
Learning Shortest Paths in Word Graphs∗

Emmanouil Tzouridis and Ulf Brefeld†

Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany

{tzouridis,brefeld}@kma.informatik.tu-darmstadt.de

Abstract
In this paper we briefly sketch our work on text
summarisation using compression graphs. The
task is described as follows: Given a set of re-
lated sentences describing the same event, we
aim at generating a single sentence that is simply
structured, easily understandable, and minimal in
terms of the number of words/tokens. Tradition-
ally, sentence compression deals with finding the
shortest path in word graphs in an unsupervised
setting. The major drawback of this approach is
the use of manually crafted heuristics for edge
weights. By contrast, we cast sentence compres-
sion as a structured prediction problem. Edges
of the compression graph are represented by fea-
tures drawn from adjacent nodes so that corre-
sponding weights are learned by a generalised
linear model. Decoding is performed in poly-
nomial time by a generalised shortest path algo-
rithm using loss augmented inference. We report
on preliminary results on artificial and real world
data.

1 Introduction
In this paper we study the intelligent summarisation of re-
lated sentences to quickly serve information needs of users.
Given a collection of sentences dealing with the same real-
world event, we aim at generating a single sentence that
is (i) a summarisation of the input sentences, (ii) simply
structured and easily understandable, and (iii) minimal in
terms of the number of words/tokens. The input sentences
are represented as a word graph [Filippova, 2010], where
words are identified with nodes and directed edges connect
adjacent words in at least one sentence, and the output sum-
mary is thus a path in the graph fulfilling conditions (i-iii).
In this paper, we cast sentence compression as learning a
mapping from word graphs to their shortest paths. Edges
of the graphs are labeled with costs and the shortest path re-
alises the lowest possible costs from a start to an end node.

Learning mappings between arbitrary structured and in-
terdependent input and output spaces challenges the stan-
dard model of learning a mapping from independently
drawn instances to a small set of labels. For capturing
the involved dependencies it is helpful to represent inputs
x ∈ X and outputs y ∈ Y in a joint feature representa-
tion. The standard approach to learn to predict structured
∗This paper is a short version of [Tzouridis and Brefeld, 2013].
†UB is also affiliated with the German Institute for Educa-

tional Research (DIPF), Frankfurt am Main, Germany.

outputs seeks the most likely output structure given an in-
put. By contrast, we aim at finding the shortest and thus
minimal path that leads from a start to an end node of the
compression graph. Therefore the task is rephrased as find-
ing a function f : X × Y → < such that

ŷ = argmin
y

f(x,y) (1)

is the desired output for any input x [Tsochantaridis et al.,
2005; Taskar et al., 2004]. The function f is a linear model
in a joint space Φ(x,y) of input and output variables and
the computation of the argmin is performed by an appro-
priate decoding strategy such as a shortest-path algorithm.

The remainder is organised as follows. Section 2 intro-
duces preliminaries. Our main contribution is presented in
3. We briefly discuss empirical results in Section 4 and
Section 5 concludes.

2 Preliminaries
2.1 Related Work
Barzilay and Lee [Barzilay and Lee, 2003] study sentence
compression using dependency trees. Aligned trees are
represented by a lattice from which a compression sentence
is extracted by an entropy-based criterion over all possible
traversals of the lattice. Wan et al. at [Wan et al., 2007] use
a language model in combination with maximum spanning
trees to rank candidate aggregations that satisfy grammati-
cal constrains.

While the previous approaches to multi-sentence com-
pression are based on syntactic parsing of the sentences,
word graph approaches have been proposed, that do not
make use of dependency trees or other linguistic concepts.
Filippova [Filippova, 2010] casts the problem as finding the
shortest path in directed word graphs, where each node is
a unique word and directed edges represent the word or-
dering in the original sentences. The costs of these edges
are given by a heuristic that is based on word frequencies.
Recently, Boudin and Morin [Boudin and Morin, 2013]
propose a re-ranking scheme to identify summarising sen-
tences that contain many keyphrases. The underlying idea
is that representative key phrases for a given topic give rise
to more informative aggregations.

