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Abstract. Neighborhood-based approaches often fail in sparse scenarios; a
direct implication for recommender systems exploiting co-occurring items is
often an inappropriately poor performance. As a remedy, we propose to propagate
information (e.g., similarities) across the item graph to leverage sparse data.
Instead of processing only directly connected items (e.g. co-occurrences), the
similarity of two items is defined as the maximum capacity path interconnecting
them. Our approach resembles a generalization of neighborhood-based methods
that are obtained as special cases when restricting path lengths to one. We present
two efficient online computation schemes and report on empirical results.

Keywords: recommender systems, information propagation, maximum capacity paths,
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1 Introduction

Recommender systems often utilize co-occurrences of items to pass information
between users and items. The underlying idea is that users sharing many items are
considered similar and that an item is likely being recommended when it frequently co-
occurs with an actually viewed one. Many systems use explicit co-occurrences of items
to compute recommendations [28, 16, 13, 19], but also collaborative methods such as
neighborhood-based approaches [15, 23] and matrix factorisation techniques [21, 5, 12]
inherently ground on leveraging co-occurrence data.

However, the glory of collaborative filtering is quickly turned into a major limitation
in the presence of sparsity; the cold-start problem being only one extreme case of this
observation. If two items never explicitly co-occur in the data, they cannot be utilized
by the recommendation engine at all. In large systems, co-occurrence matrices are
naturally large-scale, but sparse. The sparsity however does not change much over time
due to the fact that the size of the matrix grows quadratically in the steadily increasing
number of items, but the number of matrix entries increases only linearly in the number
of co-occurring items. In practice, block structures are frequently observed. This implies
several strongly connected components (e.g., genres, subjects, categories) that are again
loosely connected to each other.

The cold-start problem appears in many situations, e.g., at the very beginning of
collecting data, or when adding new items or new users. In the first case, not enough



information has yet been collected to distinguish items. In the latter cases, the new
items and users are isolated and connect to the others with only a few edges. In
these scenarios, user tendencies cannot be inferred with high confidence; hence, co-
occurrence-based methods are prone to fail and new techniques are required to extend
neighborhoods of items appropriately.

In this paper, we study recommender systems for sparse settings to tackle cold-start
problems and data sparsity. To increase the item neighborhood, we propose to leverage
the transitive hull of all maximum capacity paths in the item graph, such that local item
neighborhoods are extended to other connected components of the item graph. By doing
so, co-occurrences are propagated through the item graph and similarities between
all items, that are connected by at least one path, can be computed. We present two
efficient online algorithms for integral as well as arbitrary capacities, respectively. We
empirically evaluate our approaches on synthetic and standard datasets. In controlled
cold-start scenarios, we identify limitations of collaborative filtering-based methods and
show that the proposed approaches lead to better and more precise results.

The remainder is structured as follows. Section 2 reviews related work and Section 3
introduces the problem setting. We present our main contribution in Section 4. Section 5
reports on our empirical results and Section 6 concludes.

2 Related Work

Neighborhood-based collaborative filtering (CF) methods are perhaps the most widely
used type of recommender systems. Although user-based approaches are not practical
in real settings because of scalability issues [23], item-based collaborative filtering
is very common. Besides being conceptually simple, a major advantage of CF-based
approaches is the similarity measure that can be adapted to a problem at-hand. Common
choices are for instance co-occurrence , cosine , correlation, Pearson, as well as hybrid
similarity measures [1].

Co-occurrence data is frequently the basis for recommender systems [28, 16] and
approaches range from co-occurrence data sampled from random walks in item-item
graphs [13] to generalizations of the aspect model [10] by considering three-way
co-occurrences between users, items and item content [19]. The resulting generative
models may also address cold-start problems [24].

Intrinsically, matrix factorization approaches [14, 22] are neighborhood-based
algorithms as well; high dimensional vectors are embedded in compact spaces by low
dimensional (linear) transformations while preserving the notion of similarity. This
class of algorithms performs well when the amount of training data is sufficiently large,
but causes problems when data is sparse. Examples for such sparse scenarios are again
cold-start and cross-selling problems [27]. With respect to collaborative filtering, this
problem is handled by using additional information on the user like age, gender, etc. [4].
Another approach is to consider transitivity closures of item-graphs [2]. An application
to recommender system is for example proposed in [25] using a Jaccard similarity
measure.

