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Abstract We study distributed and robust Gaussian Processes where robustness is introduced by a Gaussian Process
prior on the function values combined with a Student-t likelihood. The posterior distribution is approximated by a
Laplace Approximation and together with concepts from Bayesian Committee Machines, we efficiently distribute
the computations and render robust GPs on huge data sets feasible. We provide a detailed derivation and report on
empirical results. Our findings on real and artificial data show that our approach outperforms existing baselines in the
presence of outliers by using all available data.

Keywords Robust regression · Gaussian Process regression · Student-t likelihood · Laplace Approximation ·
Distributed computation

1 Introduction

Gaussian Processes (Rasmussen and Williams 2006) (GPs) are the method of choice for many real-world regression
problems. Being non-parametric models, they do not rely on low-level assumptions like the class of the function to
be inferred, adapt accurately to the data at-hand and additionally provide handy confidence bounds when it comes to
interpreting the results.

Their computation however is quite demanding; e.g., training and prediction scales cubically and quadratically,
respectively, in the number of training instances. Thus, applying Gaussian Processes to state-of-the-art data sets is
simply infeasible. In addition, real data is usually distorted by extreme observations that are often considered outliers
or anomalies. These observations may arise from various sources such as broken sensors or transcription errors and
deteriorate the predictive performance of GPs due to the Gaussian likelihood model which is not able to reject extreme
observations (O’Hagan 1979).

Scaling and robustness issues of Gaussian Processes have been studied for some time and remedies have been
proposed. A straight forward idea is to use only a sparse set instead of the entire data set to compute the GPs
(Quiñonero-Candela and Rasmussen 2005; Titsias 2009; Hensman et al 2013; Gal et al 2014). However, these so-
called sparse approximations come with other issues. These, for example, include a sampling strategy to assemble a
small subset from very many data points, the optimization of inducing data points which are not part of the original
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data as well as understanding the trade-off between the quality of the approximation and the size of that training set.
It also questions storing all data in the first place as the better part is eventually ignored anyway. Alternative, and
perhaps more appropriate, approaches exploit the independence of local GP experts on random partitions of the data
and distribute the computation to several machines (Tresp 2000; Cao and Fleet 2014; Deisenroth and Ng 2015).

Robustness, on the other hand, can be obtained by two-component mixture noise models (Jaynes and Bretthorst
2003; Naish-Guzman and Holden 2008) or heavy-tailed observation models like Laplace (Kuss 2006) and Student-t
distributions (Neal 1997; Vanhatalo et al 2009; Jylänki et al 2011). Naturally, these modifications come at a cost. For
instance, they often lead to non-Gaussian posterior distributions and integrals for the predictive distribution cannot
be solved analytically anymore. Consequentially, one has either to resort to time-consuming sampling approaches or
(possibly inaccurate) approximations.

In this paper, we leverage ideas from Deisenroth and Ng (2015) and Vanhatalo et al (2009) and present a distributed
and robust Gaussian Process regression that is based on Student-t observation distributions. We propose an efficient
distributed computation scheme that works on independent (i.e., distributed) subsets to process all available data.
Inference is performed by an efficient Laplace Approximation that proves as effective as variational approaches and
Markov Chain Monte Carlo strategies when using Student-t observation models (Vanhatalo et al 2009). We provide
a detailed derivation of the proposed approach and empirically compare its performance with vanilla and distributed
Gaussian Processes. Our findings show that the proposed approach significantly outperforms its peers in predictive
performance while having a run-time that depends only on the number of available machines.

The remainder is structured as follows. Section 2 reviews related work and Section 3 introduces basic concepts.
The main contribution is resented in Section 4. Section 5 reports on our empirical results and Section 6 concludes.

2 Related Work

A prominent technique to scale up Gaussian Process regression is to use a sparse approximation. The idea is to focus
on only a small set of size m� n. This effectively lowers the computational complexity to O(m3) (Hensman et al
2013) or O(nm2) (Quiñonero-Candela and Rasmussen 2005; Titsias 2009), depending on the respective approach.
Although sparse approximations can be distributed using the Map-Reduce architecture (Gal et al 2014), choosing m
and selecting or optimizing representative candidates for a problem at-hand is difficult and often requires complex
additional computations.

Alternative approaches study distributing Gaussian Process regression to leverage all available data. By distributing
the computations as well as the data, the computational power of computer clusters is effectively exploited and only the
hardware constrains the processable quantities of data. The underlying idea of the Product-of-Experts (PoE) family
grounds on factorizations of the likelihood by exploiting inherent independence assumptions (Deisenroth and Ng
2015). The data D is accordingly split into M ∈N disjoint parts D (k) of (roughly) equal size nk where 1≤ k≤M, and
a GP is trained on every split D (k) where hyperparameters θθθ are shared among all models. By doing so, a (practically
infeasible) global model is being approximated.

Several different approaches have been studied. Cao and Fleet (2014) propose generalized-Product-of-Experts
(gPoE) where independent local GPs are weighted according to the difference in entropy between prior and posterior
for a given test point, before merging individual predictions into a joint one. The Bayesian Committee Machine (BCM)
(Tresp 2000) assumes that the subsets are conditionally independent given the function values. Furthermore, it directly
incorporates the Gaussian Process prior into the prediction to be able to fall back to prior belief in regions that are far
away from the training data. Standard (g)PoE models fail to use prior information in those areas or require additional
normalizations (Deisenroth and Ng 2015), while gPoE tends to over-estimate variances near training instances and
frequently acts too conservative. The BCM on the other hand performs similar to a full GP near training instances but
the model suffers from weak experts in terms of the predictive mean estimates.
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To overcome these weaknesses Deisenroth and Ng (2015) introduce robust Bayesian Committee Machines (rBCM)
by merging the generalized-Product-of-Experts with Bayesian Committee Machines. Their approach constitutes a
generalized unification and includes the former two as special cases. By using the rBCM, one is able to distribute all
available data as well as the computations on a computer cluster. Furthermore, all computations are straightforward
and can be performed analytically. Note that the term robust Bayesian Committee Machines is somewhat misleading
in our context as robust does not imply robustness against outliers but refers to the ability of performing consistent
predictions.

Robustness is usually achieved by using a heavy-tailed likelihood for instance realized by Cauchy, Laplace or
Student-t distributions. Another way of constructing heavy tails is to use a two-component mixture noise model (Jaynes
and Bretthorst 2003; Naish-Guzman and Holden 2008); with high probability, an observation is considered regular
according to a Gaussian distribution with moderate variance while there is a small probability that renders an instance
an outlier that has been drawn from a Gaussian possessing a much higher variance.

