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Abstract. Gaining information about how users interact with systems is key to
behavioural biometrics. Particularly mouse movements of users have been proven
beneficial to authentication tasks for being inexpensive and non-intrusive. State-
of-the-art approaches consider this problem an instance of supervised classifica-
tion tasks. In this paper, we argue that the problem is actually closer to unsuper-
vised one-class classification tasks. We thus propose to view behavioural user au-
thentication as an unsupervised task and learn individual models using data from
a single user only. We further show that, by being purely unsupervised, losses in
performance can be counterbalanced by augmenting additional data into the train-
ing processes (outlier exposure). Empirical results show that our approach is very
effective and outperforms the state-of-the-art in several performance metrics.

Keywords: User Authentication · Mouse Dynamics · Anomaly Detection.

1 Introduction

User authentication is most commonly based on user-determinant keys, such as pass-
words or pin codes. In contrast to these traditional systems, biometric authentication
[22,40] provides an additional layer of security. But these approaches come at the cost
of storing sensitive data like fingerprints and require dedicated pieces of hardware.

An inexpensive and readily-available alternative is offered by behavioural biomet-
rics [14]. In contrast to their biometric peers, these methods are non-intrusive and con-
tinuously analyze user behaviour for authentication during a session. Behavioural traits
of users have been analysed in handwriting [9], voice [41], or keyboard and mouse dy-
namics [26]. Particularly the latter suggests itself for user authentication in computer-
based systems since keyboard and mouse are considered standard equipment. While
keystroke dynamics may contain sensitive personal information like passwords, mouse
movements offer an implicit and non-sensitive measurement of idiosyncratic behaviour
[17]. In fact, Rodden et al. [29] show that eye and mouse movement are significantly
correlated and conclude that mouse movement serves as an appropriate proxy to address
implicit user behaviour.

Mouse movement dynamics are typically handled in a fully-supervised multi-class
or multi-label setup, where class labels are identified with user IDs. While being purely
supervised can add to predictive accuracy and detection performance, there are impor-
tant limitations with this formalization. Firstly, the above approaches are often biased
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towards the data of other users present in training due to learning discriminating func-
tions. Secondly, maintaining a multi-class approach in practice is close to being infea-
sible as every new user requires a full re-training of all models.

By contrast, we consider user authentication in an unsupervised approach, which
learns a user’s representations by using only the data of this very user. Learning indi-
vidual models of normality for every user allows to create features which are indepen-
dent from other users. This allows the model to generalise better with respect to the
target user, especially in the presence of unknown users who have not been seen during
training.

In this paper, we propose a novel methodology for user authentication using mouse
dynamics and a deep one-class setup. Our contributions are as follows: (i) We phrase
user authentication as a deep one-class machine learning problem that can enhance user
authentication and (ii) show the effectiveness of using a multifaced input to extract ap-
propriate features from mouse data. Finally, (iii) we visualise the individual and relevant
parts of the user’s mouse trajectory to gain an understanding of our approach, showing
our model indeed focuses on characteristics previously known to be important from
hand-crafted features but unattended in unsupervised approaches so far.

2 Related Work

Many studies have shown that mouse dynamics can deliver insights into a user’s mood
[42], satisfaction and frustration [6] or mental state [13]. Consequentially, mouse move-
ment has received much attention in behavioural analyses [3,2,38,24].

The identification of users based on mouse strokes has been first investigated on
the example of mouse-written signatures [9]. Many algorithmic approaches in dealing
with mouse movement rely on hand-crafted features [14,11]. Such representations are
often extended by peers to increase expressiveness and/or incorporate additional char-
acteristics like the number of pauses or pause length [25]. Matthiesen et al. [25] showed
that using a fixed feature set for every user does not cover all of them equally. Similar
conclusions were made by [34]. Therefore, an individual feature set for every single
user is required . Neural approaches try to overcome the dependency on hand-crafted
features while mapping the input data to a feature space using corresponding objec-
tives. Using mouse dynamics to tell users apart can have two main objectives: User
identification and user authentication. Many of the previous work addresses the topic of
user identification, which is to detect the right user in a set of all users [14,36,11,1,21].
The usual setup for this is a supervised multi-class classification. In contrast, user au-
thentication underlies a binary decision, e.g. is the target user/ is not the target user
[7,34,35,26,39,21]. Note that the common approach here is still supervised, i.e. using
data of both classes. Chong et al. [7] are the first to investigate the potential of deep
neural networks for mouse dynamics. They investigate multiple network architectures
while casting the problem as a supervised multi-label problem. Applying a similar ar-
chitecture, [1] propose a one-dimensional convolutional network (1D-CNN) for mod-
elling temporal aspects of mouse movement. They train the models in a supervised one
vs. rest manner using a binary-cross entropy loss.
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Fig. 1: Setups of AD, from only using the target class to incorporate an additional dataset.

