
Learning Linear Classifiers Sensitive to Example

Dependent and Noisy Costs⋆

Peter Geibel, Ulf Brefeld, and Fritz Wysotzki

TU Berlin, Fak. IV, ISTI, AI Group, Sekr. FR5-8
TU Berlin

Franklinstr. 28/29, D-10587 Berlin, Germany
Email {geibel|brefeld|wysotzki}@cs.tu-berlin.de

Abstract. Learning algorithms from the fields of artificial neural net-
works and machine learning, typically, do not take any costs into ac-
count or allow only costs depending on the classes of the examples that
are used for learning. As an extension of class dependent costs, we con-
sider costs that are example, i.e. feature and class dependent. We derive
a cost-sensitive perceptron learning rule for non-separable classes, that
can be extended to multi-modal classes (DIPOL) and present a natural
cost-sensitive extension of the support vector machine (SVM).

1 Introduction

The consideration of cost-sensitive learning has received growing attention in
the past years ([9, 4, 6, 8]). The aim of the inductive construction of classifiers
from training sets is to find a hypothesis that minimizes the mean predictive
error. If costs are considered, each example not correctly classified by the learned
hypothesis may contribute differently to this error. One way to incorporate such
costs is the use of a cost matrix, which specifies the misclassification costs in
a class dependent manner (e.g. [9, 4]). Using a cost matrix implies that the
misclassification costs are the same for each example of the respective class.

The idea we discuss in this paper is to let the cost depend on the single
example and not only on the class of the example. This leads to the notion of
example dependent costs (e.g. [7]). Besides costs for misclassification, we consider
costs for correct classification (gains are expressed as negative costs). Because
the individual cost values are obtained together with the training sample, we
allow the costs to be corrupted by noise.

One application for example dependent costs is the classification of credit
applicants to a bank as either being a “good customer” (the person will pay
back the credit) or a “bad customer” (the person will not pay back parts of the
credit loan).

The gain or the loss in a single case forms the (mis-) classification cost for that
example in a natural way. For a good customer the cost for correct classification
corresponds to the gain of the bank expressed as negative costs. This cost will

⋆ Proc. of the International Symposium on Intelligent Data Analysis, c©Springer, 2003.

in general depend on the credit loan, the interest rate etc. Generally there are
no costs to be expected (or a small loss related to the handling expenses) if the
customer is rejected, for he is incorrectly classified as a bad customer1. For a bad
customer the misclassification cost is simply the actual loss that has occured. The
costs of correct classification is zero (or small positive if one considers handling
expenses of the bank).

As opposed to the construction of a cost matrix, we claim that using the
example costs directly is more natural and will lead to more accurate classifiers.

In this paper we consider single neuron perceptron learning and the algorithm
DIPOL introduced in [10, 12, 15] that brings together the high classification accu-
racy of neural networks and the interpretability gained from using simple neural
models (threshold units).

Another way of dealing with non-linearly separable, non-separable or multi-
modal data is the Support Vector Machine (SVM, [14]). We will demonstrate how
to extend the SVM with example dependent costs, and compare its performance
to the results obtained using DIPOL.

This article is structured as follows. In section 2 the Bayes rule in the case of
example dependent costs is discussed. In section 3, the learning rule is derived
for a cost-sensitive extension of a perceptron algorithm for non-separable classes.
In section 4 the extension of the learning algorithm DIPOL for example depen-
dent costs is described, and in section 5 the extension of the SVM is presented.
Experiments on two artificial data sets, and on a credit data set can be found
in section 6. The conclusion is presented in section 7.

2 Example Dependent Costs

In the following we consider binary classification problems with classes −1 (neg-
ative class) and +1 (positive class). For an example x ∈ Rd of class y ∈ {+1,−1},
let

– cy(x) denote the cost of misclassifying x belonging to class y

– and gy(x) the cost of classifying x correctly.

In our framework, gains are expressed as negative costs. I.e. gy(x) < 0 if there is
a gain for classifying x correctly into class y. R denotes the set of real numbers.
d is the dimension of the input vector.