Robust regression using a Laplace observation model is used in Kuss (2006). By choosing a non-Gaussian
observation model the posterior distribution in Gaussian Process regression is no longer analytically tractable and
approximate inference is needed. Kuss (2006) describes a Markov Chain Monte Carlo as well as an Expectation
Propagation method for approximate inference.

The Student-t distribution is another common choice when studying robust observation models (Jylänki et al 2011).
Together with GPs, a great variety of approximate inference strategies has been proposed for Student-t observation
models, including Markov Chain Monte Carlo (MCMC) (Geweke 1993; Neal 1997), Laplace Approximations (LA)
(Vanhatalo et al 2009), Factorizing Variational Approximations (Tipping and Lawrence 2005; Kuss 2006), Variational
Bounds (Nickisch and Rasmussen 2008), and Expectation Propagation (Jylänki et al 2011).

3 Preliminaries

3.1 Problem Setting

We study noisy regression problems with target variables yi = f (xxxi)+ εi ∈ R where i = 1,2, . . . ,n. The goal is to infer
the latent function f : Rd → R given some training data D = (XXX ,yyy) of size n ∈ N, where the d-dimensional inputs
xxxi ∈ Rd are aggregated into a design matrix XXX = {xxxi}n

i=1 and the noisy observations are stacked into a n-dimensional
vector yyy = {yi}n

i=1. Furthermore, the latent function values fi = f (xxxi) will be stacked into a n-dimensional vector
fff = { f (xxxi)}n

i=1. Typically, the noise term is assumed to be i.i.d. Gaussian, i.e., εi ∼N (0,σ2
ε ), centered at zero with

a static variance of σ2
ε . In the presence of outliers, some targets yi take on extreme values and lie far away from the

remaining normal ones.

3.2 Gaussian Processes

A Gaussian Process (GP) is a collection of random variables, any finite number of which have a joint Gaussian
distribution. Because of the properties of a Gaussian distribution, a GP is completely specified by its mean m(xxx) and
covariance or kernel function k. Without loss of generality, we will assume a zero mean function, i.e., m(xxx) = 000. A
common choice for the kernel function is the squared exponential kernel, which is given by

k(xxxp,xxxq) = σ
2
f exp

(
− 1

2
(xxxp− xxxq)

>
ΛΛΛ(xxxp− xxxq)

)
. (1)



4 Sebastian Mair, Ulf Brefeld

In this paper we will focus on ΛΛΛ = diag(`−2
1 , . . . , `−2

d ) as it implements an automatic relevance determination (ARD)
(Rasmussen and Williams 2006). A GP is trained by optimizing its hyperparameters θθθ , that is, θθθ = (`2

1, . . . , `
2
d ,σ

2
f ,σ

2
ε ).

This can be done, for instance, by maximizing the log marginal likelihood

θθθ
? = argmax

θθθ

ln p(yyy|XXX ,θθθ) = argmax
θθθ

− 1
2

yyy>(KKK +σ
2
ε III)−1yyy− 1

2
ln |KKK +σ

2
ε III|− n

2
ln2π,

where KKK denotes the n×n kernel matrix given by Kpq = k(xxxp,xxxq). After training, the prediction f (xxx∗) of a test input
xxx∗ ∈ Rd can be inferred using the posterior predictive distribution that is given by

p( f∗|XXX ,yyy,xxx∗) =
∫

p( f∗|XXX ,xxx∗, fff ) · p( fff |XXX ,yyy)d fff , (2)

where the posterior over the latent variables is

p( fff |XXX ,yyy) =
p(yyy| fff ) · p( fff |XXX)

p(yyy|XXX)
∝ p(yyy| fff )︸ ︷︷ ︸

likelihood

· p( fff |XXX)︸ ︷︷ ︸
prior

. (3)

With a Gaussian prior p( fff |XXX) and likelihood p(yyy| fff ), the posterior remains Gaussian and the computation is
straightforward. The predictive distribution in Equation (2) is then fully specified by the mean and variance estimates
given by

E[ f∗] = kkk>∗ (KKK +σ
2
ε III)−1yyy, (4)

V[ f∗] = k∗∗− kkk>∗ (KKK +σ
2
ε III)−1kkk∗, (5)

respectively, where kkk∗ = k(XXX ,xxx∗) and kkk∗∗ = k(xxx∗,xxx∗).

3.3 The Student-t Distribution

To obtain robust GPs, we aim to replace the Gaussian observation model p(yyy| fff ) by a Student-t one. Before we go into
details, we briefly introduce the Student-t distribution.

Definition 1 The probability density function of the one-dimensional Student-t distribution (see Gelman et al 2013,
page 578ff.) of a random variable φ is given by

tν(φ |µ,σ2) =
Γ

(
ν+1

2

)
Γ

(
ν

2

)√
νπσ2

(
1+

1
ν

(φ −µ)2

σ2

)− ν+1
2

, (6)

where µ ∈ R is the location parameter, σ ∈ R+ the scale parameter and ν ∈ R+ the degree of freedom. �

In the limit ν→∞, the Student-t distribution approaches a Gaussian distribution N (µ,σ2) and for ν = 1, the Cauchy
distribution is obtained as special case. The Student-t can be seen as a mixture of Gaussian distributions with a common
mean and variances distributed as scaled Inv-χ2 (compare Gelman et al 2013, page 437). Suppose yi ∼ tν(µ,σ2), then
the following system is equivalent:

yi|Vi ∼N (µ,Vi),

Vi ∼ Inv-χ2(ν ,σ2).
(7)
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Fig. 1 Illustration of fitting a Gaussian as well as a Student-t distribution to a number of standard normal distributed samples with and without
outliers.

This representation will be convenient later on. In contrast to the Gaussian, the Student-t has longer tails which is
beneficial in the presence of outliers. Therefore, the Student-t distribution is often used in place of a Gaussian for
robust analyses (see Gelman et al 2013, page 582).

To show why Student-t makes sense in outlier-prone scenarios, we define the important properties of outlier-
proneness and outlier-resistance and state some implications according to O’Hagan (1979). We begin with a proper
definition of outlier-proneness.

Definition 2 Let y1, . . . ,yn,yn+1 be independently and identically distributed. The observation model is defined to be
outlier-prone of order n, if p( f |y1, . . . ,yn,yn+1)→ p( f |y1, . . . ,yn) as yn+1→±∞. �

The definition says that a new observation yn+1 will be taken into account as long as it is consistent with the previous
n observations and rejected if it tends towards ±∞, in which case it is considered an outlier. A distribution satisfying
this property is the family of Student-t distributions for ν > 0 (O’Hagan 1979).