2.2 Word Graphs and Shortest Paths
Word graphs intend to build a non-redundant representation
for possibly redundant sequences by merging identical ob-
servations. From a collection of related sentences we itera-
tively construct a word graph by adding sentences one-by-
one as follows: We begin with an empty graph and add the
first sentence, where every word in the sentence becomes a



Figure 1: The word graph constructed from the sentences:
”Yahoo in rumoured $1.1bn bid to buy white-hot Tumblr”,
”Yahoo buys Tumblr as David Karp stays as CEO”, ”Ya-
hoo to buy Tumblr for $1.1bn”. The corresponding shortest
path is highlighted.

node and a directed edge connects nodes of adjacent words.
Words from the next sentences are incorporated by creat-
ing a new node for the word or by mapping the word to the
corresponding already existing node. A directed edge is in-
serted to connect the word to its predecessor. We continue
until all sentences are incorporated.

Auxiliary words indicating the start (e.g, xs) and the end
(e.g., xe) of the sentence are added to the sentences. The
sketched procedure merges identical words but preserves
the structure of the sentences along the contained paths and
the original sentences can often be reconstructed from the
compressed representation. Fig. 1 shows related sentences
and the corresponding word graph.

The described construction gives us a directed weighted
graph x = (N,E), where N is the set of nodes and E the
set of edges. As every word graph x also defines the sets
N and E, we will use N(x) and E(x) in the remainder to
denote the set of nodes and edges of graph x, respectively.
Every edge (xi, xj) ∈ E(x) is assigned a positive weight
given by a cost function cost : (xi, xj) 7→ <+. A path y in
the graph x is a sequence of connected nodes of x and the
cost of such a path is given by the sum of the edge costs for
every edge that is on the path. Given the word graph x, the
shortest path problem is finding the path in x from xs to xe
with the lowest costs,

argmin
y

∑
(xi,xy)∈N(x)

yijcost(xi, xi+1) s.t. y ∈ path(xs, xe).

There exist many algorithms for computing shortest paths
efficiently [Bellman, 1958; Ford, 1956; Dijkstra, 1959].
Usually, these methods are based on relaxation integer pro-
gramming, where an approximation of the exact quantity is
iteratively updated until it converges to the correct solution.
Figure 1 shows an example that visualises the shortest path
for a compression graph.

3 Learning the Shortest Path
3.1 Representation
To learn the shortest path, we need to draw features from
adjacent nodes in the word graph to learn the score of
the connecting edge. Let xi and xj be connected nodes
of the compression graph x, that is xi, xj ∈ N(x) and
(xi, xj) ∈ E(x). We represent the edge between xi and xj

by a feature vector φ(xi, xj). A path in the graph is repre-
sented as an n × n binary matrix y with n = |N(x)| and
elements {yij} given by yij = [[(xi, xj) ∈ path]] where
[[z]] is the indicator function returning one if z is true and
zero otherwise. The cost of using the edge (xi, xj) in a path
is given by a linear combination of those features which is
parameterised by w,

cost(xi, xj) = w>φ(xi, xj).

Replacing the constant costs by the parameterised ones, we
arrive at the following objective function (ignoring the con-
straints for a moment) that can be rewritten as a generalised
linear model.∑

(xi,xj)∈E(x)

yij w>φ(xi, xj) = w>Φ(x,y) = f(x,y)

Given a word graph x, the shortest path ŷ for a fixed pa-
rameter vector w can now be computed by

ŷ = argmin
y

f(x,y),

where f is exactly the objective of the shortest path algo-
rithm and the argmin consequently computed by an appro-
priate solver, such as Yen’s algorithm [Yen, 1971].