Multi-class approaches imply retraining the whole model when adding/deleting
users and are not feasible in dynamic environments. Binary one-vs-all strategies, on
the other hand, are often biased towards the seen anomalies. Thus, we argue that an un-
supervised anomaly detection (AD) method is more suitable for mouse-dynamics-based
user authentication in real-world applications.

In the context of AD, unsupervised one-class approaches are appealing because they
find minimum volume summarization of data at hand through hyperplanes [33] or hy-
perspheres [37]. Neural peers [20,30] introduce improvements by identifying anomalies
through their alterity in feature space. This is often done by including additional data
that are not part of the target concept, into the training process, for example by semi-
supervised learning [16], pre-training [19,28], reference data [28,27] or outlier exposure
(OE) [19]. We will make use of the latter in the remainder. An overview of common se-
tups incorporating additional data into AD and their typical optimisation can be found
in Fig. 1. For example, in contrast to a binary one-vs-rest strategy, the OE-approach
extract rich descriptive features from the mouse trajectories instead of focussing on
increasing the distance between the two entities (normal and anomalous data). Note
that the concept of OE in AD can be found widely in the literature under various terms,
such as reference dataset [28,27], auxiliary or OE dataset [19,31]. This auxiliary dataset
enables the anomaly detector to generalize better for unseen data.

3 Representing Mouse Trajectories

Formally, a mouse trajectory is given by a sequence of spatial (x, y) coordinates ordered
in time τ . In addition to the spatio-temporal information, mouse data contains events,
for example e ∈ {∅, cL, cR, cM , sup, sdown}, with left (cL), right (cR) or center (cM )
clicks, up {sup} and down {sdown} scrolls, or ∅ in case there is no event. We represent a
mouse trajectory as a sequence x = 〈(τ1, x1, y1, e1), . . . , (τT , xT , yT , eT )〉.

Mouse data records consist likewise of movements for interacting with the applica-
tion as well as idiosyncratic movements. In the following, we aim at devising a repre-
sentation that is as independent as possible from actual user interface (UI) and rather
aim at capturing how a user moves the pointer to a certain location instead of where
exactly an action has been performed. While such velocities are translation invariant,
they also render certain patterns almost undetectable (e.g. loops).
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Fig. 2: Views of mouse movement with different splitting criterions.

3.1 Image-based tensor representations

We propose to represent different views of mouse trajectories (e.g., trajectory, speed,
click, pause) as an image, which allows to access shape of motion as well as character-
istic patterns like loop or hesitation [4,7], see Figure 2 for examples. A convolutional
neural network (CNN) can detect edges very well and is therefore perfectly suited for
such shapes. For the trajectory view, sub-sequences of the trajectory are re-scaled, plot-
ted and saved as images. We adapt the size of the plot to the range of the respective
trajectory to assure no bias from the positioning on the screen. Later, those images will
be transformed into a multidimensional tensor to serve as an input for the network. To
maintain the temporal information, we encode the speed of the movement with a colour
interval, where the colour is determined by the actual speed of movement st at that
position. To encode the speed value, we test two different normalisation approaches.
We report on experiments with different normalisations in Section 6.1. Both ground on
the speed st = dt

τt
of the movement , where d is the Euclidean distance, but are nor-

malized (i) by the average speed: s(avg)
t = st

1
T

∑T
t=1

dt
τt

and (ii) with a log-variant with

s̃t = log(1+st) s
(log)
t = s̃t−s̃max

s̃max−s̃min
, respectively, where s̃max = maxt log(1+st) and

s̃min analogously. A click view is simply containing indicators at click positions which
are visualized by black crosses in the figure. The pause view contains the length of the
pauses at the observed positions and is visualized by circles with radii corresponding to
the length of the pause. We scale every pause so that the radius of the smallest pauses
starts at a fixed radius. The different layers are aggregated to a multi-dimensional tensor,
using one channel each, and serve as input to the model. We experiment with several
combinations of input information and report the results in Table 1 (left).

