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Abstract

We study modeling joint densities over sets
of random variables (next-step movements of
multiple agents) which are conditioned on
aligned observations (past trajectories). For
this setting, we propose an autoregressive ap-
proach to model intra-timestep dependencies,
where distributions over joint movements are
represented by autoregressive factorizations.
In our approach, factors are randomly or-
dered and estimated with a graph neural net-
work to account for permutation equivari-
ance, while a recurrent neural network en-
codes past trajectories. We further propose
a conditional two-stream attention mecha-
nism, to allow for efficient training of ran-
dom factorizations. We experiment on tra-
jectory data from professional soccer matches
and find that we model low frequency trajec-
tories better than variational approaches.

1 INTRODUCTION

This paper deals with modeling joint densities over sets
of random variables in cases where the observations we
are conditioning on are tightly aligned with the ran-
dom variables whose distributions are to be modeled.
One example for such a case is modeling dependen-
cies in multiagent trajectories within a single timestep,
conditioned on the past. In this case, we aim to esti-
mate a joint density over next-step movements of sev-
eral agents while conditioning on their past trajecto-
ries. Sets of next-step movements and past trajectories
are tightly coupled via acting agents.

Current research on modeling dependencies in mul-
tiagent trajectories focuses on the usage of recurrent
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(RNN) and graph neural networks (GNNs, Scarselli
et al., 2008), while latent variables are also often in-
cluded in recently proposed models (e.g. Yeh et al.,
2019; Casas et al., 2020). While GNNs can model in-
teractions in past trajectories and align random vari-
ables in a permutation equivariant fashion, variational
models involving latent variables are usually argued
to help with the multi-modality of distributions over
movements (cf. Rudolph et al., 2020).

What is less stressed, is the fact that latent vari-
ables, and especially the proposed variational models,
in principle enable us to learn intra-timestep depen-
dencies. In theory, they can account for dependencies
within the joint distributions over movements, which
GNNs alone cannot. This property of latent vari-
able models is theoretically desirable but, as of now,
it is not clear whether current latent variable mod-
els are actually able to materialize these theoretical
benefits in practice. Given that deep autoregressive
models have an impressive track record at modeling
other kinds of joint distributions (e.g. van den Oord
et al., 2016b,a), we instead propose to employ an au-
toregressive model to estimate joint distributions over
next-step movements for multiagent trajectories.

Since we care to maintain the property of permuta-
tion equivariance wrt. agents (and thereby trajecto-
ries), given an autoregressive factorization we propose
to model each factor with a GNN. While autoregressive
models usually work wrt. a fixed (sometimes arbitrar-
ily) ordering of the random variables to be estimated
(e.g. Larochelle and Murray, 2011), the property of
permutation equivariance suggests training over ran-
dom orderings of intra-timestep agent movements in-
stead. Our approach is thus closely related to training
order-agnostic autoregressive models such as order-
less NADE (Uria et al., 2014, 2016) or XLnet (an au-
toregressive pretraining method for natural language
tasks, Yang et al., 2019). In both cases, models are
trained over factorizations wrt. random orderings.

To allow for efficient training of random autoregres-
sive factorizations, we devise conditional two-stream
attention (CTSA), a method that extends the two-
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stream attention mechanism of XLNet to conditional
distributions on sets. That is, CTSA allows us to ef-
ficiently train autoregressive GNNs or/and transform-
ers (Vaswani et al., 2017) for joint densities over sets of
random variables, conditioned on observations that are
aligned with the random variables whose distributions
we are modeling: With ground truth targets provided
via teacher forcing, we only need one forward pass per
training instance (or batch) and update. Training the
autoregressive model naively or with other training ap-
proaches may require as many passes as there are ran-
dom variables in the set.

Empirically, we experiment on trajectory data from
professional soccer matches and compare our proposed
model for intra-timestep dependencies to both, a fully-
connected GNN in the form of a transformer, and to
a variational version thereof. In all models, features
of past trajectories are extracted with RNNs and the
density over movements is estimated via a mixture
density network (MDN, Bishop, 1994) approach. We
evaluate models wrt. different discretization frequen-
cies and find that CTSA models low-frequency data
better than the methods we compare to.