Let r : Rd −→ {+1,−1} be a classifier (decision rule) that assigns x to a class.
Let Xy = {x | r(x) = y} the region where class y is decided. According to [14]
the risk of r with respect to the probability density function p of (x, y) is given
with p(x, y) = p(x|y)P (y) as

R(r) =
∑

y1,y2∈{+1,−1}

y1 6=y2

[

∫

Xy1

gy1(x)p(x|y1)P (y1)dx +

∫

Xy1

cy2(x)p(x|y2)P (y2)dx

]

(1)

1 Where it is assumed that the money can be given to another customer without loss
of time.

P (y) is the prior probability of class y, and p(x|y) is the class conditional density
of class y. The first integral expresses the cost for correct classification, whereas
the second integral expresses the cost for misclassification. We assume that the
integrals defining R exist. This is the case if the cost functions are integrable
and bounded.

The risk R(r) is minimized if x is assigned to class +1, if

0 ≤ (c+1(x) − g+1(x))p(x|+1)P (+1) − (c−1(x) − g−1(x))p(x|−1)P (−1) (2)

holds. This rule is called the Bayes classifier (see e.g. [3]). We assume cy(x) −
gy(x) > 0 for every example x, i.e. there is a real benefit for classifying x

correctly.
From (2) it follows that the classification of examples depends on the dif-

ferences of the costs for misclassification and correct classification, not on their
actual values. Therefore we will assume gy(x) = 0 and cy(x) > 0 without loss
of generality. E.g. in the credit risk problem, for good customers the cost of cor-
rect classification is set to zero. The misclassification cost of good customers is
defined as the gain (that is lost).

2.1 Noisy Costs

If the cost values are obtained together with the training sample, they may
be corrupted due to measurement errors. I.e. the cost values are prone to
noise. A probabilistic noise model for the costs can be included into the
definition of the risk (1) by considering a common distribution of (x, y, c)
where c is the cost. (1) can be reformulated (with gy = 0) to R(r) =
∑

y1 6=y2

∫

Xy1
[
∫

R
c p(c|x, y2)p(x|y2)P (y2)dc]dx, where p(c|x, y) is the probability

density function of the cost given x and y.
It’s easy to see that the cost functions cy can be obtained as the expected

value of the costs, i.e.
cy(x) := Ec[c p(c|x, y)] (3)

where we assume that the expected value exists. In the learning algorithms
presented in the next sections, it’s not necessary to compute (3) or estimate it
before learning starts.

3 Perceptrons

Now we assume, that a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l)) is
given with example dependent cost values c(i). We allow the cost values to be
noisy, but for the moment, we will require them to be positive. In the following
we derive a cost-sensitive perceptron learning rule for linearly non-separable
classes, that is based on a non-differentiable error function. A perceptron (e.g.
[3]) can be seen as representing a parameterized function defined by a vector w =
(w1, . . . , wn)T of weights and a threshold θ. The vector w̄ = (w1, . . . , wn,−θ)T

is called the extended weight vector, whereas x̄ = (x1, . . . , xn, 1)T is called the

extended input vector. We denote their scalar product as w̄ · x̄. The output
function y : Rd −→ {−1, 1} of the perceptron is defined by y(x) = sign(w̄ · x̄).
We define sign(0) = 1.

A weight vector having zero costs can be found in the linearly separable case,
where a class separating hyperplane exists, by choosing an initial weight vector,
and adding or subtracting examples that are not correctly classified (for details
see e.g. [3]).

Because in many practical cases as the credit risk problem the classes are
not linearly separable, we are interested in the behaviour of the algorithm for
linearly non-separable classes. If the classes are linearly non-separable, they can
either be non-separable at all (i.e. overlapping), or they are separable but not
linearly separable.

3.1 The Criterion Function

In the following we will present the approach of Unger and Wysotzki for the
linearly non-separable case ([13]) extended to the usage of individual costs. Other
perceptron algorithms for the linearly non-separable case are discussed in [16,
3].