Proposition 1 The Student-t distributions tν are outlier-prone of order 1. �

If the density is bounded, it follows that outlier-proneness of order n implies outlier-proneness of order n+ 1 and
therefore outlier-proneness of order 1 is the strongest property. It can also be shown that up to m outliers can be
rejected by an outlier-prone distribution if there are at least 2m observations (O’Hagan 1979). The counterpart of
outlier-proneness is outlier-resistance. The definition is as follows:

Definition 3 Let y1, . . . ,yn,yn+1 be independently and identically distributed. The observation model is defined to be
outlier-resistant, if p( f |y1, . . . ,yn,yn+1) is a decreasing function of yn+1 for all n ∈ N and y1, . . . ,yn. �

That is, every distribution satisfying the property of outlier-resistance will take positive account of every observation,
however extreme it may be. Unfortunately, the well-known Gaussian distribution fulfills this property.

Proposition 2 The Gaussian distribution is outlier-resistant. �

The consequences of Proposition 2 are illustrated in Figure 1 where only a few extreme measurements lead to a
dubiously shaped Gaussian. The figure thus also serves as a motivation for using the Student-t distributions instead of
Gaussians in outlier-prone scenarios.

However, in case of a Student-t likelihood p(yyy| fff ), the posterior in Equation (3) is no longer Gaussian and the
integral in Equation (2) becomes analytically intractable. Therefore, an approximation is required. We resort to a
Laplace Approximation (Vanhatalo et al 2009) for two reasons. Firstly, the resulting distribution is again Gaussian
leading to a Gaussian predictive distribution which will turn out convenient in the remainder. Secondly, there is no
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significant difference in performance between LA and its peers while LA is the fastest (Vanhatalo et al 2009). In the
following section, a Laplace Approximation for the posterior will be derived based on Vanhatalo et al (2009) and
Rasmussen and Williams (2006).

3.4 Laplace Approximation of the Posterior

With Laplace’s method, the posterior in Equation (3) is approximated with a Gaussian using a second order Taylor
expansion around the maximum f̂ff of the posterior. We have

ln p( fff |XXX ,yyy)≡Ψ( fff )≈Ψ( f̂ff )+∇Ψ( f̂ff )( fff − f̂ff )︸ ︷︷ ︸
=0

+
1
2
( fff − f̂ff )>∇

2
Ψ( f̂ff )( fff − f̂ff )

=Ψ( f̂ff )+
1
2
( fff − f̂ff )>∇

2
Ψ( f̂ff )( fff − f̂ff ).

The linear term ∇Ψ( f̂ff )( fff − f̂ff ) disappears since the gradient of Ψ is zero at the mode f̂ff . Comparing this with the
log-version of a Gaussian displays the similarity,

lnN ( fff |µµµ,ΣΣΣ) =−1
2
( fff −µµµ)>ΣΣΣ

−1( fff −µµµ)− 1
2

ln |ΣΣΣ |− n
2

ln2π.

Therefore, by setting µµµ = f̂ff and ΣΣΣ
−1 = −∇2Ψ( f̂ff ) we obtain a Gaussian approximation q( fff |XXX ,yyy) of the posterior

p( fff |XXX ,yyy). The actual approximation is given by

p( fff |XXX ,yyy)≈ q( fff |XXX ,yyy) = N ( fff | f̂ff ,ΣΣΣ),

with f̂ff = argmax fff p( fff |XXX ,yyy) and ΣΣΣ
−1 = −∇2 ln p( fff |XXX ,yyy)

∣∣
fff= f̂ff . To obtain these equations, we first consider the log

posterior and the definition of Ψ( fff ),

ln p( fff |XXX ,yyy)
(3)
= ln

p(yyy| fff ) · p( fff |XXX)

p(yyy|XXX)
= ln p(yyy| fff )+ ln p( fff |XXX)︸ ︷︷ ︸

:=Ψ( fff )

− ln p(yyy|XXX).

Note, that Ψ( fff ) does not include ln p(yyy|XXX) since it does not depend on fff . Using a Gaussian prior yields

Ψ( fff ) = ln p(yyy| fff )+ ln p( fff |XXX) = ln p(yyy| fff )− 1
2

fff>KKK−1 fff − 1
2

ln |KKK|− n
2

ln2π. (8)

Now the first and second order derivatives of Ψ( fff ) can be computed with respect to fff ,

∇Ψ( fff ) = ∇ ln p(yyy| fff )+∇ ln p( fff |XXX) = ∇ ln p(yyy| fff )−KKK−1 fff , (9)

∇
2
Ψ( fff ) = ∇

2 ln p(yyy| fff )+∇
2 ln p( fff |XXX) = ∇

2 ln p(yyy| fff )−KKK−1 =−(KKK−1 +WWW ), (10)

where WWW = −∇2 ln p(yyy| fff ) is the negative Hessian of the log likelihood p(yyy| fff ). Since the likelihood factorizes, WWW is
diagonal and given by

Wi j =

{
−(ν +1) (yi− fi)2−νσ2

(νσ2+(yi− fi)2)2 , for i = j,

0, otherwise.
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To find the maximum f̂ff of Ψ( fff ), we need to solve

∇Ψ( fff ) = ∇ ln p(yyy| fff )−KKK−1 fff !
= 0 ⇐⇒ f̂ff = KKK

(
∇ ln p(yyy| f̂ff )

)
. (11)

Equation (11) cannot be solved directly, since ∇ ln p(yyy| f̂ff ) is a non-linear function of f̂ff . Rasmussen and Williams
(2006) state, that Newton’s method can be used to find the maximum of Ψ( fff ) whereas Vanhatalo et al (2009) suggest
to use the Expectation Maximization (EM) algorithm (Dempster et al 1977) for robustness and efficiency.

The EM algorithm utilizes the scale mixture representation of a Student-t distribution given in Equation (7). The
E-step computes the expectations

E

[
1
Vi

∣∣∣yi, f old
i ,ν ,σ

]
=

ν +1
νσ2 +(yi− f old

i )2
,

that are aggregated in a diagonal matrix VVV−1 and the M-step provides an updated estimate for the mode

f̂ff
new

= (KKK−1 +VVV−1)−1VVV−1yyy. (12)

In practice, inverting the kernel matrix KKK is prohibitive since the eigenvalues may be close to zero which renders the
inversion numerically unstable. Instead, the matrix inversion lemma (Rasmussen and Williams 2006; Vanhatalo et al
2009) is used. We introduce the matrix GGG to rewrite the inverse in Equation (12) as follows

(KKK−1 +VVV−1)−1 = KKK−KKK(KKK +VVV )−1KKK = KKK−KKK(VVV
1
2 VVV−

1
2︸ ︷︷ ︸

=III

KKKVVV−
1
2 VVV

1
2︸ ︷︷ ︸

=III

+VVV
1
2 IIIVVV

1
2︸ ︷︷ ︸

=VVV

)−1KKK

= KKK−KKKVVV−
1
2 (VVV−

1
2 KKKVVV−

1
2 + III︸ ︷︷ ︸

:=GGG

)−1VVV−
1
2 KKK = KKK−KKKVVV−

1
2 GGG−1VVV−

1
2 KKK. (13)