Specifically, our contributions are: (i) We propose a
novel autoregressive approach to learn intra-timestep
dependencies in multiagent trajectories (Section 3).
(ii) We propose conditional two-stream attention
(CTSA, Section 4), to allow for efficient training of
conditional autoregressive distributions of random fac-
torizations. (iii) We validate our approach by compar-
ing to GNN and variational GNN models on trajectory
data from professional soccer matches (Section 5).

2 PROBLEM SETTING

Suppose we want to model a continuous distribution
over movements of several agents on the basis of low-
dimensional positional data (i.e. trajectories of xy-
coordinates). Further suppose, that there is no natural
ordering of those agents, and that we observe differ-
ent combinations of agents. We might also want to
share parts of the model architecture over agents. A
reasonable model would thus be autoregressive over
time (which is naturally ordered), but permutation
equivariant over agents. Hence, combining RNNs with
GNNs would be a natural choice. At this point, we
want to note that we include position-agnostic trans-
former architectures when we refer to graph neural
networks (for insights into the relationship of graph
[neural] networks and transformers cf. Battaglia et al.,
2018).

Denoting past observations for agent k at timestep t
with x<t

k , let ht
k = f(x<t

k ) be a representation of x<t
k

encoded with an RNN (optionally the representation

can be enriched with the output of additional feature
extractors) and let ht = {ht

1, . . . ,h
t
K} be the set of

representations for all K agents. Set functions, such as
GNNs over fully-connected graphs or position-agnostic
transformer architectures, allow us to estimate a con-
ditional joint distribution p(∆xt|ht) over the set of all
K movements ∆xt

k = xt
k−x

t−1
k at timestep t, which we

denote by ∆xt = {∆xt
1, . . . ,∆xt

K}. Assuming condi-
tional independence, we can thus estimate parameters
ψt
k of parameterized movement distributions per agent.

An appropriate GNN pass would result in the estima-
tion of a set of parameters ψt = {ψt

1, . . . , ψ
t
K}, while

our joint distribution would factorize as p(∆xt|ht) =

p(∆xt|ψt) =
∏K

k=1 p(∆xt
k|ψt

k). Due to the permuta-
tion equivariance of set functions (cf. Zaheer et al.,
2017), this distribution would be invariant to permu-
tation over trajectories.

Figure 1: Modeling joint movements ∆xt with a GNN
assumes conditional independence (filled/unfilled cir-
cles denote observed/unobserved random variables).

At this point, we want to stress the fact that fully-
connected GNNs, or transformer architectures for that
matter, lead to conditionally independent distribu-
tions over movements within a single timestep due
to the deterministic nature of these models: The pa-
rameters ψt

k are deterministically determined given in-
puts ht (compare Figure 1 for a visualization). With
an MDN approach, where GNNs output parameters
of a Gaussian mixture model (GMM) per agent, we
can nevertheless model multimodal continuous distri-
butions per agent. For multiagent trajectories this al-
ready is a strong baseline (cf. Rudolph et al., 2020).

However, the performance of these models depends on
whether the past trajectories capture all information
about potential interactions. If this were to be the
case, any stochasticity in the trajectories might rea-
sonably be strictly local and due to the decisions and
actions made by each agent. In the case of partial ob-
servability, conditionally independent models for intra-
timestep movement naturally fail to account for de-
pendencies that are due to unobserved or latent vari-
ables. Indeed, incorporating explicit global or local
latent variables zt or zt = {zt1, . . . , ztK} into the mod-
els is one way to allow for conditional dependencies
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between movements. Latent variables can induce con-
ditional dependencies into the above factorization of
p(∆xt|ht) via pushing a dependence on the latent vari-
ables into each factor. For continuous latent variables,
we have

p(∆xt|ht) =

∫
zt

p(zt|ht)p(∆xt|ht, zt)dzt

=

∫
zt

p(zt|ht)

K∏
k=1

p(∆xt
k|ht, zt)dzt.