3.2 Splitting sessions

The overall sequences of our data cover a whole session of a user. Therefore we divide
the total session into sub-sequences. The length of those sequences in the images is
another aspect of representing mouse trajectory data. Since it is not obvious how to split
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a long user session into smaller meaningful pieces, we study three different splitting
criteria in the empirical evaluation in Section 6.1 and describe them in the following.

Time Difference Split (TD) TD [7] splits a sequence when the time difference
between two consecutive mouse operations (movement or click) exceeds a predefined
threshold ρ ∈ {1s, 60s}. Since this may result in very short sub-trajectories, we only
split if the resulting sub-sequences contain at least 100 data points.

Equal Length Split (EL) EL [25] splits the data into sub-sequences of the same
length, ω ∈ {200, 1000}, irrespective of occurring events or movements. The last se-
quence is naturally shorter and usually discarded. In contrast to the TD method, the
resulting sequences have the same length. Note that the identical number of data points
does not result in the same amount of coloured pixels in the generated image.

Equal Time Split (ET) There exist two main ways of recording trajectories: (i)
record the position in equal time stamps, so that a static position will results in du-
plicates coordinates or (ii) recording on movements, meaning the distances between
consecutive points will not be the same. Since the latter is the case in the Balabit data,
we introduce an additional method: The Equal Time Split (ET). It is a temporal anal-
ogy to the previous splitting criterion and splits the trajectory after a fixed amount of
time. We experiment with the thresholds υ ∈ {10s, 120s}. Since the used mouse data
is not recorded using equal time stamps but rather recorded on movements, this split-
ting method will not result in equally sized sub-sequences. Although this extension is
straightforward, there does not seem to exist related work on this method.

4 Deep anomaly detection and outlier exposure

The main goal in an AD task is to obtain a feature map φ which separates the nor-
mal data from the outliers either linearly [33] or spherically [37]. Following the latter
approach, a neural variant of the so-called Support Vector Data Description (SVDD),
maps the data into a feature space F and finds the minimal enclosing sphere with cen-
ter c and radius R > 0 that contains the majority of points. We derive two important
characteristics for features for our one-class setup similar to [28].

(i) Compactness. Following the above-described cluster assumption [32], we want
a similar feature representation extracted from the same class lie compactly in an en-
closing hypersphere within feature space. Similar to the SVDD, the objective is to min-
imise the R of the hypersphere will result in reducing its volume and a more compact
representation. However, if no further constraints are included this will directly result
in the hypersphere collapse[8], when all data is mapped to the same point.

(ii) Descriptiveness. A feature map that gives rise to compact representations may
not be rich enough to distinguish other users. We thus aim to devise a rich feature
representation that is general enough to not only summarize individual user data well
but, at the same time, allows us to identify other users because of their unique traits in
moving the mouse. Thus, we need descriptiveness but cannot give up on compactness
either (cf. [27]). Producing descriptive features is likewise a desired characteristic in
multi-class classification, where those features would ensure a large inter-class distance.
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(a) The network φ extracts features from both
Balabit and TWOS, while additional layers of
ψ are used for the auxiliary data to calculate
the descriptive loss ED .

(b) For training we use the data of the tar-
get user (Balabit) and a sample of OE data
(TWOS). For testing we use the legal users
from Balabit.

Fig. 3: Depiction of the network (a) structure and of (b) the process for training and testing.

4.1 Outlier exposure

The idea of OE originates in the observation that when learning a target concept, myri-
ads of labelled examples exist that live in the same space but are known to not match the
target concept [19]. While this insight borders on triviality, it is particularly powerful
in unsupervised learning tasks like one-class and density estimation problems. Instead
of only feeding observations of the desired target concept, additional data from possi-
bly very different origins and sources is made available to the learner that now faces
contrastive tasks: Ultimately, the goal is to provide a minimal description of the de-
sired target concept but additionally, there is a classification problem that needs to be
solved simultaneously using only the auxiliary data. The goal of the learning process
is to identify a set of features that not only accounts for minimal description of the tar-
get concept but also induces high predictive accuracies on the auxiliary data. Note that
OE-based approaches are generally classifies as unsupervised methods across literature
[28,27,19,31] since the standard approach uses only data of one data (normal data) from
the target dataset during training.

