, 2
predicts the label sequence for an examplei, whether it is
labeled or unlabeled, analogously to the single-view hidden
Markov perceptron according to

ŷ
v = argmax

ȳ

fv(xv
i , ȳ). (14)

The hidden Markov perceptron update rule for labeled ex-
amples remains unchanged; if viewv misclassifies thei-th

Table 2: Multi-view HM perceptron algorithm

Input: n labeled sequencesDl, m unlabeled sequences
Du, number of iterationstmax.

1. Initialize allαv
i (y) = 0, v = 1, 2.

2. For t = 1, . . . , tmax: For i = 1, . . . , n+m

3. Viterbi decoding: retrievêy1
i andŷ

2
i (Eq. 14).

4. If i-th sequence is labeled andyi 6= ŷ
v
i

then updateαv
i (·) acc. to Eq. 15,v = 1, 2.

5. Elseif i-th sequence is unlabeled andŷ
1
i 6= ŷ

2
i

then update both views according to Eq. 16.

6. End if .

7. End for i; End For t.

Output: Combined hypothesisf(x1,x2,y).

labeled example (yi 6= ŷ
v), then the respective parameters

are updated according to Equation 15.

αv
i (yi) = αv

i (yi) + 1; αv
i (ŷv) = αv

i (ŷ
v) − 1. (15)

If the views disagree on an unlabeled example – that is,
ŷ

1 6= ŷ
2 – updates have to be performed that reduce the

discord. Intuitively, each decision is swayed towards that
of the peer view in Equation 16.

αv
j (ŷ

v̄) = αv
j (ŷv̄) + Cu;

αv
j (ŷ

v) = αv
j (ŷv) − Cu, v = 1, 2.

(16)

The parameter0 ≤ Cu ≤ 1 determines the influence of
a single unlabeled example. IfCu = 1 each example has
the same influence whether it is labeled or unlabeled. The
outputŷ of the joint decision function

ŷ = argmax
ȳ

f(x1,x2, ȳ) (17)

= argmax
ȳ

[

f1(x1, ȳ) + f2(x2, ȳ)
]

(18)

can be efficiently computed by a Viterbi decoding. Viterbi
needs a transition cost matrix that details the score of a la-
bel transition and an observation cost matrix that relates
labels to observations. These quantities can be derived by
summing the scores of the corresponding single-view ma-
trices. The transition and observation matrices are given by
A = A1 + A2 andB = B1 + B2, whereAv = {av

σ,τ}
is defined in Equation 5 andBv

x
= {bvs,σ(xv)} in Equation

6, v = 1, 2, respectively. Table 2 shows the multi-view
hidden Markov perceptron algorithm.

5 Empirical Results
We concentrate on named entity recognition (NER) prob-
lems. We use the data set provided for task 1A of the
BioCreative challenge and the Spanish news wire article
corpus of the shared task of CoNLL 2002.

The BioCreative data contains 7500 sentences from
biomedical papers; gene and protein names are to be rec-
ognized. View 1 consists of the token itself together with
letter 2, 3 and 4-grams; view 2 contains surface clues like
capitalization, inclusion of Greek symbols, numbers, and
others as documented in[Hakenberget al., 2005]. The
CoNLL2002 data contains 9 label types which distinguish
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Figure 2: Learning curves for Spanish news wire.

person, organization, location, and other names. We use
3100 sentences of between 10 and 40 tokens which we rep-
resent by a token view and a view of surface clues.

In each experiment we draw a specified number of
(labeled and unlabeled) training and holdout sentences
without replacement at random in each iteration. We assure
that each label occurs at least once in the labeled training
data; otherwise, we discard and draw again. Each holdout
set consists of 500 (BioCreative) and 300 (Spanish news
wire) sentences, respectively. We first optimize parameter
Cu using resampling; we then fixCu and present curves
that show the average token-based error over 100 randomly
drawn training and holdout sets. The baseline methods –
hidden Markov model with Bernoulli distributed attribute
emission probabilities and single-view HM perceptron
– are trained on concatenated views; errorbars indicate
standard error. We want to answer the following questions.

Is the inclusion of unlabeled data beneficial for se-
quential learning? Figure 1 and 2 show learning curves
for HMM, single-view, and multi-view HM perceptron
for both data sets. Except for one point the multi-view
method always outperforms the single-view strawmen sig-
nificantly; the multi-view HM perceptron is the most accu-
rate sequence learning method.

In Figure 3 we vary the number of unlabeled sequences
for the BioCreative data set. As the number of unlabeled
data increases, the advantage of multi-view over single-
view sequence learning increases further.

Are there better ways of splitting the features into
views? We compare the feature split into the token itself
and lettern-grams versus surface clues to the average
of 100 random splits. Surprisingly, Figure 4 shows that
random splits work even (significantly) better. We also

0.14

0.13

0.12

0.11

10+10010+7510+5010+25

er
ro

r

number of labeled+unlabeled sequences

error rate vs. unlabeled sample size

multi-view HM perceptron
HM perceptron

HMM

Figure 3: Error depending on the unlabeled sample size for
BioCreative.
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Figure 4: Error for several splits of features into views for
Spanish news wire.

construct a feature split in which view 1 contains all odd,
and view 2 all even features. Hence, each view contains
half of the Boolean token features as well as half of the
surface clues. Figure 4 shows that this split performs
slightly but significantly better than the random split.
Hence, our experiments show that even though multi-view
learning using the split of token andn-grams versus
surface clues leads to a substantial improvement over
single-view learning, a random or odd-even split lead to an
even better performance.