These kind of models take on the form of conditional
variational autoencoders (CVAEs, Sohn et al., 2015)
which can be learned like regular variational autoen-
coders (VAEs, Kingma and Welling, 2014; Rezende
et al., 2014) in principle. For the task of modeling
multiagent trajectories, both the encoder as well as
the decoder may involve GNNs. We consider the graph
variational RNN (GVRNN, Yeh et al., 2019) an exam-
ple of this model class, even though it comes with more
involved modeling choices, such as feeding the latent
variables into the RNN, as is prescribed for variational
RNNs (Chung et al., 2015).

Even sophisticated dynamical VAEs (cf. Girin et al.,
2020) like the GVRNN model might however fail to
model certain dependencies due to posterior collapse,
as VAEs are known to have issues with relatively
strong decoders (cf. Bowman et al., 2015; Chen et al.,
2017; Zhao et al., 2019). When the dependence of joint
next-step movements ∆xt on past trajectories x<t is
relatively high, a decoder that is conditioned on the
latter’s joint representation ht is likely to be a strong
decoder. The possibility of this failure mode motivates
an autoregressive approach to distribution estimation
within each individual timestep. On a technical note,
the proposed autoregressive approach further allows
for arbitrary conditioning within joint intra-timestep
movements, which is not feasible with vanilla latent
variable approaches. We would have to make changes
to the model and training scheme to allow for such
conditioning in latent variable models (for standard
VAEs this has been proposed in Ivanov et al., 2019).

3 AN AUTOREGRESSIVE
APPROACH

In this section, we propose to model the distribution
over joint intra-timestep movements by means of au-
toregressive factorization, where factors are estimated
with a fully-connected GNN. Suppose that the joint
movement at timestep t, ∆xt, is ordered by a K-tuple
o, denoting permutations of integers 1 through K. For

any such tuple, the factorization

p(∆xt|ht) =

K∏
k=1

p(∆xt
ok
|∆xt

o<k
,ht)

does not impose any constraints on the distribution
p(∆xt|ht) (cf. Uria et al., 2014, 2016). Specifically,
the factorization does not prescribe any form of con-
ditional independence and we thus in principle can
model conditional dependencies inherent in the joint
distribution over movements. In accordance with pre-
vious publications, we refer to the above factorization
as autoregressive (AR).

Given a random but fixed ordering o, we can thus
introduce a tractable generative model for our task:
We first estimate a distribution for the first factor
p(∆xt

o1 |h
t), given features of all past trajectories, with

a GNN. We then sample the first movement and en-
code it into representation ϕ(∆xt

o1). Combining rep-
resentations ϕ(∆xt

o1) and ht
o1 at a graph node, we

next estimate the distribution p(∆xt
o2 |ϕ(∆xt

o1),ht)
and continue to iteratively estimate and sample from
p(∆xt

ok
|∆xt

o<k
,ht) in the same fashion until we have

generated all joint movements ∆xt. See Figure 2 for a
sketch of this process. Note that, by combining move-
ment representation ϕ(∆xt

k) of agent k with a repre-
sentation of its past ht

k at the same graph node, we ex-
plicitly encode which next-step movement and which
past belong to the same agent.

As noted earlier, we assume that there is no natural
ordering to the trajectories. Since we care to maintain
the property of permutation equivariance wrt. agents
(and thereby trajectories), this suggests training over
random orderings of intra-timestep agent movements.
Assuming the ordering of the trajectories to be ran-
dom, we are thus training our model according to
random factorizations. Note, that this does not re-
sult in a model which is equivariant to permutations
over different autoregressive factorizations. However,
given a model with a fixed autoregressive factoriza-
tion, the proposed method is permutation equivariant
with respect to past trajectories and conditional den-
sities of individual agent movements. That is, we have
to consider two types of equivariance: one regarding
random factorizations and one regarding permutations
of agents. As in orderless NADE (Uria et al., 2014,
2016), we can take the viewpoint that with respect
to random factorizations we are effectively training an
ensemble of models with shared parameters: While
the model will result in different log-likelihood esti-
mates and/or samples for different orderings, in princi-
ple we model and optimize the expected log-likelihood
Eo[p(∆xt|ht; o)], where the expectation is over dif-
ferent orderings o of factors p(∆xt

ok
|∆xt

o<k
,ht), and

learning remains straight-forward. We can even eval-
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Figure 2: Autoregressive process of generating joint movements ∆xt with a GNN. We depict the first two factors.

uate the log-likelihood with an ensemble over different
orderings. Sampling is implemented according to ran-
dom orderings.