3.2 Learning Shortest Paths with SVMs
In our setting, word graphs x ∈ X and the best summaris-
ing sentence y ∈ Y are represented jointly by a feature map
Φ(x,y) that allows to capture multiple-way dependencies
between inputs and outputs. We apply a generalised linear
model f(x,y) = w>Φ(x,y) to decode the shortest path

ŷ = argmin
y

f(x,y),

where the quality of f is measured by the Hamming loss

∆H(y, ŷ) =
1

2

∑
(xi,xj)∈E(x)

[[yij 6= ŷij ]]

that details the differences between the true y and the pre-
diction ŷ, where [[·]] is again the indicator function from
Section 3.1. Using the loss ∆H , structural support vector
machines [Tsochantaridis et al., 2005] minimise the regu-
larised empirical risk

R̂[f ] = ‖f‖2 +

m∑
i=1

∆H

(
y, argmin

ȳ
f(x, ȳ)

)
.

It is often beneficial to rescale the induced margin by the
loss to implement the intuition that the confidence of re-
jecting a mistaken output is proportional to its error. Com-
bining everything, we arrive at the following optimisation
problem

min
f,ξ

‖f‖2 +

m∑
i=1

ξi

s.t. ∀i ∀ȳ 6= yi : f(xi, ȳ)− f(xi,yi) ≥ ∆H(yi, ȳ)− ξi
∀i : ξi ≥ 0

which can be solved in polynomial time by cutting planes.
The idea behind cutting planes is to instantiate only a min-
imal subset of the exponentially many constrains. This is
achieved by decoding for every training sample the short-
est path using our current model, if this is not the correct
path, then it is added to the constrains and the model is up-
dated. If the decoded path is the correct one, we need to



decode the second best path to verify wether the associated
margin constraint is fulfilled; if not, the pair is added to the
constraints and the model is updated accordingly. Luckily,
we do not need to rely on an expensive two-best shortest
path algorithm but can compute the most strongly violated
constraint directly via the cost function

Q(ȳ) = ∆H(yi, ȳ)−w>Φ(xi, ȳ) + w>Φ(xi,yi) (2)

that has to be maximised wrt y. The following proposi-
tion shows that we can equivalently solve a shortest path
problem for finding the maximiser of Q.
Proposition 1 (Loss augmented inference for shortest path
problems). The maximum y∗ of Q in Equation (2) can be
equivalently computed by minimising a shortest path prob-
lem with cost(xi, xj) = yij + w>φ(xi, xj).

Proof. Omitted for lack of space.

Given a parameter vector w and start and end nodes xs and
xe, respectively, the optimisation of Q can be performed
with the following linear program.

min
ȳ

∑
ij

(
yij + w>φ(xi, xj)

)
ȳij

s.t. ∀k ∈ N(x)/{s, t} :
∑
j

ȳkj −
∑
i

ȳik = 0

∑
j

ȳsj −
∑
i

ȳis = 1

∑
i

ȳie −
∑
j

ȳej = 1

∀(i, j) : yij ≤ x(i,j) ∧ ∀(i, j) : yij ∈ {0, 1}

The first constraint guarantees that every inner node of the
path must have as many incoming as outgoing edges, the
second line of constraints guarantees the path to start in xs
and, analogously, the third line ensures that it terminates in
xe. The last line of constraints forces the edges of the path
ȳ to move along existing paths of x.

4 Empirical Results
In this section, we empirically compare learning shortest
paths to traditional unsupervised approaches. To this end,
we also deploy a structural perceptron [Collins and Duffy,
2002; Altun et al., 2003] as a special-case of the presented
large-margin approach.

4.1 Artificial Data
We generate artificial graphs with |N | ∈ {10, 20, 30, 40}
nodes as follows. For every node in a graph, we sam-
ple the number of outgoing edges uniformly in the inter-
val [ |N |2 , |N |], and for every edge, a receiving node is sam-
pled uniformly from the remaining nodes. To annotate the
optimal path we first draw its length uniformly in the inter-
val [ |N |2 , |N |] and randomly select the respective number of
nodes from N , while enforcing that every edge in the path
is included in the graph as well.