5 Authentication of users

For the underlying architecture for our model, we consider the AlexNet CNN archi-
tecture [23]. We modify the network and separate it into the two parts φ und ψ for
feature extraction and classification layers respectively. The network architecture is de-
picted in Figure 3a. The feature extraction component of the network φ : X → Rp
acts on both sources, the target classes Du and the OE data DOE , to render learning
compact as well as descriptive representations feasible. While the auxiliary data then
branches into a standard feed-forward classification component ψ : Rp → R|Y| with
a final softmax layer for descriptiveness, the compactness of the user data is evaluated
by a variance-based criterion. The task in the optimization is now to find an appropri-
ate feature extraction φ, such that the classification error and variance of user data is
small, while simultaneously ensuring a compact representation of the features for Du.
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This is achieved by deploying dedicated loss functions for controlling compactness and
descriptiveness, respectively, and minimizing the two losses simultaneously (cf. [28]).
The loss-controlling compactness measures the squared intra-batch distance

EC =
1

N

N∑
n=1

(φ(xn; θ)− x̄¬n)2, (1)

with mean x̄¬n = 1
N−1

∑
j 6=n(φ(xj ; θ)) of the leave-one-out set Du \ {xn}. The

descriptiveness loss is given by the cross entropy over all involved classes Y , given by

ED = − 1

M

M∑
m=1

∑
ȳ∈Y

δȳ,yN+m
log (ψ(xN+m; θ)) , (2)

where δ is the Kronecker delta. The joint objective function for the entire architecture
is given by aggregating Equations (1) and (2). We minimize EC(Du) + λED(DOE),
where λ > 0 is a balancing term. In addition to user data Du, we introduce an auxiliary
and labelledM -sampleDOE = {(xN+1, yN+1), . . . , (xN+M , yN+M )}with xN+m ∈
X and yN+m ∈ Y for 1 ≤ m ≤ M and Y denotes the set of (arbitrary) class labels of
the auxiliary data. Recall that both user observations x(u)

n and auxiliary data xN+m live
in the same space X for all n,m. Here, we propose a neural architecture that combines
learning a compact representation of target data Du and a descriptive feature space on
target and auxiliary data.

6 Empirical results

We evaluate on the Balabit Mouse Dynamics Challenge [12] for sampling Du and in-
corporate instances of the Wolf of SUTD (TWOS) [18] data as DOE . Balabit con-
tains mouse movements from 10 users from 65 sessions between 13640 and 83091
data points each, recorded during a set of unspecified but common administrative tasks.
Since the screen resolution is not given, we normalize the trajectories based on the max-
imum coordinates. The TWOS data is the outcome of a gamified competition among
competing companies over five days. It consists of 320 hours of activity of 24 users
and comprises a mouse, keyboard and other actions and logs, where we only use legal
mouse movements in our experiments.

Setup. The two parts of the network φ and ψ are trained jointly with samples from
both Du and DOE . For each user u, we train an individual model using only data
from that user Dutrain (Balabit) plus a sample from the 24 users as additional OE data
DOE (TWOS). More formally, let the size of a batch be n. Then, for every ith sample
xDui ∈ Rk, where 1 ≤ i ≤ n, we calculate the distance between the networks output
and the rest of the batch. For every ith sample (xDOEi , yi) ∈ Rk, where 1 ≤ i ≤ n, we
calculate a loss for each class label yi and sum the result. Hyperparameters are found
via grid search and given by λ = 1.0, 300 epochs and a learning rate of η = 0.0001
on balanced batches containing 100 user and OE samples. We observe that a rather
low learning rate results in better performance since it prevents overfitting on the OE
data while still assuring convergence on the compactness loss. At test time, we use
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avg. AUC avg. EER

trajectory 0.670 0.420
savg 0.656 0.268
savg, pause 0.698* 0.697*
slog, pause 0.710* 0.179*
savg, pause, click 0.755 0.272
slog, pause, click 0.777 0.240

Avg. No. Img. avg. AUC avg. EER

TD1 1074 0.517 0.017
TD60 77 0.576 0.476
ET10 2861 0.516 0.867
ET120 344 0.606 0.600
EL200 950 0.723 0.409
EL1000 188 0.777 0.240

Table 1: Results of the experiments on different views (left) and splitting criteria (right). * Results
are averaged over 9 users, since some images of user 07 resulted in numerical issues for those
representations (see further details in section 8).

independent data of the target user Dutest and the nine remaining users from Balabit,
similar to [15,20,30,28]. Note that the model has never seen the other users from Balabit
during training. In this way, we ensure that the model can even distinguish from unseen
users. This allows scalability and does not require retraining of the model, even if more
new users are added.