Training the model iteratively wrt. ground truth move-
ments ∆xt (for time t) however is inefficient as we
would need K forward passes through the GNN to
calculate losses wrt. all K agents. To train more effi-
ciently, we could resort to a masking scheme which
has been proposed for training in orderless NADE
(Uria et al., 2014, 2016) as well as in Ghazvininejad
et al. (2019). However, also with this approach we
may not estimate all parameters ψt of the joint distri-
bution over movements in parallel (as is also pointed
out in Alcorn and Nguyen, 2021b). Standard prac-
tice for efficiently training transformer decoders on se-
quences involves an autoregressive mask, which pre-
vents updates to representations in intermediate and
final layers wrt. subsequent nodes in the current or-
dering (which for language models is usually causal,
i.e. from left to right, cf. Vaswani et al., 2017). This
practice results in a single forward pass through the
transformer per sequence and update during training
and is thus as efficient wrt. forward passes, as we can
get. Naively applying such an autoregressive mask is
however not an applicable practice for modeling con-
ditional densities of the form considered in this paper.

4 CONDITIONAL TWO-STREAM
ATTENTION

In this section, we show how efficient training can
be addressed by building upon XLNet’s (Yang et al.,
2019) two-stream attention mechanism and thus by
incorporating query nodes into our model. We begin
our exposition by stating the desiderata that we build
upon to implement an autoregressive masking scheme
that requires only a single forward pass for our task.

4.1 Desiderata for Masking Scheme

A causal autoregressive mask as discussed above does
not transfer to the task where we want to model condi-
tional distributions over next-step movements. In par-

ticular, combining representations of next-step move-
ments ∆xt and representations of past trajectories ht

at individual nodes (as is depicted in Figure 2) cannot
result in proper masking. To allow for parallel and ef-
ficient training it is important to use separate sets of
nodes to represent (i) individual observed movements
∆xt

ok
of the agents (which are the targets in our train-

ing process) and (ii) individual information about pre-
vious timesteps ht

ok
which we condition on.

These two sets of nodes are however not sufficient, if we
aim to not only use shallow graph neural networks in
the involved transformations: While we could in prin-
ciple estimate ψt

ok
by letting the representation ht

ok
at-

tend to all of ht and appropriately masked targets ∆xt,
this is only an appropriate masking scheme for a single
layer. In any subsequent layer, we cannot allow ht

ok
to

attend to all representations of other nodes departing
in ht, as some of these nodes will have been updated
with respect to ∆xt

o≥k
, and thus with information that

a node representation resulting in ψt
ok

is not supposed
to have. We thus need to introduce a third set of nodes
(iii), which we refer to as query nodes and which we
denote by qt = {qt

o1 , . . . ,q
t
oK}. We can then estimate

each ψt
ok

by transforming its respective query node qt
ok

appropriately: Each qt
ok

should be able to attend to
all representations of ht and every preceding target
∆xt

o<k
according to the ordering o. However, each qt

ok
should not be allowed to attend either directly or in-
directly to any information about ∆xt

o≥k
.

4.2 Query Nodes as the Solution

In the spirit of XLNet’s two-stream attention (Yang
et al., 2019), we introduce conditional two-stream at-
tention (CTSA), in which we employ query nodes
that adhere to the above desiderata. Because the
specific architecture which we propose constitutes an
encoder-decoder like transformer model, we make use
of terms from transformer literature. Note how-
ever, that the underlying concepts should transfer to
other (fully-connected) graph neural networks. With
a transformer architecture, updates to our node rep-
resentation conveniently involve multi-headed atten-
tion (Vaswani et al., 2017) and other standard design
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Figure 3: Sketch of the proposed conditional two-stream attention (CTSA) approach: Standard encoder layers
model interactions of past trajectories. In decoder layers we employ two attention streams. Example attention
masks are shown to the right (a filled dot in row r and column c denotes that node r can attend to position c).

choices, which we assume to be beneficial for the ca-
pacity and representative power of the proposed model
given recent successes of transformers in areas other
than natural language processing (e.g. Carion et al.,
2020).