To address recommendation in sparse scenarios, we rephrase the task as a
propagation problem in an item-graph [6]. Drawing from network flow theory, we



focus on the maximum capacity path [18, 11] between two items. In general, using the
maximum flow model would be appropriate as well, but as graphs in our application are
usually very large, but sparse, the additional complexity spent on flow algorithms does
not seem to be adequate with respect to the fact that in sparse scenarios, there is only
one path at all, if a connection between items exists at all.

Maximum capacities have been used together with recommender systems by
Malucelli et al. [17] before. The authors define similarity as the solution of a bi-criterion
path problem [9] that is computed using a Dijkstra-based algorithm. Unfortunately, the
authors choose some cumbersome definitions instead of linking their contribution to
graph theory, and do not investigate the effect of sparsity. Unfortunately, the proposed
algorithm has a complexity of O(n4), thus rendering its application infeasible in large-
scale scenarios. Nevertheless, it is a useful approach for small-scale problems. We
review their contribution in Section 3.3 and use the algorithm as a baseline in Section 5.

3 Preliminaries

3.1 Rationale

The rationale behind our approach is as follows. Considering weighted graphs, we
require a function that translates the transitive closure in the binary case to weighted
problems. Shortest path trees are such a translation in case of an additive weight
function. However, we do not have additive weights in our case, otherwise the applied
measure (e.g. co-occurrence) would increase with the number of edges on a path, which
is counterintuitive.

There are approaches normalizing shortest paths by the number of hops they consist
of, i.e. computing the average weight of a path. This is not reasonable either as paths
consisting of many strongly weighted edges and just one lowly weighted (bridging)
edge, have a strong average weight despite of the fact that they virtually decompose
into two connected components. Multiplicative approaches are not appropriate either
as the weight of the path might be lower than the lowest weight of one of its edges, in
particular when it is normalized by the number of hops.

Therefore, we focus on the minimum weight of the path’s edges for correlating
two items interconnected by that path. This choice seems appropriate as the weights
of transitive connections between two nodes are independent of the length of the path
in the first place. Bottlenecks are addressed in a reasonable way: the weight of the
transitive connection is determined by the lowest weighted edge it contains. Eventually,
for two nodes u and v, we consider the connecting path that has the highest minimum
edge weight among all other connection path, i.e. the maximum capacity path.

3.2 Maximum Capacities

Let G = (V,E) be a weighted graph, where V is a set of n nodes and E a set of m
edges. Furthermore, let A = (aij) be its related adjacency matrix. In order to ease the
following definitions, we assume without loss of generality that G is acyclic, and all



self similarities are set to infinity (i.e. aii = ∞ )†. The capacity of a path is defined as
follows.

Definition 1 (Capacity).
Let p = ((u, u1), . . . , (ul−1, v)) be a path between two vertices u = u0 and v = ul.
The capacity, c(p), of p is defined as the minimum weight of its edges :

c(p) := min
(uk,uk+1)∈p

(
aukuk+1

)
.

Since there may be more than just one connecting path for a pair of nodes, we regard
the path that implies the maximum capacity among all paths.

Definition 2 (Maximum Capacity).
Let Puv = {p0, . . . , pk} be the set of all the paths between u and v. The maximum
capacity, mc(u, v), between u and v is defined as maximum of all the paths capacities
in Puv:

mc(u, v) := max
p∈Puv

(c(p)) .

Computing maximum capacity paths with a minimum number of hops using max-min
matrix products is prohibitively expensive with a complexity of O(n4). The Dijkstra
algorithm is able to efficiently compute maximum capacity paths from a dedicated start
node in O(n log(n) + m). This amounts to O(n2 log(n) + mn) when considering
shortest paths between all pairs of nodes. Before we introduce two efficient algorithms
in Section 4, we briefly review the bi-criterion shortest path approach by [17].

3.3 Bi-criterion Shortest Path

Malucelli et al. [17] propose a capacity-based algorithm for recommendation. Their
algorithm also considers the transitive closure of the graph, however the edge weights
are given by solutions of a bi-criterion shortest path optimization problems, as shown
in the following definition.

Definition 3 (Bi-criterion Capacity).
Let Puv = {p0, ..., pk} be the set of all the paths between u and v. The length of a
path p is denoted as λ(p) and its capacity as c(p). The bi-criterion capacity, bc(u, v),
between u and u is defined as follows:

bc(u, v) := max
c(p)

(
c(p)

λ(p)

)
.