6.1 Results

We first execute preliminary experiments, learning the optimal input and splitting strat-
egy as described in Section 3.2. Using the resulting best-performing representation of
mouse trajectories, we train the presented model in two different setups: (i) To show the
influence of the utilisation of the OE data, we first train the model without the usage of
the additional data. (ii) We build upon that and show the improvement in performance
reached through the usage of OE data. We report average Areas under the ROC curve
(AUCs) and equal error rates (EERs) over five repetitions.

Results for optimal representation Table 1 (left) shows the results for different
views (layers of input tensors), presented in Section 3. The results lay out that including
likewise the pause and click view in the tensor leads to higher detection rates and the
log-average performs slightly better than the global average. Table 1 (right) shows the
results for different splitting criteria, also presented in Section 3. Firstly, the table nicely
shows that the heuristics lead to considerably different numbers of training instances,
however, recall that fewer instances contain longer parts of the respective user sessions.
While most splitting methods are just slightly better than random guessing, the EL split
performs notably better. With ω = 1000, decreases the EER by almost half.

Results for user authentication We now use the best-performing representation
to compare to related work. As a baseline, we use the performance of the deepSVDD
proposed in [30] as well as the user authentication approach using features proposed for
Balabit from [25]. To show the influence of OE data, we also compare our approach to
a variant that does not leverage OE data. To prevent hypersphere collapse, we incorpo-
rated an additional regularizer into Equation (1) similar to [37]. To additionally show
the benefit of our representation over state-of-the-art handcrafted features, we train a
deepSVDD on features taken from [25] and another one on our tensor representation.
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Table 2: Detection performance per class. Results are retrieved over 5 random seeds.

EER (↓) AUC (↑)

[30]
(features[25])

[30]
(images)

ours
Du

ours
Du ∪DOE

[30]
(features[25])

[30]
(images)

ours
Du

ours
Du ∪DOE

user 07 0.302 0.399 0.414 0.181 0.879 0.542 0.714 0.857
user 09 0.207 0.608 0.451 0.237 0.911 0.474 0.661 0.80
user 12 0.629 0.263 0.325 0.090 0.250 0.607 0.594 0.838
user 15 0.532 0.437 0.152 0.219 0.426 0.550 0.555 0.714
user 16 0.552 0.492 0.418 0.418 0.424 0.515 0.682 0.720
user 20 0.402 0.463 0.716 0.290 0.788 0.496 0.490 0.728
user 21 0.476 0.332 0.281 0.138 0.548 0.554 0.625 0.825
user 23 0.619 0.403 0.216 0.305 0.267 0.577 0.662 0.730
user 29 0.619 0.500 0.533 0.320 0.346 0.472 0.7 0.813
user 35 0.609 0.420 0.265 0.200 0.283 0.554 0.662 0.747

Mean 0.495 0.432 0.378 0.240 0.512 0.534 0.634 0.777

The results are shown in Table 2. Interestingly, the baseline on features and tensors
leaves a mixed picture in terms of AUC (right part of the table). For users 07, 09, and 20,
hand-crafted features outperform the tensor-based deepSVDD as well as the proposed
approach. For the other users, the image-based representation is favourable, often by a
large margin as seen for users 12, 23, or 35 which is also reflected by a slightly better
average AUC over all users. However, even without including OE data, our proposed
approach performs either on par or improves over the stronger baselines. This result
impressively improved by including OE. Our proposed approach already constitutes an
improvement in AUC by a factor of 1.2 over the baselines when no OE data is included
in the training. Note that in this case, a regularizer has to be added to Equation 1 to
avoid a collapse of the hypersphere. The results for including OE are even better and
raise the improvement in AUC by a factor of 1.5.