Let the step function σ be defined by σ(u) = 1 for u ≥ 0, and σ(u) = 0 if
u < 0. In the following, σ will be used as a function that indicates a classification
error.

Let S+1 contain all examples from class +1 together with their cost value. S−1

is defined accordingly. For the derivation of the learning algorithm, we consider
the criterion function

Iǫ(w̄) =
1

l

∑

(x,c)∈S+1

c (−w̄ · x̄ + ǫ)σ(−w̄ · x̄ + ǫ)

+
∑

(x,c)∈S−1

c (w̄ · x̄ + ǫ)σ(w̄ · x̄ + ǫ)

 (4)

The parameter ǫ > 0 denotes a margin for classification. Each correctly classified
example must have a geometrical distance of at least ǫ

|w| to the hyperplane. The

margin is introduced in order to exclude the zero weight vector as a minimizer
of (4), see [13, 3].

The situation of the criterion function is depicted in fig. 1. In addition to the
original hyperplane H : w̄ · x̄ = 0, there exist two margin hyperplanes H+1 :
w̄ · x̄− ǫ = 0 and H−1 : −w̄ · x̄− ǫ = 0. The hyperplane H+1 is now responsible
for the classification of the class +1 examples, whereas H−1 is responsible for
class −1 ones. Because H+1 is shifted into the class +1 region, it causes at least
as much errors for class +1 as H does. For class −1 the corresponding holds.

It’s relatively easy to see that Iǫ is a convex function by considering the
convex function h(z) := k zσ(z) (where k is some constant), and the sum and

Η−1

Η+1
Η

θ/|w|

/|w|

-w

w

w

X1

X2

ε

Fig. 1. Geometrical interpretation of the margins, 2-dimensional case

composition of convex functions. From the convexity of Iǫ it follows that there
exists a unique minimum value.

It can be shown that the choice of an ǫ > 0 is not critical, because the
hyperplanes minimizing the criterion function are identical for every ǫ > 0, see
also [5].

3.2 The Learning Rule

By differentiating the criterion function Iǫ, we derive the learning rule. The
gradient of Iǫ is given by

∇w̄Iǫ(w̄) =
1

l

∑

(x,c)∈S+1

−c x̄σ(−w̄ · x̄ + ǫ) +
∑

(x,c)∈S−1

c x̄σ(w̄ · x̄ + ǫ)

 (5)

To handle the points, in which Iǫ cannot be differentiated, in [13] the gradient
in (5) is considered to be a subgradient. For a subgradient a in a point w̄, the
condition Iǫ(w̄

′) ≥ Iǫ(w̄) + a · (w̄′ − w̄) for all w̄′ is required. The subgradient
is defined for convex functions, and can be used for incremental learning and
stochastic approximation (see [13, 1, 11]).

Considering the gradient for a single example, the following incremental rule
can be designed. For learning, we start with an arbitrary initialisation w̄(0). The
following weight update rule is used when encountering an example (x, y) with
cost c at time (learning step) t:

w̄(t + 1) =

w̄(t) + γtc x̄ if y = +1 and
w̄(t) · x̄− ǫ ≤ 0

w̄(t) − γtc x̄ if y = −1 and
w̄(t) · x̄ + ǫ ≥ 0

w̄(t) else

(6)

We assume either a randomized or a cyclic presentation of the training examples.

In order to guarantee convergence to a minimum and to prevent oscillations,
for the factors γt the following conditions for stochastic approximation are im-
posed: limt→∞ γt = 0,

∑∞
t=0 γt = ∞,

∑∞
t=0 γ2

t < ∞. This algorithm for linearly
non-separable distributions will converge to a solution vector in the linearly sep-
arable case (for a discussion see [5]).

