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Abstract. We study the problem of finding the most relevant candi-
dates within a finite set of items under budget constraints. The choice of
whether to bag an item not only depends on the actual sample but also
on the associated costs and the remaining budget. We cast the problem
of adapting a ranking function into the structural learning framework to
capture the involved multiple-way dependencies. Key to our approach is
the linearity of the rephrased task that can be solved optimally by the
knapsack algorithm. Since inference is not tractable in general settings,
we provide an ε-approximation that can be computed in polynomial time.

1 Introduction

Ranking approaches gain a lot of attention in recent years due to an omnipresence
of search engines and recommender systems. In many applications, however, the
goal is not to output a perfect ranking of items but to identify the maximal
subset of items that fulfills certain additional constraints.

As an example consider software companies using the expiring time to the
next deadline for final debugging. Since it is generally impossible to revise the
whole program in only a few days, the companies face a combinatorial problem
of deciding on which parts of their code they should have a second look at and

on which parts they realistically can look at within the given time frame. Pure
ranking approaches ignore the time constraint and only aim at finding the most
buggy routines. However, this solution is inappropriate for the exemplary appli-
cation since the time needed to debug the top-scoring routines might overrun
the time left.

We propose a novel approach to the constraint-based identification of relevant
items. To learn the ranking function, we cast the constraint-based task into the
structured learning framework that allows for capturing the involved multiple-
way dependencies. We devise a generalized linear model in joint input output
space that can be optimized by structural support vector machines [3]. The
derived model implements the knapsack criterion and is not tractable for large
data sets. As a remedy, we propose a polynomial time approximation to the
exact solution.

The remainder is organized as follows. The problem setting is introduced in
Section 2. We then derive the constrained-based ranking method in Section 3
and Section 4 sketches the ε-approximation. Section 5 concludes.



2 Problem Setting

In this Section we abstract the task of finding the most relevant items under
budget constraints. We decompose the task into a decoding and a parameter
estimation step and present an appropriate loss function.

Given a training set {(xi,yi, ci, bi)}ni=1, where x
i denotes a collection of items

x = {xi1, . . . , x
i
mi
} with associated costs c

i = (ci1, . . . , c
i
mi

)T ∈ R
mi

+ , and bi

denotes the budget to spend. The corresponding output y
i is a subset of items

contained in x
i. We treat the output y

i = (yi1, . . . , y
i
mi

)T ∈ {0, 1}mi as a binary
vector, indicating whether items are contained in the solution, that is yij = 1

if xij is relevant and 0 otherwise. The true labeling is required to achieve the
highest profit according to an (unknown) profit function p, that is,
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with p(x) ≥ 0 for all x. Of course, having the true profit function renders the
parameter estimation unnecessary. However, recall that we focus here on prob-
lems in which the true profit function is not accessible or unknown. We thus aim
at finding a ranking function f that assigns higher decision scores to the true
labeling than to all valid alternative labelings, that is,

∀ni=1∀ȳ 6=yi∧
P

j ȳjc
i
j
<bi f(xi,yi, ci, bi) > f(xi, ȳ, ci, bi).

Similarly, at prediction time we are seeking the top-scoring hypothesis given by

ŷ = argmax
ȳ:

P

j
ȳjcj<b

f(x, ȳ, c, b). (1)

In the remainder we will refer to the computation of the argmax as decoding step
which we will address in the next section.

We measure the quality of a hypothesis by a loss function ∆ that details
the differences between the true labeling and the prediction. For instance, an
appropriate loss function in our discourse area is a Hamming-like loss that simply
counts the number of errors in the prediction, that is, ∆H(y, ŷ) =

∑m

j=1 1[yj 6=ŷj ],
where 1[z] equals 1 if z is true and 0 otherwise. In order to find a hypothesis
that generalizes well on new and unseen data, we seek the minimizer of the
regularized empirical risk

R̂(f) =
n∑

i=1

∆H(yi , argmax
ȳ:

P

j
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i
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f(xi, ȳ, ci, bi)) + η‖f‖2.

3 Learning Knapsack

Given an input triple (x, c, b), the goal is to maximize the profit without exceed-
ing the budget. This can be expressed as the following constrained optimization



problem, also known as the knapsack problem [4],

max
y

m∑

i=j

yj p(xj) s.t.

n∑

j=1

yj cj ≤ b. (2)

Since the true profits are unknown, we employ a λ-parameterized profit function
by linearly combining features ψ(x) drawn from objects,

p̂(x) = 〈λ, ψ(x)〉. (3)

Depending on the problem at hand, features may capture the size, weight, or
color of item x. Substituting Equation (3) into (2) allows to rewrite the objective
as a generalized linear model in joint input output space. We have

∑

j
yj p̂(xj) =

∑

j
yj〈λ, ψ(xj)〉

= 〈λ,
∑

yjψ(xj)
︸ ︷︷ ︸

=:Φ(x,y)

〉,

where Φ(x,y) is sometimes called the joint feature mapping of inputs and out-
puts. Thus, the decision value of the model f is determined by

f(x,y, c, b) =

{
〈λ, Φ(x,y)〉 :

∑
yj cj ≤ b

not defined : otherwise.

The distinction of valid and illegal assignments can be augmented with the
computation of the argmax at prediction time, leading to an elegant model that
can be optimized by structural SVMs [3]. Let Y i = {y :

∑
yjc

i
j ≤ b

i}, we obtain,

ŷ = argmax
ȳ∈Yi

f(x, ȳ, c, b) = argmax
ȳ∈Yi

〈λ, Φ(x,y)〉. (4)

If the decision values were discrete, Equation (4) could be computed by the
knapsack algorithm in time O(m2 maxj〈λ, ψ(xj)〉) [4]. The next Section proposes
an approximation by inducing equivalence classes on the decision values.

Notice, that the definition of Φ(x,y) allows to rewrite the inner product in
joint input output space in terms of a kernel function k(x, x′) = 〈ψ(xj), ψ(x′j)〉,
defined solely on pairs of input items; we have 〈Φ(x,y), Φ(x′ ,y′)〉 =
∑

j yj y
′
j k(xj , x

′
j).

4 ε-approximate Inference

Due to non-discrete profit estimates p̂(x) = 〈λ, ψ(x)〉, the knapsack algorithm
needs to enumerate all possible candidate sets which is prohibitive for real world
applications and renders the optimization problem intractable. As a remedy,
we induce equivalence classes by some rounding operations on the estimates p̂



as follows. Let ε > 0, we define a constant κ =
ε·maxj〈λ,ψ(xj)〉

m
that induces

equivalence classes by normalizing and rounding the decision values; we have,

p̂(xj)←

⌊
〈λ, ψ(xj)〉

κ

⌋

.

Utilizing these rounded profits instead of the decision values leads to a fully
polynomial time approximation scheme for the knapsack problem that can be
solved in O(m2bm

ε
c) where the error is bounded by the factor ε [4].

Due to the approximate inference, convergence of the SVM to the global
optimum for the parameter estimation step cannot be guaranteed. However,
empirical studies on the benefits of approximate over exact inference techniques
show that the former frequently leads to more accurate prediction models in
many domains [1, 2].

5 Conclusion

We devised a novel large margin approach in joint input output space for rele-
vance ranking under budget constraints. The proposed solution allows to capture
multiple-way dependencies within the data by adapting a parameterized profit
function to a labeled training sample. Since the exact solution is intractable for
large data sets we propose an approximation based on equivalence classes. Ini-
tial empirical results are promising and will be presented at the workshop. The
proposed algorithm can be easily generalized to maintain several budgets and/or
bags.
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