Note that VVV is a positive diagonal matrix and therefore computing VVV±
1
2 is straight forward. The matrix GGG =

VVV−
1
2 KKKVVV−

1
2 + III is symmetric and positive definite by definition and therefore a Cholesky decomposition HHHHHH> = GGG

can be applied. Such a decomposition is useful for the computation of GGG−1 = (HHH−1)>HHH−1 and |GGG| = ∏i H2
ii . Using

Equation (13) allows to reformulate the M-step as

f̂ff
new (12)

= (KKK−1 +VVV−1)−1VVV−1yyy
(13)
= (KKK−KKKVVV−

1
2 GGG−1VVV−

1
2 KKK)VVV−1yyy (14)

= KKKVVV−1yyy−KKKVVV−
1
2 GGG−1VVV−

1
2 KKKVVV−1yyy = KKK (VVV−1yyy−VVV−

1
2 GGG−1VVV−

1
2 KKKVVV−1yyy)︸ ︷︷ ︸

:=aaa

= KKKaaa.

The vector aaa will serve as an intermediate result for further computations. The target vector yyy can be used as an
initialization of the mode of the latent variables f̂ff . Except for outliers, yyy it should not be to far away as it is similarly
distributed, an additive noise term εεε being the only difference. Finally, the expectation and maximization steps have
to be iterated until convergence of Ψ( f̂ff ). One problem of finding the mode f̂ff is, that the Student-t distribution is
not log-concave and the posterior may be multimodal. Although choosing a unimodal Laplace Approximation for a
possibly multimodal distribution may seem inappropriate, recall that any other unimodal approximation will face the
same problem.
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4 Distributed Robust Gaussian Process Regression

We now present our main contribution. We devise robust Gaussian Processes that can be applied to large data sets.
The idea is to distribute the computations and effectively maintain several distributed independent GPs that are
trained jointly on disjoint subsets of the data. The training data D = (XXX ,yyy) is split into M ∈ N smaller data sets
D (k) = (XXX (k),yyy(k)) of size nk � n, where k = 1,2, . . . ,M. The splits are supposed to be random and the subsets are
disjoint and approximately equal in size. Every subset D (k) is processed by a robust Gaussian Process similar to the
previous section. However, the robust GPs are being trained jointly and share the same set of hyperparameters θθθ . After
the training process, like in all other Product-of-Experts models, every GP produces a mean and variance prediction
independently for its subset and all predictions will be combined using ideas from robust Bayesian Committee
Machines (Deisenroth and Ng 2015). In the remainder of this section, we detail training and prediction phases.

4.1 Training

Exploiting independence allows to approximate the marginal likelihood by the product of M GP experts,

p(yyy|XXX ,θθθ)≈
M

∏
k=1

pk
(
yyy(k)|XXX (k),θθθ

)
. (15)

For notational simplicity we will drop the superscript (k) but keep the subscript k hereafter. Each of the M experts is
defined by the conditional

pk(yyy|XXX) =
∫

pk(yyy| fff ) · pk( fff |XXX)d fff . (16)

In case of a Gaussian likelihood pk(yyy|XXX , fff ) and prior pk( fff |XXX) the product is proportional to a Gaussian and therefore
the integral can be computed analytically. Instead, we will again make use of the Student-t likelihood we need to resort
to an approximation. We will thus again use the Laplace method from Section 3.4.

For a Student-t likelihood the product inside the integral of Equation (16) is equal to exp(Ψ( fff )), compare also
with Equation (8). A second order Taylor Approximation of Ψ( fff ) around the maximum f̂ff yields

pk(yyy|XXX) =
∫

exp
(

Ψ( fff )
)

d fff

TA
≈
∫

exp
(

Ψ( f̂ff )+
1
2
( fff − f̂ff )>∇

2
Ψ( f̂ff )( fff − f̂ff )

)
d fff

= exp
(

Ψ( f̂ff )
)
·
∫

exp
(
+

1
2
( fff − f̂ff )>∇

2
Ψ( f̂ff )( fff − f̂ff )

)
d fff

(10)
= exp

(
Ψ( f̂ff )

)
·
∫

exp
(
− 1

2
( fff − f̂ff )>(KKK−1 +WWW )( fff − f̂ff )

)
d fff

= qk(yyy|XXX) (17)

and Equation (15) can be rewritten as

p(yyy|XXX ,θθθ)≈
M

∏
k=1

qk
(
yyy(k)|XXX (k),θθθ

)
. (18)
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As in standard Gaussian Process regression, we rely on the log version of the marginal likelihood for training as it is
easier to optimize,

ln p(yyy|XXX ,θθθ)≈
M

∑
k=1

lnqk
(
yyy(k)|XXX (k),θθθ

)
. (19)

Taking the log on the approximation qk(yyy|XXX) yields

ln pk(yyy|XXX)≈ lnqk(yyy|XXX) =Ψ( f̂ff )+ ln
∫

exp
(
− 1

2
( fff − f̂ff )>(KKK−1 +WWW )( fff − f̂ff )

)
d fff , (20)

where the integral on the right-hand side can be evaluated by first augmenting it with a constant term C to make it a
Gaussian: ∫ 1

(2π)n/2
√
|(KKK−1 +WWW )−1|︸ ︷︷ ︸
=C

exp
(
− 1

2
( fff − f̂ff )>(KKK−1 +WWW )( fff − f̂ff )

)
d fff

=
∫

N ( fff | f̂ff ,(KKK−1 +WWW )−1)d fff = 1.

This is feasible since KKK−1 +WWW remains positive definite. The constant C does not depend on fff and can be moved
outside of the integral. Hence, the value of the integral is equal to∫

exp
(
− 1

2
( fff − f̂ff )>(KKK−1 +WWW )( fff − f̂ff )

)
d fff =C−1 = (2π)n/2

√
|(KKK−1 +WWW )−1|.