If the cost value c is negative due to noise in the data, the example can
just be ignored. This corresponds to modifying the density p(x, y, c) which is
in general not desirable. Alternatively, the learning rule (6) must be modified
in order to misclassify the current example. This can be achieved by using the
modified update conditions sign(c)w̄(t) · x̄− ǫ ≤ 0 and sign(c)w̄(t) · x̄ + ǫ ≥ 0 in
(6). This means that an example with negative cost is treated as if it belongs to
the other class.

4 Multiple and Disjunctive Classes

In order to deal with multi-class/multimodal problems (e.g. XOR), we have
extended the learning system DIPOL ([10, 12, 15]) in order to handle example
dependent costs. DIPOL can be seen as an extension of the perceptron approach
to multiple classes and multi-modal distributions. If a class possesses a multi-
modal distribution (disjunctive classes), the clusters are determined by DIPOL
in a preprocessing step using a minimum-variance clustering algorithm (see [12,
3]) for every class.

After the (optional) clustering of the classes, a separating hyperplane is con-
structed for each pair of classes or clusters if they belong to different classes.
When creating a hyperplane for a pair of classes or clusters, respectively, all ex-
amples belonging to other classes/clusters are not taken into account. Of course,
for clusters originating from the same class in the training set, no hyperplane
has to be constructed.

After the construction of the hyperplanes, the whole feature space is divided
into decision regions each belonging to a single class, or cluster respectively. For
classification of a new example x, it is determined in which region of the feature
space it lies, i.e. a region belonging to a cluster of a class y. The class y of
the respective region defined by a subset of the hyperplanes is the classification
result for x.

In contrast to the version of DIPOL described in [10, 12, 15], that uses a
quadratic criterion function and a modified gradient descent algorithm, we used
the criterion function Iǫ and the incremental learning rule in sect. 3.2 for the
experiments.

5 Support Vector Machines

DIPOL constructs a classifier by dividing the given input space into regions be-
longing to different classes. The classes are separated by hyperplanes computed
with the algorithm in sect. 3. In the SVM approach, hyperplanes are not com-
puted by gradient descent but by directly solving an optimization problem, see

below. More complex classifiers are formed by an implicit transformation of the
given input space into a so called feature space by using kernel functions.

Given a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l)), the optimization
problem of a standard soft margin support vector machine (SVM) [14, 2] can be
stated as

min
w,b,ξξξ

1

2
|w|2 + C

l
∑

i=1

ξk
i

s.t.
y(i)

(

w · x(i) + b
)

≥ 1 − ξi

ξi ≥ 0,

(7)

where the regularization constant C > 0 determines the trade-off between the
complexity term 1

2 |w|2 and the sum. It holds b = −θ. The sum takes all examples

into account for which the corresponding pattern x(i) has a geometrical margin
of less than 1

|w| , and a functional margin of less than 1. For such an example, the

slack variable ξi > 0 denotes the difference to the required functional margin.
Different values of k lead to different versions of the soft margin SVM, see e.g.
[2].

For k=1, the sum of the ξi can be seen as an upper bound of the empirical
risk. Hence we can extend the optimization problem (7) in a natural way by
weighting the slack variables ξi with the corresponding costs c(i). This leads for
k = 1 to the cost-sensitive optimization problem

min
w,b,ξξξ

1

2
|w|2 + C

l
∑

i=1

c(i) ξi

s.t.
y(i)

(

w · x(i) + b
)

≥ 1 − ξi

ξi ≥ 0.

(8)

Introducing non-negative Lagrangian multipliers αi, µi ≥ 0, i = 1, . . . , l, we can
rewrite the optimization problem (8), and obtain the following primal Lagrangian

LP (w, b, ξξξ,ααα,µµµ) =
1

2
|w|2 + C

l
∑

i=1

c(i) ξi

−

l
∑

i=1

αi

[

y(i)
(

w · x(i) + b
)

−1 + ξi

]

−

l
∑

i=1

µi ξi.