To ensure that the optimal path is actually the one
with lowest costs, edge features are sampled from a one-
dimensional Gaussian mixture distribution, where the gen-
erating component is chosen according to whether the re-
spective edge lies on the the shortest path or not. That
is, we introduce two Gaussian components G1,2, so that
costs for edges lying on the shortest path are drawn from

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodes=10

Nodes=20

Nodes=30

Nodes=40

a
c
c

Perceptron

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Performance on artificial data for perceptrons
(top) and SVMs (bottom).

G1(µ1, σ
2
1) while costs for all other edges are sampled

from G2(µ2, σ
2
2).

The difficulty of the experimental setup is controlled
by a parameter α that measures the distance of the two
means, i.e., α = |µ1 − µ2|. We sample the means from
the following normal distributions µ1 ∼ G(−α2 , 0.1) and
µ2 ∼ G(α2 , 0.1). We use σ1 = σ2 = 0.01 and report
on averages over 100 repetitions. The results for percep-
trons and SVMs are shown in Figure 2. The distance α is
depicted on the x-axis. The y-axis shows the top-one accu-
racy. The performance of both algorithms highly depends
on the distance of the cost-generating components and the
size of the graph. Both algorithms perform similarly.

4.2 News Headlines
The real-world data originates from titles of crawled news
articles from several web sites on different days. We use
categories Technology, Sports, Business and General. Re-
lated sets with more than 4 news headlines are manu-
ally identified and grouped together, and word graphs are
built according to the procedure described in Section 2.2.
Ground truth is annotated manually by selecting the best
sentence among the 20 shortest paths computed by Yen’s
algorithm [Yen, 1971] using frequencies as edge weights.
This process leaves us with 87 training examples.

We intend to learn the costs for the edges that
give rise to the optimal compression of the training
graphs and compare our algorithms to the unsuper-
vised approach presented in [Filippova, 2010] that uses
(#(x1) + #(x2))/#(x1, x2) as edge weights. We devise
two different sets of features. The first feature representa-
tion consists of only two features that are inspired by the
heuristic. That is, for an edge (xi, xj), we use

φ1(xi, xj) =

(
#(x1)

#(x1, x2)
,

#(x2)

#(x1, x2)

)>
,

where # denotes the frequency of nodes and edges, respec-
tively. The second feature representation which is again in-
spired by [Filippova, 2010] and uses the ingredients of the
heuristic instead of precomputing the surrogates to have the



5 10 15 20 25 30 35 40 45
# Training samples

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

T
op

1 
A
cc
u
ra
cy

Filippova

Perceptron

SVM

5 10 15 20 25 30 35 40 45
# Training samples

4

5

6

7

8

9

10

11

12

A
vg
er
ag
e 
R
an
k

Filippova

Perceptron

SVM

Figure 3: Results on news headlines: Accuracies and aver-
age ranks for perceptrons and SVMs.

Table 1: Leave-one-out results for news headlines using
feature representation φ2.

avg. acc. avg. rank
Filipova 0.277 4.378

Perceptron 0.115 7.58
SVM 0.252 6.942

algorithm pick the best combination,

φ2(xi, xj) =(#(x1),#(x2),#(x1, x2),

log (#(x1)) , log (#(x2)) , log (#(x1, x2)))>.

Figure 3 shows average accuracy (top) and average rank
(bottom) for perceptrons and SVMs, respectively, for dif-
ferent training set sizes, depicted on the x-axis. Every
curve is the result of a cross-validation that uses all avail-
able data. Thus, the rightmost points are generated by a 2-
fold cross validation while the leftmost points result from
using 11-folds. Due to the small training sets, interpreting
the figures is difficult. The unsupervised baseline outper-
forms the learning methods although there are indications
that more training data could lead to better performances
of perceptrons and SVMs. The first feature representation
shows better performances than the second. However, these
conjectures need to be verified by an experiment on a larger
scale.