A sketch of the proposed architecture is provided in
Figure 3. We assume to have access to some represen-
tations of past trajectories ht, as well as ground truth
next-step movements ∆xt. We also assume, that we
want to train wrt. a specific random ordering o. For
the purpose of this exposition, representations in ht

will be assigned to context nodes, while we will call rep-
resentations based on ϕ(∆xt) target nodes (note, that
this terminology differs from the terminology used in
Yang et al., 2019). We further introduce query nodes
qt = {qt

o1 , . . . ,q
t
oK}, that share a single learnable em-

bedding and whose final representation q̃t
out will be

used to estimate parameters ψt for agent movements
at timestep t (in this notation tilde marks updated
representations).

We first model any interactions in the context ht by
means of a standard transformer encoder with un-
masked self-attention, giving us an updated context
h̃t
out (depicted in the left part of Figure 3). We then

add h̃t
out to initial target and query representations

ϕ(∆xt) and qt (depicted by the ⊕ symbols in Fig-
ure 3). We propose elementwise addition, but also
experimented with concatenation. We then update
both target and query representations alike in a trans-
former decoder, for which we implement two-stream

attention: Specifically, we keep updating two streams
(or strands) of transformer decoder layers: one for the
target representations and one for the query represen-
tations (depicted in the center of Figure 3). We further
ensure appropriate masking (depicted in the right part
of Figure 3). The target representations are updated
with a self-attention layer, which features an autore-
gressive mask according to given ordering o, such that
any target node can attend to any preceding target and
to itself. The query representations are updated with
an attention layer, where query representations consti-
tute attention queries (Q), while the targets constitute
attention keys (K) and values (V). In principle, we em-
ploy the same autoregressive mask here as is used in
the self-attention layer for the targets, but exclude the
attention of any single query q̃t

ok
to its correspond-

ing targets ϕ̃(∆xt
ok

) (i.e. the diagonal of the attention
mask is turned off). In both decoder strands, what fol-
lows is an attention layer attending to h̃t

out (i.e. h̃t
out

are used for keys and values) with targets and queries
functioning as attention queries (Q) respectively. We
decided to employ the inverse of the target mask wrt.
this attention layer, although this might be considered
an implementation detail.

The important aspect of this architecture is, that we
keep updating target and query representations, while
making sure that both have access to all information
in the context h̃t

out, but that any single query repre-
sentation q̃t

ok
will only have had access to information

from target representations ϕ(∆xt
o<k

), which precede
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the query in the given ordering o. That is: with CTSA
we devised a method to estimate all parameters ψt of
a conditional movement model in parallel while adher-
ing to some random factorization, given ground truth
movements are provided during training. Random or-
derings can be implemented via generating random
autoregressive masks. The proposed method is differ-
ent than the two-stream attention mechanism as intro-
duced for XLNet in various ways. Conceptually most
relevant is the following: In XLNet, queries only see
target representations which precede these in the given
order, and conditioning is only necessary with respect
to the positional information, i.e. the query position.
For CTSA we are making sure that queries can attend
to all of the observations h̃t

o1 through h̃t
oK which we

are conditioning on, while also ensuring that the model
properly aligns queries with context and targets.

Wrt. the context and the encoder there is nothing to
be aligned, as all representations can see all other rep-
resentations. Within the decoder, we prefer not to
attend to information belonging to a single agent k
twice (i.e. once to agent k’s context and once to agent
k’s target representation). Our reasoning is, that the
model otherwise would have to implicitly align both
representations. We hence simply mask attention to
the encoder output with the inverse of the target mask.
Note, that since we added context information to ini-
tial target and query nodes and we have skip connec-
tions around attention layers. Each target and query
thus always is updated wrt. all (allowed for) informa-
tion from every other agent, including itself. We refer
to Sections B and C of the supplementary material for
more implementation details and pseudo code.