7 Visualisation of important information of the mouse dynamics

Since the performance using all three views and the splitting method EL1000 result in
the best authentication performance, we can now investigate which parts of the input
lead to creating compact and descriptive features for each user. To achieve this, we
utilise the layer-wise relevance propagation (LRP) [5] . It can help identify the parts of
the input while highlighting input features that were decisive for the network’s decision.
The relevance R of every neuron is computed as follows: R(l)

i =
∑
j

aiwij∑
i′ ai′wi′j

R
(l+1)
j ,

where R(l)
i and R(l+1)

i represent the relevance score of the neurons i and j in the layers
l and l + 1 respectively. The activation of neuron i is represented as ai and the weight
connecting neuron i and j as wij . The LRP heatmap is then obtained by applying this
principle to all layers. In addition, we implement the z+-rule and a relevance filter as
suggested in [10]: We adapt the threshold value for the filter to k = 0.05.
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Fig. 4: Two examples per user of trajectories images and their LRP visualisation using the split-
ting criterion EL1000. We refer to the left example as (a) and the right as example (b).

The results are shown in Figure 4. Note that the trajectory is reconstructed for better
legibility. The images used as input carry one channel per view, where different shadings
are hard to detect for the human eye. The trajectory of user 07 (a) shows clearly the
advantage of incorporating pauses into the input image. It can be seen that the pauses
got a much higher relevance score than the clicks (black cross). Locally overlapping
occurrences of pauses and clicks are likewise relevant. In contrast, the clicks are much
more relevant to user 20 as can be seen in example a). When no clicks are made, the
pauses are getting more relevant. In [7] only the plotted trajectory was used as input for
the CNN. It was shown that the edges are the relevant element for the decision process
of the network. Added pauses and clicks carry even more relevant information for user
authentication and should not be left out in image-based deep learning approaches.

8 Discussion and Limitation

In this study, we cast user authentication base on mouse dynamics as a one-class prob-
lem. Multiple views of the trajectories are used as input to a CNN for extracting features
using the objective of compactness and descriptiveness. Related work using deep neural
networks for mouse trajectory data view the problem as a purely supervised task and
often rely on pieces of information that is not always present, such as screen resolu-
tion [7,1]. We remove this implicit dependency on the screen to avoid identifying users
based on their personal preferences or hardware but still report state-of-the-art results.

In our setup, we reached the best performance by equally weighted both losses,
setting λ = 1.0. We did not detect a large difference in performance though. With the
EL1000 split the trajectories of users 07, 09 and 20 cover much shorter (pixel-wise)
distances than the remaining users. Interestingly, these are exactly the users for which
the hand-crafted features were performing well. However, our results are in line with
[25] and show that even shorter sequences for the remaining users did not enhance the
performance. Mouse trajectories are not translation invariant. While some movements,
like patterns of confidence (e.g. straight and direct movements), can still be detected in
mirrored or rotated images, other mouse movement motifs can not be orientation invari-
ant and lose their idiosyncratic characteristic. Therefore, we did not include additional
data augmentation to generate more data (e.g through mirroring or rotation).
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In contrast to our setup, a binary one-vs-rest strategy as used in [1] assumes that the
”rest” classes (e.g. anomaly samples) are representative for all other occurring anoma-
lies. Often the same classes are used in training as well as testing, resulting in a high
accuracy, but introducing a selection bias. Using an auxiliary dataset from the same
field as the target dataset has been shown beneficial to increase authentication perfor-
mance in mouse trajectories. Since the auxiliary dataset is just used for training but not
for testing, the model even performs well when testing against trajectories of unseen
users. In comparison to previous methods [25], the CNN-based model overcomes the
dependency on hand-crafted features while learning to extract an individual feature set
for every user.

For the presented approach, we compare different setups and views. To ensure a fair
comparison we left the structure of the underlying model untouched. However, when
taking the [savg, pause] view or the [slog, pause] view, some images form user 07 caused
numerical instabilities. There is no obvious visual difference in data between user 07
and other similar users. We excluded the models with these setups for further analysis
and emphasize to utilise other combinations of trajectory representations when using
this particular model.

9 Conclusion and future work

In this paper, we proposed an unsupervised learning approach for user authentication
using only the data of one user for training. We showed that incorporating additional
data can enhance the model’s performance so that a distinction even to unknown users,
which were never seen during training, becomes possible. This enables a deeper under-
standing of mouse cursor movements by visualising important key parts of the mouse
trajectory for single users. Future research efforts should be directed to improve the
discovery of mouse cursor motifs for individual users and their interplay with pauses.
We thank the web-netz GmbH for funding this research and all former reviewers for the
valuable feedback.
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