One problem with this approach is the fact that the same result (maximum capacity
paths with a minimum number of hops) might be computed by a much simpler
algorithm: (i) compute (all) maximum capacity paths (e.g. by using Dijsktra), and (ii)
finally choose the one with the minimum number of hops. This can be achieved in

† Note that paths are usually cycle free by definition and capacities do not change by repeating
cycles.



O(n3) in total, whereas the approach proposed in [17] takes O(n4) and is much more
complex to implement.

Note that similar problems have been studied in [7]. In this paper, we use the bi-
objective label correcting algorithm with node-selection introduced by [26]. See [20]
for an extensive review.

4 Maximum Capacity Algorithms

The following two sections are dedicated to two online algorithms that efficiently
compute maximum capacity paths. Section 4.1 approaches the problem by a bucket
style approach in case all weights are integral. Section 4.2 uses a tree-based approach
and works with arbitrary edge weights.

4.1 Max Capacity Buckets

The basic idea is to consider the sub-graphs Gα of G, referred to as buckets, containing
all the edges with weights higher than a given α ∈ N0. In theory, α might be a real
number, however in practice it can only be an integer as each of them needs to be
stored separately. Note that G0 = G. As the graphs Gα are acyclic and not necessarily
connected, they can also be seen as forests.

Gα = (Vα, Eα) such that
{
Eα := {(i, j) ∈ E : aij > α}
Vα := {i ∈ V, j ∈ V : (i, j) ∈ Eα}.

The update of the buckets is straightforward. When the user views a new item v, edge
to previously seen item (u, v) are updated as follows:

– the adjacency of the undirected edge is increased by one : auv = auv + 1,
– if not in Vauv , the nodes u and v are added to Gauv as trivial trees,
– finally, the connected components containing u and v are merged: the root of the

smallest tree becomes a child of the other root.

The maximum capacity between two nodes u and v is given by the biggest index of the
buckets containing u and v.

mc(u, v) := max (α : (u, v) ∈ Vα)

Graphs are implemented as dictionaries to leverage speed of their key search. The first
step is just a modification or a creation of keys in a dictionary that is O(1) in average.
The next step check if nodes are in a subgraph. In case of a positive answer this is done
in constant time. However as weights grow, it will occur that at least one of the nodes
will return a negative answer. The test will then have gone through all the keys at a
linear cost of O(n). The final step needs to find the roots of two trees which can be
done in O(log n). Merging is performed by altering the property of the nodes which is
constant O(1). In total, an update has a complexity of O(n+ log(n)).

The evaluation of the maximum capacity between two nodes is done by browsing
the buckets in increasing weight order until one of the nodes is not included anymore.



Again, the respective test in each sub-graph requires in average O(1). The search stops
when a test is negative, in which case we have costsO(n). Hence the overall complexity
of the maximum capacity is O(a? + n), where a? is the largest weight given by a? :=
max(u,v)∈E(auv). Note that the computation could be sped up by starting the search
from Gauv

as the maximum capacity cannot be smaller than the weight of the direct
edge, if it exists.

4.2 Max Capacity Trees

The well-known and efficient label correcting algorithm, known as Dijkstra’s
Algorithm [3], for the computation of shortest paths in directed graphs from a source
node s might be easily adapted for the computation of maximum capacity paths. The
distances/maximum capacities need to be initialized with −∞ instead of∞. Paths are
then built using the following alternative update scheme preserving time and space
complexity, where π is the predecessor function :

for each neighbor v of u:
if mc(s, v) > min{mc(s, u); auv} :

mc(s, v) := min{mc(s, u); auv}
π(v) := u

end if

The algorithm yields a tree rooted at some specified start node s containing all nodes
of the item graph, each with a label determining the capacity of the unique (maximum
capacity) path to the root node s. The algorithm is computed several times such that each
node of the graph becomes the start node exactly once. We obtain n rooted maximum
capacity trees. The runtime of Dijkstra amounts to O(m + n log n), where n = |V |,
and m = |E|, so this yields to O(nm+ n2 log n) for the all-pairs variant.

Runtime complexity might be reduced to O(n3) in total by using an all-pairs
shortest path algorithm, for example the Floyd-Warshall algorithm, which makes use
of two n×n matrices: a capacity matrix MC stating the maximum capacities mc(u, v)
for each path between a pair of nodes u and v, and a matrix Π holding the predecessor
labels πu,v for the reconstruction of a max capacity path connecting u and v. This is
beneficial in case of an online algorithm, where edges are generated successively, as
updates take place in two matrices instead of n different tree structures, that contain
specific edges weight.