5 MODELING MULTIAGENT
TRAJECTORIES

5.1 Data and Evaluation

We evaluate our proposed approach on proprietary tra-
jectory data from professional soccer matches.1 The
data which we use consists of xy-coordinates for all
players and xyz-coordinates for the ball, recorded at
25 Hz (i.e. frames) per second. In total, we experiment
wrt. 95 matches, from which we extract roughly 92,000
sequences of five seconds each, where (i) all 22 players
and the ball are on the pitch, (ii) the ball remains in
play and (iii) one team retains ball possession over the
whole five seconds. Consecutive sequences in general
overlap by two seconds. We experiment wrt. five data

1All matches are taken from season 2017/18 of the Ger-
man Bundesliga and can be acquired from the German
league (DFL). Only rather small datasets of similar kind
are publicly available, for example the soccer video and
player position dataset (Pettersen et al., 2014).

folds over matches, always training on 3/5 of the data,
validating on 1/5 and testing the models with the best
validation log-likelihoods on the last 1/5 of the data.

We transform the data as such, that the team in pos-
session of the ball always plays from left to right. Since
our models process the data as sets of trajectories,
we provide type embeddings which encode whether a
trajectory belongs to (i) the ball, (ii) the keeper be-
longing to the team with ball possession, (iii) a field
player belonging to the team with ball possession, (iv)
the keeper belonging to the team without ball posses-
sion and (v) the field players belonging to the team
without ball possession. For different experiments, we
downsample the sequences to either 5 Hz, 2.5 Hz or
1 Hz. Note that this results in sequences with 25, 13
and 5 frames respectively. For every timestep t we en-
code trajectories into representations ht by means of
an RNN with GRU cells (Cho et al., 2014). We fur-
ther provide the models with current positions xt−1,
as well as last time differences ∆xt−1, on both of which
we apply simple feed-forward networks for feature ex-
traction. Positions are normalized such that the pitch
(which is of the same size for all our instances) ranges
from −1 to 1 in both, x and y dimension. Time differ-
ences are standardized wrt. the training data. Output
distributions p(∆xt

k| . . .) are modeled with a mixture
density network approach with ten mixture compo-
nents.

In all experiments, we only model the ten trajecto-
ries x1:10 of the field players belonging to the defend-
ing team. At every timestep, we condition on the
ground truth past of the ball and other players, but
neither on their next movement nor on any other fu-
ture information. That is, at every timestep we model
p(∆xt

1:10|x<t
1:23), were x11:23 refer to the trajectories

of the ball and of other players. When we generate
trajectories, we update xt

11:23 with ground truth data
after sampling xt

1:10 via next-step movements ∆xt
1:10.

We report log-likelihood values, respectively impor-
tance sampled estimates thereof for the variational
model (cf. Rezende et al., 2014; Burda et al., 2015),
that relate to the data at an unnormalized scale.
We provide mean values over trajectories, agents and
timesteps. As a proxy for the quality of the differ-
ent models, we further measure the L2 deviation from
generated x̃’s to ground truth data x. Specifically, we
employ the following measures:

1

SKT

S∑
s=1

K∑
k=1

T∑
t=1

∥∥x̃t
k,s − xt

k

∥∥
2
, (1)

and min
s∈{1,...,S}

1

KT

K∑
k=1

T∑
t=1

∥∥x̃t
k,s − xt

k

∥∥
2
, (2)

where t = 1 denotes the first and T the last prediction
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(a) 5 seconds at 5 Hz (b) 5 seconds at 2.5 Hz (c) 5 seconds at 1 Hz

Figure 4: Movement generation with CTSA jointly modeling the ten blue field players (last three seconds).

timestep. With s, we index independent trajectories
rolled out with the models, and fix S to 5 in our experi-
ments. As we only average over the trajectories which
we model, K is set to 10. In results Table 1, Avg.
L2 refers to mean deviations over samples (1), while
Avg. L2 (best) refers to the mean deviation within the
best sample wrt. a single trajectory (2). Fin. and Fin.
(best) refer to the measures evaluated only at the fi-
nal step t = T . We further average within the testset,
while mean and standard errors are wrt. datasplits.