Using only the second feature representation, Table 1
shows average accuracies and average ranks for a leave-
one-out setup to increase the sizes of the training sets. The
results are promising and not too far from the baseline,
however, as before, the evaluation needs to be based on
larger sample sizes to allow for interpretations.

5 Conclusion
In this paper, we proposed to learn shortest paths in com-
pression graphs for summarising related sentences. We
addressed the previously unsupervised problem in a su-
pervised context and devised structural support vector ma-

chines that effectively learn the edge weights of compres-
sion graphs, so that a shortest path algorithm decodes the
best possible summarisation. We showed that the most
strongly violated constrains can be computed directly by
loss-augmented inference and rendered the use of two-best
algorithms unnecessary. Empirically, we presented prelim-
inary results on artificial and real world data sets. Due
to small sample sizes, conclusions cannot be drawn yet,
although the results indicate that learning shortest paths
could be an alternative to heuristic and unsupervised ap-
proaches. Future work will address this question in greater
detail.

References
[Altun et al., 2003] Y. Altun, M. Johnson, T. Hofmann. Investi-

gating loss functions and optimization methods for discrimi-
native learning of label sequences, Proc. EMNLP, 2003.

[Barzilay and Lee, 2003] R. Barzilay, L. Lee, Learning to Para-
phrase: An Unsupervised Approach Using Multiple-Sequence
Alignment, in Proc. of NAACL-HLT, 2003.

[Bellman, 1958] R. Bellman (1958). ”On a routing problem”.
Quarterly of Applied Mathematics 16: 8790. MR 0102435.

[Brefeld, 2007] U. Brefeld. Cost-based Ranking in Input Output
Spaces. Proceedings of the Workshop on Learning from Non-
vectorial Data, 2007.

[Boudin and Morin, 2013] F. Boudin and E. Morin. Keyphrase
Extraction for N-best Reranking in Multi-Sentence Compres-
sion, Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2013.

[Collins and Duffy, 2002] M. Collins and N. Duffy. New Rank-
ing Algorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron, ACM, 2002

[Dijkstra, 1959] E. W. Dijkstra (1959). ”A note on two prob-
lems in connexion with graphs”. Numerische Mathematik 1:
269271. doi:10.1007/BF01386390.

[Filippova, 2010] K. Filippova. Multi-sentence compression:
Finding shortest paths in word graphs, COLING, 2010

[Ford, 1956] J. Ford, R. Lester (August 14, 1956). Network Flow
Theory. Paper P-923. Santa Monica, California: RAND Cor-
poration.

[Taskar et al., 2004] B. Taskar and D. Klein and M. Collins
and D. Koller and C. Manning. Max-margin parsing, Proc.
EMNLP, 2004.

[Tsochantaridis et al., 2005] I. Tsochantaridis, T. Joachims, T.
Hofmann, and Y. Altun, Large Margin Methods for Struc-
tured and Interdependent Output Variables, Journal of Machine
Learning Research, 6 (Sep):1453-1484, 2005

[Tzouridis and Brefeld, 2013] E. Tzouridis, U. Brefeld. Learn-
ing Shortest Paths for Text Summarization. Proceedings of
the ECML/PKDD Workshop on Mining Ubiquitous and So-
cial Environments, 2013.

[Wan et al., 2007] S. Wan, R. Dale, M. Dras, C. Paris. Global
revision in summarisation : generating novel sentences with
Prim’s algorithm, Conference of the Pacific Association for
Computational Linguistics, 2007.

[Yen, 1971] J. Y. Yen, Finding the k Shortest Loopless Paths in a
Network. Management Science 17 (11): 712716, 1971