Equation (20) now simplifies with the value of the integral and the definition of Ψ( fff ) from Equation (8) to (compare
also Vanhatalo et al (2009))

ln pk(yyy|XXX) ≈ lnqk(yyy|XXX)

(20)
= Ψ( f̂ff )+ ln

(
(2π)n/2

√
|(KKK−1 +WWW )−1|

)

= Ψ( f̂ff )+
n
2

ln2π− 1
2

ln |KKK−1 +WWW |

(8)
=

=Ψ( f̂ff )︷ ︸︸ ︷
ln p(yyy| f̂ff )− 1

2
f̂ff
>

KKK−1 f̂ff − 1
2

ln |KKK|−n
2

ln2π +
n
2

ln2π︸ ︷︷ ︸
=0

−1
2

ln |KKK−1 +WWW |

= ln p(yyy| f̂ff )− 1
2

f̂ff
>

KKK−1 f̂ff − 1
2

ln |KKK|− 1
2

ln |KKK−1 +WWW |. (21)

In practice, we get the optimal hyperparameters θθθ
? by maximizing the (approximate) log marginal likelihood given

in Equation (19), i.e.,

θθθ
? = argmax

θθθ

M

∑
k=1

lnqk
(
yyy(k)|XXX (k),θθθ

)
,
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where each approximate log marginal likelihood lnqk
(
yyy(k)|XXX (k),θθθ

)
for the corresponding subset of the data D (k) =

(XXX (k),yyy(k)) is given by Equation (21). The approximate log marginal likelihood in Equation (21) is differentiable
with respect to θθθ . The maximum can be found with any gradient-based optimizer. Due to the sum rule of the partial
derivative, the computation of the gradient by its partial derivatives

∂

∂θ j
ln p(yyy|XXX ,θθθ)≈ ∂

∂θ j

M

∏
k=1

ln pk(yyy(k)|XXX (k),θθθ) =
∂

∂θ j

M

∑
k=1

ln pk

(
yyy(k)|XXX (k),θθθ

)
=

M

∑
k=1

∂

∂θ j
ln pk

(
yyy(k)|XXX (k),θθθ

)
≈

M

∑
k=1

∂

∂θ j
lnqk

(
yyy(k)|XXX (k),θθθ

)
can be also distributed and therefore optimization is straightforward. The partial derivatives of the approximate log
marginal likelihood in Equation (21) are provided in the appendix.

4.2 Prediction

After training, we end up with M robust GPs, each of which has been trained on its subset of the data D (k) for
k = 1,2, . . . ,M. Whereas the training procedure is the same among the Product-of-Experts family, the combination
of the individual predictions is not. We briefly introduce the idea of the original Product-of-Experts model (Cao and
Fleet 2014) before we detail a robust Bayesian Committee Machine (Deisenroth and Ng 2015) approach for GPs with
Student-t observation models.

Consider the prediction f∗ = f (xxx∗) of a test input xxx∗ ∈ Rd as well as its variance prediction which is computed by
the posterior predictive distribution which factorizes due to the independence assumption into

p( f∗|D ,xxx∗) =
M

∏
k=1

pk( f∗|D (k),xxx∗).

In a vanilla GP setting, all experts pk( f∗|D (k),xxx∗) follow a Gaussian distribution. When predicting we end up having
M independent mean predictions µk(xxx∗) as well as M variance predictions σ2

k (xxx∗). Since the product of Gaussians is
proportional to a Gaussian the individual predictions can be combined to a single prediction by

µ
PoE
∗ (xxx∗) =

(
σ

PoE
∗

)2 M

∑
k=1

µk(xxx∗)
σ2

k (xxx∗)
,

(
σ

PoE
∗

)−2
(xxx∗) =

M

∑
k=1

σ
−2
k (xxx∗).

Cao and Fleet (2014) propose the generalized-Product-of-Experts (gPoE) model, where a weight βk is assigned to
each expert. By contrast, we propose an approach that is based on robust Bayesian Committee Machines (rBCM)
(Deisenroth and Ng 2015). The predictive distribution is thus given by

p( f∗|D ,xxx∗) =
∏

M
k=1 pβk

k ( f∗|D (k),xxx∗)
p−1+∑k βk( f∗|xxx∗)

,
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and it includes Cao and Fleet (2014) as well as Tresp (2000) as special cases. The corresponding mean and precision
estimates are given by

µ
rBCM
∗ (xxx∗) =

(
σ

rBCM
∗

)2 M

∑
k=1

βk ·
µk(xxx∗)
σ2

k (xxx∗)
,

(
σ

rBCM
∗

)−2
(xxx∗) =

M

∑
k=1

βk ·
1

σ2
k (xxx∗)

+

(
1−

M

∑
k=1

βk

)
·σ−2
∗∗ ,

respectively. Here, the weights βk are set as suggested by Cao and Fleet (2014) to be the differential entropy between
the prior p( f∗|xxx∗) and the posterior pk( f∗|D (k),xxx∗), which can be computed as

βk =
1
2

(
logσ

2
∗∗− logσ

2
k (xxx∗)

)
,

to determine the importance of expert k. Like in the Bayesian Committee Machine, σ2
∗∗ is meant to be the prior

variance. The Laplace Approximation which was used for approximative inference in the previous section yields a
Gaussian predictive distribution. This constitutes a perfect match as the rBCM requires the experts having Gaussian
predictive distributions. Hence, prediction is straightforward. In the following two sections we derive the mean µk(xxx∗)
and variance σ2

k (xxx∗) for the predictors of expert k. Once again, we focus on a single expert and therefore drop the
superscript (k) but keep the subscript k hereafter.

4.2.1 Mean Prediction of an Expert

Since the approximate posterior distribution is Gaussian, mean and variance predictions possess solutions in closed-
form. For the mean, we obtain the following result with the help of the auxiliary variable aaa,

Eq( fff |XXX ,yyy)

[
f∗|XXX ,yyy,xxx∗

]
= kkk>∗ KKK−1 f̂ff︸ ︷︷ ︸

=aaa

(14)
= kkk>∗ aaa. (22)

4.2.2 Variance Prediction of an Expert

Apart from matrix WWW , the variance prediction of the robust GP is similar to that of regular Gaussian Process regression
in Equation (5); we have,

Vq( fff |XXX ,yyy)

[
f∗|XXX ,yyy,xxx∗

]
= Ep( f∗|XXX , fff ,xxx∗)

[
( f∗−E[ f∗|XXX , fff ,xxx∗])2

]
︸ ︷︷ ︸

=k∗∗−kkk>∗ KKK−1kkk∗

(23)

+Eq( fff |XXX ,yyy)

[
(E[ f∗|XXX , fff ,xxx∗]−E[ f∗|XXX ,yyy,xxx∗])2

]
= k∗∗− kkk>∗ KKK−1kkk∗+Eq( fff |XXX ,yyy)

[
(E[ f∗|XXX , fff ,xxx∗]−E[ f∗|XXX ,yyy,xxx∗])2

]
= k∗∗− kkk>∗ KKK−1kkk∗+ kkk>∗ KKK−1(KKK−1 +WWW )−1KKK−1kkk∗

= k∗∗− kkk>∗ (KKK +WWW−1)−1kkk∗. (24)
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Like in Equation (12), inverting the kernel matrix KKK to compute the predictive variance is prohibitive. By setting
BBB =WWW