Despite a concrete implementation as single source or all-pairs algorithm, we
use the label correction idea to develop an online algorithm for the computation of
maximum capacity trees. The algorithm maintains a forest at any time. As with shortest
path trees, the trees contain maximum capacity paths. Initially, we start with a forest of
trivial trees consisting of only a single node each. There are no edges and weights
are strictly nonnegative, hence mc(u, v) = 0 for all (u, v) ∈ V 2. We add edges
(co-occurrences) successively. Whenever an edge (u, v) with weight w is added, the
following cases may occur:

(i) there is already a tree edge (u, v) with mc(u, v) < w: set mc(u, v) := w,



(ii) there is no tree edge (u, v) yet, u and v are part of different trees: connect the two
trees by inserting (u, v) and set mc(u, v) := w,

(iii) there is no tree edge (u, v) yet, u and v are part of the same tree: inserting (u, v)
would generate a cycle. In order to avoid that, follow the path from u to v and
determine the lowest capacity weight edge(s) on this path: if w is lower, leave
everything as is, otherwise remove the lowest capacity weight edge (in case there
are more than one, choose one arbitrarily), and insert (u, v) instead.

Finally, we have to update the matrices according to the above operation: update
predecessor labels πu,v in case of (ii) and (iii), and update the capacities mc(u, v) in all
three cases. The runtime complexity of an update operation is bounded by O(n2).

The determination of the item(s) to recommend connected to an item u by
paths of maximum capacity amounts to looking up the maximum in one column
or row, respectively, of the matrix. This amounts to O(n). Determining the n − 1
recommendations to all other nodes in decreasing order of their connecting maximum
capacity paths amounts to sorting that column or row in decreasing order by their
capacities. This amounts to O(n log n). Note that the tree-based variant can be
implemented for arbitrary, i.e. real-valued edge capacities.

4.3 Discussion

Using bi-criterion capacities as in [17] favors shorter paths; hence closer items are
ranked higher. However, all items in the connected components are still reachable. In
that sense, the bi-criterion approach ranges in between purely neighborhood-based and
our maximum capacity-based approaches. Consider the following example:

A simple neighborhood-based approach will simply connect the nodes a and b by
their connecting edge and leads to a score of one. The bi-criterion algorithm however
enumerates all paths between a and b and decides for the aggregated score of three
as the capacity is weighted by the length of the path. Finally, maximum capacity also
enumerates all paths from a to b but chooses the maximum of the three capacities as the
resulting score.

Note that the two maximum capacity-based algorithms described in Section 4 tackle
the problem differently, but produce the same results. Due to lack of space, we leave this
textual statement without formal proof as the algorithmic invariants are easy to verify.
In the empirical evaluation, we compare both in terms of their complexities but focus
on the tree-based approach when we study performance.



Fig. 1: Runtime comparisons

5 Empirical Evaluation

5.1 Time and Space Complexity

To compare the complexities of the proposed algorithms in time and space, we train
the buckets (MCb) and the tree-based (MCt) algorithms on a synthetic dataset made
of 21k items and 50k transactions. The experiment consists of sequentially reading
and processing/storing the data. Except for the first transaction, the maximum capacity
of each transaction is computed on its arrival to update the buckets or trees. For
comparison, we include as a baseline the cost of only building and reading the adjacency
matrix A.

Figure 1 shows the results for varying training set sizes. The upper left sub-figure
shows the linear growth of edges in the size of the data. The bottom left sub-figure
indicates that all three algorithms learn at the similar pace. This result is not surprising
as all three algorithms have to learn the adjacency matrix. However, it is interesting to
see that updating the buckets or the trees is negligible compared to only adjacencies.

On the other hand, the bottom right sub-figure shows that the data structure is very
important for the capacities. The co-occurrence baseline is extremely fast as it simply
retrieves coefficients from the matrix. By contrast, the tree structure proves very costly
when it comes to retrieve elements. The tree structure has to build the path to the root
at least once, even if the two nodes are in the same connected component (or on the
same tree). This may be overcome by using a matrix holding all maximum capacities
between all pairs of nodes such as in the Floyd-Warshall algorithm. Then, evaluations
take constant time whereas the complexity of updates remains unchanged. As capacities
are monotonously increasing, two n × n matrices are sufficient, one for the maximum
capacities between each pair of nodes, and one for the predecessors.