Substituting the derivatives with respect to w, b and ξξξ into the primal, we obtain
the dual Langragian that has to be maximized with respect to the αi,

LD(ααα) =
l

∑

i=1

αi −
1

2

l
∑

i,j=1

αi αj y(i)y(j)x(i) · x(j). (9)

Equation (9) defines the 1-norm soft margin SVM. Note that the example de-
pendent costs do not occur in LD, but restrict the αi by the so called box
constraints

0 ≤ αi ≤ c(i) C, ∀i,

that depend on the cost value for the respective example and therefore limit
its possible influence. The box constraints can be derived from the optimization
problem, see e.g. [2].

If the optimal decision function is not a linear function of the data, we map
the input data to some other Euclidean Space H (possibly of infinite dimension),
the feature space, by means of a mapping φφφ : Rd → H. Substituting the mapped
data into the optimization problem leads to the dual Lagrangian

LD(ααα) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αi αj y(i)y(j)φφφ(x(i)) · φφφ(x(j)). (10)

By means of kernel functions K : Rd × Rd → R, with the property K(x,x′) =
φφφ(x) · φφφ(x′), we are able to evaluate the inner product in H without explicitly
knowing φφφ. Furthermore it is always possible to achieve linear separability in the
feature space if we use i.e. radial basis function kernels.

For k = 2 analogous results can be obtained for the 2-norm soft margin SVM,
where the dual Lagrangian depends directly on the individual costs.

In order to show the relationship between perceptron and support vector
learning, note that for k = 1 the ξi in (8) correspond to −y(i)w̄ · x̄(i) + ǫ of the
criterion function Iǫ in (4) for patterns misclassified by Hy(i) . Thus, in the limit
C → ∞, both methods are equivalent for ǫ = 1.

6 Experiments

6.1 The uni-modal case

If the classes are linearly separable, each separating hyperplane also minimizes
the cost-sensitive criterion function Iǫ. We therefore do not present results for
the linearly separable case here. In our first experiment, we used the perceptron
algorithm for the linearly non-separable case (sect. 3.2), that is part of DIPOL,
and the extended SVM with a radial basis function kernel.

We have constructed an artificial data set with two attributes x1 and x2.
For each class, 1000 randomly chosen examples were generated using a modified
Gaussian distribution with mean (0.0,±1.0)T . The covariance matrix for both
classes is the unit matrix.

The individual costs of class +1 are defined using the function c+1(x1, x2) =
2 1

1+e−x1
. The costs of the class −1 examples were defined in a similar way by

the function c−1(x1, x2) = 2 1
1+ex1

. I.e. for x1 > 0 the +1-examples have larger
misclassification costs, whereas for x1 < 0 the −1-examples have larger costs.

The dataset together with the resulting hyperplane for ǫ = 0.1 is depicted
in fig. 2 (left, bold line). Other ǫ-values produced similar results. Without costs,
a line close to the x1-axis was produced (fig. 2, left, dashed line). With class
dependent misclassification costs, lines are produced that are almost parallel to
the x1 axis and that are shifted into the class region of the less dangerous class

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

Fig. 2. Results for the non-seperable case. The two classes +1 and −1 are visualized
by crosses and circles respectively. Hyperplanes (bold) generated by DIPOL (left), and
the class boundary for the extended SVM (right). The DIPOL solution for the cost-free
case (dashed) and the margin of the SVM (dotted) are shown additionally.

(not displayed in fig. 2). Analogous results are achieved by the extended SVM
(fig. 2, right).

Our selection of the individual cost functions caused a rotation of the class
boundary, see fig. 2. This effect cannot be reached using cost matrices alone. I.e.
our approach is a genuine extension of previous approaches for including costs,
which rely on class dependent costs or cost matrices.

6.2 The multi-modal case

To test an augmented version of DIPOL that is capable of using individual costs
for learning, we have created the artificial dataset that is shown in fig. 3. Each
class consists of two modes, each defined by a Gaussian distribution.