1
2 KKKWWW

1
2 + III, we solve the inverse of KKK +WWW−1 by inverting the matrix BBB,

(KKK +WWW−1)−1 =WWW
1
2 WWW−

1
2︸ ︷︷ ︸

=III

(KKK +WWW−1)−1 WWW−
1
2 WWW

1
2︸ ︷︷ ︸

=III

=WWW
1
2 (WWW

1
2 KKKWWW

1
2 +WWW

1
2 WWW−1WWW

1
2︸ ︷︷ ︸

=III

)−1WWW
1
2

=WWW
1
2 (WWW

1
2 KKKWWW

1
2 + III︸ ︷︷ ︸

=BBB

)−1WWW
1
2 =WWW

1
2 BBB−1WWW

1
2 . (25)

However, the computation of WWW
1
2 might be problematic, because the diagonal matrix WWW may contain negative entries

corresponding to negative variances. This is due to the non-log-concave likelihood caused by the choice of a Student-t
distribution. At the positions where the negative values occur, it is unclear, whether the observation is an outlier or not
and therefore the posterior is less certain than the prior and likelihood. A common way to solve this issue is to simply
set all negative entries to a very small positive number, i.e., Wii = 10−6 if Wii < 0. Using a Cholesky decomposition
LLLLLL> = BBB, the predictive variance can now be rewritten as

Vq( fff |XXX ,yyy)

[
f∗|XXX ,yyy,xxx∗

]
(24)
= k∗∗− kkk>∗ (KKK +WWW−1)−1kkk∗

(25)
= k∗∗− kkk>∗WWW

1
2 BBB−1WWW

1
2 kkk∗

= k∗∗− kkk>∗WWW
1
2 (LLL−1)>LLL−1WWW

1
2 kkk∗︸ ︷︷ ︸

:=www

= k∗∗−www>www,

where www = LLL−1WWW
1
2 kkk∗.

5 Empirical Results

In this section, we empirically evaluate our distributed robust GPs (DRGP) on several real and artificial data sets.
We compare the performance to vanilla Gaussian Processes (GP) (Rasmussen and Williams 2006), robust Gaussian
Processes using Student-t observation models (RGP) (Vanhatalo et al 2009), and distributed Gaussian Processes (DGP)
(Deisenroth and Ng 2015), respectively.

5.1 Runtime

We begin by studying the runtime of the different approaches by measuring the time needed to compute the
(approximative) negative log marginal likelihood and its gradients for a one-dimensional toy problem with more than
10 million instances. The generated data is sampled from a random linear function with a Gaussian distributed noise
term, i.e., εi ∼N (0,0.35). For the robust versions, we fix the number of iterations of the Expectation Maximization
algorithm to 20. All experiments run on a cluster with 60 cores. Figure 2 shows the resulting runtimes for varying data
set sizes in a log-log scale.

Gaussian Processes (GP) exhibit a linear trend which corresponds to an exponential growth because of the double
log-scale. Their robust counterpart (RGP) performs similarly and requires slightly more time due to the additional
Expectation Maximization algorithm. The distributed GPs are tested with several configurations by instantiating local
experts of size 512, 256, and 128.

For the distributed GPs, the required time is nearly constant up to a certain break point and then continues linearly.
The resulting exponential continuations, however, possess smaller growth rates than the stand-alone peers. The break
point indicates that the size of the data exceeds the number of instances that can be processed in parallel; that is, using
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Fig. 2 Time to compute the (approximate) log marginal likelihood and its gradient. Axes in log-log scale.

60 cores and experts of size 512 allows to process 60 · 512 = 30,720 data points in a single run. Larger quantities
render multiple repetitions necessary and the computation time grows proportionally. Similar to the stand-alone peers,
the robust distributed GPs need slightly more time than their peers with Gaussian observation models.

5.2 Aimpeak

The Aimpeak data (Chen et al 2013) consists of 41,850 measurements along 775 segments of an urban road network.
The task is to predict the traffic speed in kilometers per hour. We use the first n = 36,000 observations as training
data and the remaining n∗ = 5,850 observations as test set. To visualize the impact of the size nk of the M experts, we
vary the expert size from nk = 75 (M = 480 experts) to nk = 600 (M = 60 experts). We measure performance in terms
of root mean square error (RMSE), mean average error (MAE), and mean negative log probability (MNLP). We use
these three measures as RMSE assumes errors to be Gaussian and hence puts much weight to outliers that may even
dominate the RMSE (Willmott and Matsuura 2005; Chai and Draxler 2014). The MAE treats all errors equally which
appears more appropriate for studying robust regression. Finally, MNLP takes the predictive variance into account and
sheds light on the confidence of the regressors. Distributed algorithms use random partitions of the training data. We
report on averages over 25 runs, error bars show standard error.

Figure 3 shows the results. As expected, the MAE and RMSE errors decrease for both approaches with an
increasing expert size nk. We credit this finding to a better approximation of the global kernel matrix by larger values of
nk as shown in Figure 4. The proposed method yields better MAE and RMSE errors than vanilla distributed Gaussian
Process regression especially for small expert sizes nk while the DGP catches up and achieves slightly better RMSEs
for large expert sizes nk & 420. Furthermore, the DGP results in better MNLP-values for all configurations which may
indicate that its predictive variance is larger than that of the DRGPs.

5.3 Boston Housing

We include the Boston Housing data (Harrison and Rubinfeld 1978) in our experiments as it has become a benchmark
for testing robustness. For instance, previous findings on Boston Housing consistently show that a Robust GP with
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Fig. 3 Results for the Aimpeak data.

Fig. 4 The effect of smaller expert sizes. Fewer experts process more data and the approximation of the kernel matrix is closer to the global kernel
matrix.

a Student-t likelihood model performs better than a vanilla Gaussian Process regression (Kuss 2006; Vanhatalo et al
2009; Jylänki et al 2011).

The data consists of 506 data points in 13 dimensions and the task is to predict the median value of owner-occupied
homes. Due to the size of the data set we are able to compare against full models. After normalization, the first n = 455
observations form the training and the remaining n∗ = 51 observations the test set. We apply random partitions of the
training data for distributed settings. We compare the distributed GPs (vanilla and robust) form a single expert, i.e.,
M = 1, (nk = 455) up to M = 6 experts (nk ≈ 75). Note that we obtain the stand-alone variants on the full data set as
special-cases for maintaining only a single expert (M = 1). We report again on averages of 25 repetitions; error bars
indicate standard errors.

The results are shown in Figure 5. The (distributed) robust GPs clearly outperform their peers with Gaussian
observation models in all settings. In addition, the standard errors of the proposed method are consistently much
smaller, indicating robust and reliable predictive distributions. Once again, the DRGP prove superior to DGP
particularly for small expert sizes nk and many experts M.
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Fig. 5 Results for the Boston Housing data.

Fig. 6 Results for the artificial data.