A drawback of the buckets-based approach is the amount of buckets. There are as
many of them as there are different weights. The consequence for the memory usage
can be observed in the upper right sub-figure. It should be noted that for both maximum
capacity algorithms, the adjacency matrix is built along the buckets or trees. However,



it is not necessary to compute the capacities themselves. In a production system, the
adjacency matrix can be discarded once the learning has been done. Hence, the actual
memory usage for a recommender system that is based on one of the two propagation
algorithms would be the difference of the respective curve and the baseline. This implies
that the tree-based method is in fact very efficient.

5.2 Precision and incertitude on cold-start

We compare co-occurrence (CC), cosine (CS), the Bi-Criterion Shortest Path (BCSP)
approach by [17] and two variants of maximum capacity (MC) and (MC+dist). The
latter aims at breaking similarity blocks by sorting items in a block relatively to the
average distance of the maximum capacity paths. Note that as we use the tree-based
algorithm, these distances are side products.

We evaluate the different approaches on the MovieLens 1M dataset [8]. It contains
over 1 million ratings of 3952 movies made by 6040 users. A rating is defined by a
userID, a movieID, a score and a timestamp. The ratings are binarized by thresholding
scores greater than three (positive examples). Scores smaller or equal than three are
considered negative examples.

The cold-start problem is simulated by reading and processing the data
chronologically. If the actual rating is for a movie rated less than 20 times more but at
least once, a recommendation is computed using the average similarity to the previously
positively rated items of the user. If it is the user’s ir the item’s first rating, it is skipped.
The threshold of 20 is chosen as we are interested in the early stage of the cold
start problem. For fairness, only the first thousand recommendations are reported, as
BCSP requires more than a day to complete the experience. At this point the adjacency
matrix reaches approximatively 1% of sparsity. The experience is repeated six times by
skipping respectively none, the 2k, 4k, 6k, 8k and 10k first ratings. The reported results
are the average of the six iterations.

A limitation appears as collaborative filtering cannot distinguish the movies that
have the same similarity. As a consequence, the returned ranking will made of blocks of
the same values. The size of the block containing the expected item is called incertitude.
Note that this situation is frequent in this early stage of a recommender system. In our
evaluation, we assume that the item is ranked in the middle of the block of items sharing
the same similarity. This amounts to treating items as randomly distributed inside each
block.
Figure 2 shows the evolution of four standard metrics: Success@10 defined as the
number of times the desired movie has been ranked in the top 10 for the first thousand
recommendations, Precison@10, Recall@10 and Mean Reciprocal Rank. For clarity
the standard deviation of the measurement are shown only for CC and MC+dist
represented by the shaded area around the average lines. All curves are smoothed by
showing only one point for every 30 recommendations.

The four plots are consistent. Irrespectively of the performance metric, MC+dist
performs best. The single ranked version, MC, performs as good as CC but its
performance drops fast and starts to follow BCSP while still being better. With
increasing recommendations, CC catches up and stays close to MC+dist on average,
which is also indicated by the overlapping standard deviations. It is interesting to point



Fig. 2: Standard metrics.



out that MC+dist’s results are more stable over the six repetitions which is shown by
small standard deviation compared to that of CC. Not shown in the figure is the break-
even point where the two lines decouple and CC becomes more successful on average.
However the difference becomes only significant much later.

Fig. 3: Evolution of the incertitude of each model’s recommendation.

The superiority of the double ranked MC-based approach is supported by its very
low incertitude as shown in Figure 3. Here again, the standard deviation is shown only
for CC and MC+dist. Despite its high likelihood to rank the expected item in the top
10, CC is much more uncertain than MC+dist. The block of the expected item is on
average made of 315 items, while the average for MC+dist is only 39. It is interesting
to observe that the double ranking of MC+dist render its performance more accurate
than its simpler peer, in terms of precision and ambiguity of the recommendation. Note
that this improvement comes almost for free. The MC+dist is also particularly more
consistent over the six folds of the experiment, as the standard deviation is again much
smaller than that of CC.

6 Conclusion

We cast the problem of recommendation as a propagation problem in an item graph
using network flow theory and proposed two efficient online algorithms, a bucket
and tree-based one. Empirically, the two algorithms effectively leverage sparse data at
enterprise level scales. Our approaches distinguish themselves in cold-start scenarios,
in term of precisions and quality of their recommendations. Future work will study the
relation with T-transitive closures.
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