How costly is the training process?Figure 5 plots execu-
tion time against training set size. The performance bene-
fits are at the cost of significantly longer training processes.
The multi-view HM perceptron scales linearly in the num-
ber of unlabeled sequences.
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6 Conclusion
Starting from a discriminative sequence learning algorithm
– the hidden Markov perceptron – we constructed a semi-
supervised learning method by utilizing the principle of
consensus maximization between hypotheses. We derived
the multi-view HM perceptron. Our experiments show that
this method utilizes unlabeled data effectively and outper-
forms its supervised counterpart, significantly; the multi-
view HM perceptron achieves the highest performance.

We observed that random feature splits perform bet-
ter than splitting the features into a token view and a
view of surface clues. Nevertheless, the multi-view hid-
den Markov perceptron outperforms the purely supervised
methods even for the initial weak split. Our future work
will address the construction of good feature splits.

Acknowledgment
This work has been funded by the German Science Foun-
dation DFG under grant SCHE540/10-1.

References
[Abney, 2002] S. Abney. Bootstrapping. InProceedings of the

Annual Meeting of the Association for Computational Linguis-
tics, 2002.

[Altun et al., 2003a] Y. Altun, M. Johnson, and T. Hofmann.
Discriminative learning for label sequences via boosting.In
Advances in Neural Information Processing Systems, 2003.

[Altun et al., 2003b] Y. Altun, I. Tsochantaridis, and T. Hof-
mann. Hidden Markov support vector machines. InProc. of
the International Conference on Machine Learning, 2003.

[Altun et al., 2004] Y. Altun, T. Hofmann, and A. J. Smola.
Gaussian process classification for segmenting and annotating
sequences. InProceedings of the International Conference on
Machine Learning, 2004.

[Blum and Mitchell, 1998] A. Blum and T. Mitchell. Combining
labeled and unlabeled data with co-training. InProc. of the
Conference on Computational Learning Theory, 1998.

[Brefeld and Scheffer, 2004] U. Brefeld and T. Scheffer. Co-em
support vector learning. InProceedings of the International
Conference on Machine Learning, 2004.

[Collins and Duffy, 2002] M. Collins and N. Duffy. Convolution
kernels for natural language. InAdvances in Neural Informa-
tion Processing Systems, 2002.

[Collins and Singer, 1999] M. Collins and Y. Singer. Unsuper-
vised models for named entity classification. InProceedings
of the Joint SIGDAT Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora, 1999.

[Collins, 2002] M. Collins. Ranking algorithms for named-entity
extraction: Boosting and the voted perceptron. InProceedings
of the Annual Meeting of the Association for Computational
Linguistics, 2002.

[Dasguptaet al., 2001] S. Dasgupta, M. Littman, and
D. McAllester. PAC generalization bounds for co-training.In
Proceedings of Neural Information Processing Systems, 2001.

[de Sa, 1994] V. de Sa. Learning classification with unlabeled
data. InProceedings of Neural Information Processing Sys-
tems, 1994.

[Ghani, 2002] R. Ghani. Combining labeled and unlabeled data
for multiclass text categorization. InProceedings of the Inter-
national Conference on Machine Learning, 2002.

[Hakenberget al., 2005] J. Hakenberg, S. Bickel, C. Plake,
U. Brefeld, H. Zahn, L. Faulstich, U. Leser, and T. Scheffer.
Systematic feature evaluation for gene name recognition.BMC
Bioinformatics, 6(1):S9, 2005.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F. Pereira.
Conditional random fields: probabilistic modesl for segment-
ing and labeling sequence data. InProceedings of the Interna-
tional Conference on Machine Learning, 2001.

[Lafferty et al., 2004] J. Lafferty, X. Zhu, and Y. Liu. Kernel
conditional random fields: representation and clique selection.
In Proc. of the Int. Conference on Machine Learning, 2004.

[McAllesteret al., 2004] D. McAllester, M. Collins, and
F. Pereira. Case-factor diagrams for structured probabilistic
modeling. InProceedings of the Conference on Uncertainty
in Artificial Intelligence, 2004.

[McCallumet al., 2000] A. McCallum, D. Freitag, and
F. Pereira. Maximum entropy markov models for infor-
mation extraction and segmentation. InProceedings of the
International Conference on Machine Learning, 2000.

[McDonald and Pereira, 2004] R. McDonald and F. Pereira.
Identifying gene and protein mentions in text using conditional
random fields. InProceedings of the BioCreative Workshop,
2004.

[Musleaet al., 2002] I. Muslea, C. Kloblock, and S. Minton. Ac-
tive + semi-supervised learning = robust multi-view learning.
In Proc. of the International Conf. on Machine Learning, 2002.

[Nigam and Ghani, 2000] K. Nigam and R. Ghani. Analyzing
the effectiveness and applicability of co-training. InProceed-
ings of Information and Knowledge Management, 2000.

[Taskaret al., 2003] B. Taskar, C. Guestrin, and D. Koller. Max-
margin Markov networks. InAdvances in Neural Information
Processing Systems, 2003.

[Tsochantaridiset al., 2004] I. Tsochantaridis, T. Hofmann,
T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. InProceedings of
the International Conference on Machine Learning, 2004.

[Yarowsky, 1995] D. Yarowsky. Unsupervised word sense dis-
ambiguation rivaling supervised methods. InProc. of the An-
nual Meeting of the Association for Comp. Ling., 1995.