5.4 Large-scale Artificial Data

We now compare the approaches on larger scales using artificial data to control the amount of outliers. To do so, we use
a simple linear model. The data is generated as follows. We sample a design matrix of size 202,000×5 from a standard
normal distribution and a five dimensional parameter vector from a uniform distribution such that only three of those
five dimensions are informative. Gaussian noise εi is added to the target values using a mean of zero and a standard
deviation of σε = 2. Therefore, the remaining two dimensions only carry white noise. We sample n = 200,000 training
and n∗ = 2,000 test instances where instances are randomly turned into outliers by adding ten standard deviations such
that a predefined ratio of outlier/all points is obtained. The predefined ratio ranges from 1 to 15 percent. We focus on
distributed GPs and our robust variants thereof and vary the size of experts from nk = 100 (M = 2,000 experts) to
nk = 300 (M = 667 experts) and report on averages including standard errors over 10 runs using different random
partitions of the data.

Figure 6 shows the respective performances for different amounts of outliers. Unsurprisingly, a few outliers do
not harm performance and vanilla and robust distributed GPs perform similarly. However, the more outliers are
contained in the data, the more difficult the learning problem and performances consequentially deteriorate for the
vanilla DGPs. Consequentially, the take-home message is twofold: Firstly, distributed GPs with Gaussian observation
models deteriorate at significantly faster rates than our Student-t-based approach. Secondly, the MAE which may be
seen as the most appropriate performance measure in this scenario as it weights all instances equally, irrespectively
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of whether it is an outlier or not, remains constant for our approach. The latter shows that our distributed robust GPs
constitute effective means in noisy settings with many outliers.

6 Conclusion

We presented distributed and robust Gaussian Process regression. We argued that the Gaussian observation model
in vanilla GPs is unable to reject extreme observations that deteriorate predictive performance. As a remedy, we
incorporated a Student-t observation model that was optimized using a Laplace Approximation for computation time
and predictive power. As a side effect, the Gaussian posterior is preserved and the resulting predictive distribution
could straight forwardly be distributed using ideas from robust Bayesian Committee Machines. Our approach thus
allowed for distributing data and algorithm and rendered robust regression feasible at large-scales. Empirically, our
approach performed orders of magnitude faster than stand-alone competitors and needs only slightly more time than
distributed counterpart with a Gaussian observation model. It also proved significantly better in terms of predictive
performance than vanilla (distributed) Gaussian Processes, especially for small expert sizes.
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Appendix

Before providing the derivation of the partial derivatives of the approximate log marginal likelihood in Equation (21),
we introduce the matrix RRR, which will be convenient later on.

RRR = (WWW−1 +KKK)−1 (25)
= WWW

1
2 (III +WWW

1
2 KKKWWW

1
2︸ ︷︷ ︸

=BBB=LLLLLL>

)−1WWW
1
2 =WWW

1
2 BBB−1WWW

1
2 . (26)

Using the matrix RRR as well as the matrix inversion lemma allows to reformulate the inverse of KKK−1 +WWW as a sum of
the kernel matrix KKK and a new matrix JJJ,(

KKK−1 +WWW
)−1

= KKK−KKK
(

KKK +WWW−1
)−1

︸ ︷︷ ︸
=RRR

KKK
(26)
= KKK−KKKRRRKKK

(26)
= KKK−KKKWWW

1
2 BBB−1WWW

1
2 KKK

= KKK−KKKWWW
1
2 (LLL−1)>︸ ︷︷ ︸
=JJJ>

LLL−1WWW
1
2 KKK︸ ︷︷ ︸

:=JJJ

= KKK− JJJ>JJJ. (27)

Recall that there are kernel as well as the likelihood hyperparameters. We focus on a squared exponential kernel
with automatic relevance detection parametrized by the signal noise σ f and the length scales `i for all i = 1,2, . . . ,d
dimensions. The likelihood is parametrized by the scale σt and the degree of freedom ν .

Partial Derivatives with respect to the kernel hyperparameters

The partial derivatives with respect to the kernel hyperparameters are given by

∂ lnq(yyy|XXX)

∂θ j

(21)
=

∂

∂θ j

(
ln p(yyy| f̂ff )− 1

2
f̂ff
>

KKK−1 f̂ff − 1
2

ln |BBB|

)

=
∂ lnq(yyy|XXX)

∂θ j︸ ︷︷ ︸
explicit

+
n

∑
i=1

∂ lnq(yyy|XXX)

∂ f̂i

∂ f̂i

∂θ j
,︸ ︷︷ ︸

implicit

(28)

which consists of an explicit and an implicit term. The implicit term is caused by the dependence of f̂ff and WWW on KKK
and therefore depends on the hyperparameters. The first part of the explicit term

∂

∂θ j
ln p(yyy| f̂ff ) = 0
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is equal to zero. For the second term we use the intermediate result aaa from Equation (14) to obtain

∂

∂θ j

(
− 1

2
f̂ff
>

KKK−1 f̂ff

)
=

1
2

f̂ff
>

KKK−1︸ ︷︷ ︸
=aaa>

∂KKK
∂θ j

KKK−1 f̂ff︸ ︷︷ ︸
=aaa

(14)
=

1
2

aaa>
∂KKK
∂θ j

aaa,

and for the third term we get

∂

∂θ j

(
− 1

2
ln |BBB|

)
= −1

2
tr

(
BBB−1 BBB

∂θ j

)
= −1

2
tr

(
BBB−1 ∂

∂θ j

(
III +WWW

1
2 KKKWWW

1
2

))

= −1
2

tr

(
BBB−1WWW

1
2

∂KKK
∂θ j

WWW
1
2

)
=−1

2
tr

(
WWW

1
2 BBB−1WWW

1
2

∂KKK
∂θ j

)
(26)
= −1

2
tr

(
(WWW−1 +KKK)−1 ∂KKK

∂θ j

)
(26)
= −1

2
tr

(
RRR

∂KKK
∂θ j

)

by using the definitions of the matrices BBB and RRR and the fact that circular rotation of matrix products does not change
the trace of the product. Therefore, the explicit part of the partial derivative is given by

∂ lnq(yyy|XXX)

∂θ j

∣∣∣∣∣
explicit

=
1
2

aaa>
∂KKK
∂θ j

aaa− 1
2

tr

(
RRR

∂KKK
∂θ j

)
.

Now we take care of the implicit part of the partial derivative. The derivation of the first two parts is equivalent to the
derivation of Ψ( f̂ff ), which is for f̂ff equal to zero,

∂

∂ f̂ff

(
ln p(yyy| f̂ff )− 1

2
f̂ff
>

KKK−1 f̂ff

)
≡ ∂

∂ f̂ff
Ψ( f̂ff ) = 0.