For class +1, we have chosen a constant cost c+1(x1, x2) = 1.0. For class
−1 we have chosen a variable cost, that depends only on the x1-value, namely
c−1(x1, x2) = 2 1

1+e−x1
. This means, that the examples of the left cluster of class

−1 (with x1 < 0) have smaller costs compared to the class +1 examples, and
the examples of the right cluster (with x1 > 0) have larger costs.

For learning, the augmented version of DIPOL was provided with the 2000
training examples together with their individual costs. The result of the learning
algorithm is displayed in fig. 3. It is clear that, for reasons of symmetry, the
separating hyperplanes that would be generated without individual costs must
coincide with one of the bisecting lines. It is obvious in fig. 3, that this is not
the case for the hyperplanes that DIPOL has produced for the dataset with

the individual costs: The left region of class −1 is a little bit smaller, the right

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

X
1

X
2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x
1

x
2

Fig. 3. Results for the multi-modal non-seperable case. Bold lines visualize the learned
hyperplanes by DIPOL (left) and the extended SVM (right).

region is a little bit larger compared to learning without costs. Both results are
according to the intuition.

The solution of the extended SVM with a radial basis function kernel results
in the same shift of the class regions. Due to a higher sensitivity to outliers
the decision boundary is curved in contrast to the piecewise linear hyperplanes
generated by DIPOL.

6.3 German Credit Data Set

In order to apply our approach to a real world domain, we also conducted ex-
periments on the German Credit Data Set ([10], chapter 9) from the STATLOG
project (the dataset can be downloaded from the UCI repository). The data set
has 700 examples of class “good customer” (class +1) and 300 examples of class
”bad customer” (class −1). Each example is described by 24 attributes. Because
the data set does not come with example dependent costs, we assumed the fol-
lowing cost model: If a good customer is incorrectly classified as a bad customer,

we assumed the cost of 0.1duration
12 · amount, where duration is the duration of

the credit in months, and amount is the credit amount. We assumed an effective
yearly interest rate of 0.1 = 10% for every credit, because the actual interest
rates are not given in the data set. If a bad customer is incorrectly classified
as a good customer, we assumed that 75% of the whole credit amount is lost
(normally a customer will pay back at least part of the money). In the following,
we will consider these costs as the real costs of the single cases.

In our experiments we wanted to compare the results using example depen-
dent costs with the results when a cost matrix is used. We constructed the cost

matrix

(

0 6.27
29.51 0

)

, where 6.27 is the average cost for the class +1 examples,

and 29.51 is the average cost for the class −1 examples (the credit amounts were
normalized to lie in the interval [0,100]).

In our experiment we used cross validation to find the optimal parameter
settings (cluster numbers) for DIPOL, i.e. the optimal cluster numbers, and to
estimate the mean predictive cost T using the 10%-test sets. When using the
individual costs, the estimated mean predictive cost was 3.67.

In a second cross validation experiment, we determined the optimal cluster
numbers when using the cost matrix for learning and for evaluation. For these
optimal cluster numbers, we performed a second cross validation run, where
the classifier is constructed using the cost matrix for the respective training
set, but evaluated on the respective test set using the example dependent costs.
Remember, that we assumed the example dependent costs as described above
to be the real costs for each case. This second experiment leads to an estimated
mean predictive cost of 3.98.

I.e. in the case of the German Credit Dataset, we achieved a 7.8% reduction
in cost using example dependent costs instead of a cost matrix. The classifiers
constructed using the cost matrix alone performed worse than the classifiers
constructed using the example dependent costs.

The extended SVM generated similar results for the usage of the cost matrix
and the example dependent costs respectively, i.e. we found no substantially
increased performance. The reason is presumably that the results for DIPOL,
the SVM, and other learning algorithms are not much better than the default
rule, see [10], though DIPOL and SVM perform comparably well.

7 Conclusion

In this article we discussed a natural cost-sensitive extension of perceptron learn-
ing with example dependent costs for correct classification and misclassification.
We stated an appropriate criterion function and derived a costs-sensitive learn-
ing rule for linearly non-separable classes from it, that is a natural extension of
the cost-insensitive perceptron learning rule for separable classes.