The third term of the partial derivative is the derivation of the log determinant of BBB. Using the definition of the matrices
BBB and JJJ yields

∂

∂ f̂i

(
− 1

2
ln |BBB|

)
= −1

2
tr

(
BBB−1 BBB

∂ f̂i

)
= −1

2
tr

((
III +KKKWWW

)−1 ∂

∂ f̂i

(
III +KKKWWW

))

= −1
2

tr

((
III +KKKWWW

)−1
KKK

∂WWW
∂ f̂i

)
=−1

2
tr

((
KKK(KKK−1 +WWW )

)−1
KKK

∂WWW
∂ f̂i

)

= −1
2

tr

((
KKK−1 +WWW

)−1
KKK−1KKK︸ ︷︷ ︸

=III

∂WWW
∂ f̂i

)
=−1

2
tr

((
KKK−1 +WWW

)−1 ∂WWW
∂ f̂i

)

(27)
= −1

2
tr

((
KKK− JJJ>JJJ

)
∂WWW
∂ f̂i

)
=−1

2
diag

(
diag(KKK)−diag(JJJ>JJJ)

)
· ∂WWW

∂ f̂i
.
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We still need to take care of ∂ f̂ff
∂θ j

. By using the definition of f̂ff from Equation (11) as well as the multidimensional chain
rule we obtain

∂ f̂ff
∂θ j

=
∂KKK∇ ln p(yyy| f̂ff )

∂θ j
+

∂KKK∇ ln p(yyy| f̂ff )
∂ f̂ff

f̂ff
∂θ j

=
∂KKK
∂θ j

∇ ln p(yyy| f̂ff )+KKK
∂∇ ln p(yyy| f̂ff )

∂ f̂ff︸ ︷︷ ︸
=−WWW

∂ f̂ff
∂θ j

=
∂KKK
∂θ j

∇ ln p(yyy| f̂ff )−KKKWWW
∂ f̂ff
∂θ j

which is equivalent to

∂ f̂ff
∂θ j

+KKKWWW
∂ f̂ff
∂θ j

= (III +KKKWWW )
∂ f̂ff
∂θ j

=
∂KKK
∂θ j

∇ ln p(yyy| f̂ff )

⇐⇒ ∂ f̂ff
∂θ j

= (III +KKKWWW )−1 ∂KKK
∂θ j

∇ ln p(yyy| f̂ff )

=
(

III−KKK (WWW−1 +KKK)−1︸ ︷︷ ︸
=RRR

)
∂KKK
∂θ j

∇ ln p(yyy| f̂ff )

=
(

III−KKKRRR
)

∂KKK
∂θ j

∇ ln p(yyy| f̂ff )︸ ︷︷ ︸
=bbb

= bbb−KKKRRRbbb.

Finally, the partial derivative of the approximate log marginal likelihood with respect to the kernel hyperparameters is
given by

∂ lnq(yyy|XXX)

∂θ j
=

1
2

aaa>
∂KKK
∂θ j

aaa− 1
2

tr

(
RRR

∂KKK
∂θ j

)

+

(
− 1

2
diag

(
diag(KKK)−diag(JJJ>JJJ)

)
· ∂WWW

∂ f̂i

)>(
bbb−KKKRRRbbb

)
.

Partial Derivatives with respect to the likelihood hyperparameters

We now consider the partial derivatives with respect to the likelihood hyperparameters. Like in Equation (28), it splits
up into an explicit and implicit term. For the explicit part we utilize the factorization of the likelihood p(yyy| f̂ff ) to obtain

∂

∂θ j
ln p(yyy| f̂ff ) = ∂

∂θ j
ln

n

∏
i=1

p(yi| f̂i) =
∂

∂θ j

n

∑
i=1

ln p(yi| f̂i) =
n

∑
i=1

∂

∂θ j
ln p(yi| f̂i).

The second term in the explicit part is equal to zero since no variable directly depends on a likelihood hyperparameter,

∂

∂θ j

(
− 1

2
f̂ff
>

KKK−1 f̂ff

)
= 0.
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For the third term, we have

∂

∂θ j

(
− 1

2
ln |BBB|

)
= −1

2
tr

(
BBB−1 BBB

∂θ j

)
= −1

2
tr

((
III +KKKWWW

)−1 ∂

∂θ j

(
III +KKKWWW

))

= −1
2

tr

((
III +KKKWWW

)−1
KKK

∂WWW
∂θ j

))

= −1
2

tr

((
KKK(KKK−1 +WWW )

)−1
KKK

∂WWW
∂θ j

))

= −1
2

tr

((
KKK−1 +WWW

)−1

︸ ︷︷ ︸
=KKK−JJJ>JJJ

KKK−1KKK︸ ︷︷ ︸
=III

∂WWW
∂θ j

))

(27)
= −1

2
tr

((
KKK− JJJ>JJJ

)
∂WWW
∂θ j

))

= −1
2

diag
(

diag(KKK)−diag(JJJ>JJJ)
)
· ∂WWW

∂θ j
,

which yields the final expression for the explicit part, given by

∂ lnq(yyy|XXX)

∂θ j

∣∣∣∣∣
explicit

=
n

∑
i=1

∂

∂θ j
ln p(yi| f̂i)−

1
2

diag
(

diag(KKK)−diag(JJJ>JJJ)
)
· ∂WWW

∂θ j
.

The implicit part is rather similar to the other implicit part but with marginal modifications.

∂ f̂ff
∂θ j

=
∂KKK∇ ln p(yyy| f̂ff )

∂θ j
+

∂KKK∇ ln p(yyy| f̂ff )
∂ f̂ff

f̂ff
∂θ j

= KKK
∂∇ ln p(yyy| f̂ff )

∂θ j
+KKK

∂∇ ln p(yyy| f̂ff )
∂ f̂ff︸ ︷︷ ︸
=−WWW

∂ f̂ff
∂θ j

= KKK
∂∇ ln p(yyy| f̂ff )

∂θ j
−KKKWWW

∂ f̂ff
∂θ j

.
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This is equivalent to

∂ f̂ff
∂θ j

+KKKWWW
∂ f̂ff
∂θ j

= (III +KKKWWW )
∂ f̂ff
∂θ j

= KKK
∂∇ ln p(yyy| f̂ff )

∂θ j

⇐⇒ ∂ f̂ff
∂θ j

= (III +KKKWWW )−1KKK
∂∇ ln p(yyy| f̂ff )

∂θ j

=
(

III−KKK (WWW−1 +KKK)−1︸ ︷︷ ︸
=RRR

)
KKK

∂∇ ln p(yyy| f̂ff )
∂θ j

=
(

III−KKKRRR
)

KKK
∂∇ ln p(yyy| f̂ff )

∂θ j︸ ︷︷ ︸
=ddd

= ddd−KKKRRRddd.
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