We showed that the Bayes rule only depends on differences between costs
for correct classification and for misclassification. This allows us to define a
simplified learning problem where the costs for correct classification are assumed
to be zero. In addition to costs for correct and incorrect classification, it would
be possible to consider example dependent costs for rejection, too.

The usage of example dependent costs instead of class dependent costs leads
to a decreased misclassification cost in practical applications, e.g. credit risk
assignment.

Experiments with the extended SVM approach verified the results of per-
ceptron learning. Its main advantage lies in a lower generalisation error at the
expense of non-interpretable decision boundaries. The piecewise linear classifier
of DIPOL can easily be transformed to disjunctive rules with linear inequalities.
Compared to the SVM, the gradient descent described in sect. 3.2 is very slow
in general. The original version of DIPOL described in [10, 12, 15] incorporates

a much faster modified learning procedure (e.g. [5]) that leads to results similar
to those presented in this article.

References

1. F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian Math. Soc. Series
of Monographs and Advanced Texts. John Wiley & Sons, 1983.

2. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
(and Other Kernel-Based Learning Methods). Cambridge University Press, 2000.

3. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley
& Sons, New York, 1973.

4. Charles Elkan. The foundations of Cost-Sensitive learning. In Bernhard Nebel,
editor, Proceedings of the seventeenth International Conference on Artificial Intel-
ligence (IJCAI-01), pages 973–978, San Francisco, CA, August 4–10 2001. Morgan
Kaufmann Publishers, Inc.

5. P. Geibel and F. Wysotzki. Using costs varying from object to object to construct
linear and piecewise linear classifiers. Technical Report 2002-5, TU Berlin, Fak.
IV (WWW http://ki.cs.tu-berlin.de/∼geibel/publications.html), 2002.

6. M. Kukar and I. Kononenko. Cost-sensitive learning with neural networks. In
Henri Prade, editor, Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98), pages 445–449, Chichester, 1998. John Wiley & Sons.

7. A. Lenarcik and Z. Piasta. Rough classifiers sensitive to costs varying from object
to object. In Lech Polkowski and Andrzej Skowron, editors, Proceedings of the
1st International Conference on Rough Sets and Current Trends in Computing
(RSCTC-98), volume 1424 of LNAI, pages 222–230, Berlin, June 22–26 1998.
Springer.

8. Yi Lin, Yoonkyung Lee, and Grace Wahba. Support vector machines for classifi-
cation in nonstandard situations. Machine Learning, 46(1-3):191–202, 2002.

9. Dragos D. Margineantu and Thomas G. Dietterich. Bootstrap methods for the cost-
sensitive evaluation of classifiers. In Proc. 17th International Conf. on Machine
Learning, pages 583–590. Morgan Kaufmann, San Francisco, CA, 2000.

10. D. Michie, D. H. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and
Statistical Classification. Series in Artificial Intelligence. Ellis Horwood, 1994.

11. A. Nedic and D.P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, pages 109–138, 2001.

12. B. Schulmeister and F. Wysotzki. Dipol - a hybrid piecewise linear classifier. In
R. Nakeiazadeh and C. C. Taylor, editors, Machine Learning and Statistics: The
Interface, pages 133–151. Wiley, 1997.

13. S. Unger and F. Wysotzki. Lernfähige Klassifizierungssysteme (Classifier Systems
that are able to Learn). Akademie-Verlag, Berlin, 1981.

14. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,
1995.

15. F. Wysotzki, W. Müller, and B. Schulmeister. Automatic construction of decision
trees and neural nets for classification using statistical considerations. In G. Del-
laRiccia, H.-J. Lenz, and R. Kruse, editors, Learning, Networks and Statistics,
number 382 in CISM Courses and Lectures. Springer, 1997.

16. J. Yang, R. Parekh, and V. Honavar. Comparison of performance of variants of
single-layer perceptron algorithms on non-separable data. Neural, Parallel and
Scientific Computation, 8:415–438, 2000.