5.2 Models and Results

Within this setting, we compare three models for the
task of estimating conditional distributions over joint
next-step movements: Specifically, we compare an au-
toregressive model trained via conditional two-stream
attention (which we refer to as CTSA) to both, a fully-
connected GNN in the form of a standard transformer
encoder, as well as to a conditional variational autoen-
coder. In the latter, we associate local latent variables
with each agent. The variational posterior and de-
coder are both modeled with transformer encoder lay-
ers. The prior over latent variables is taken to be un-
conditional and standard normal (while this departes
from the most standard CVAE formulation, assuming
an uncoditional prior is a valid alteration to the model;
cf. Sohn et al., 2015). We refer to this graph varia-
tional model as GVNN. All three models have been de-
signed to have roughly 4.5 million parameters and were
trained with Adam (Kingma and Ba, 2014) at a learn-
ing rate of 0.001 and standard parameters otherwise.
For all models we fairly tweaked architectures and ex-
perimented with different levels of regularization via
dropout (cf. Srivastava et al., 2014) in the transformer
layers, as well as with different learning rates in pre-
liminary experiments. Detailed model architectures
are provided in Section B of the supplementary ma-
terial. We also explored annealing the KL divergence
(cf. Sønderby et al., 2016) for the GVNN. However,
this did not improve results but rather resulted in un-
stable training and KL divergences remained very low
for experiments at all three frequencies. We thus credit

the low KL values to a form of posterior collapse that
annealing alone is not able to fix. In line with the low
KL values, importance sampling (with 100 samples)
improves on the ELBO only marginally.

Results for experiments on trajectories at 5 Hz, 2.5 Hz
and 1 Hz data can be found in Table 1. We would
like to stress that the empirical results for different Hz
rates are not comparable. When generating trajec-
tories from the models, we condition on two seconds
of data and generate the final three seconds always.
Nevertheless, intra-model performances relate to dif-
ferent tasks since we condition on different pieces of
information given different data frequencies. Regard-
ing the results, we especially find that CTSA performs
best wrt. log-likelihood and L2 deviations when com-
paring models at 1 Hz. At 2.5 and 5 Hz both GNN
and GVNN are performing better than CTSA wrt. L2

deviations. Log-likelihood values (respectively impor-
tance sampled estimates thereof) for these two exper-
iments are very close. Generated trajectories from the
CTSA model are depicted in Figure 4. We conjecture,
that there are more conditional dependencies in the
joint distribution over movements in the 1 Hz data
than at higher frequencies. This is a reasonable con-
jecture, because there are strictly more unknowns in
the 1 Hz data. And it implies, that while CTSA does
not provide benefits at higher frequencies, it models
conditional dependencies better than other models.

See Table 2 for an ablation study wrt. CTSA model
choices conducted on the 1 Hz data. We compare to
both, a model without attention mask for context at-
tention, as well as to a model in which we do not in-
clude context attention at all. Note, that even the
model without context attention should have strictly
more power than a vanilla GNN, since we initialize
queries and targets with the context representation as
updated by a transformer encoder in the first place.
The results do support our architectural choices. Im-
portantly, the difference of CTSA to the model with-
out context attention is statistically significant, as per
a paired t-test with a p-value of 0.006. The advan-
tage of CTSA over a model without context mask is
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Table 1: Results for experiments with trajectories at different frequencies. Notably, CTSA is best at modeling
the 1 Hz data, for which we suspect more conditional dependencies in joint movements. Note, that metrics are
not comparable over experiments at different Hz. For the velocity baseline, we continued trajectories with last
known time-differences ∆xt. Further: LL = log-likelihood, SE = standard error, and L2 deviations are in meter.

LL Avg. L2 Avg. L2 (best) Fin. L2 Fin. L2 (best)

Hz Step model Mean SE Mean SE Mean SE Mean SE Mean SE

1 Velocity 3.35 ±0.01 5.58 ±0.01
1 CTSA −1.49 ±0.01 2.24 ±0.01 1.81 ±0.01 3.31 ±0.02 2.61 ±0.01
1 GVNN −1.65 ±0.00 2.29 ±0.01 1.90 ±0.01 3.39 ±0.02 2.74 ±0.01
1 GNN −1.65 ±0.00 2.29 ±0.02 1.90 ±0.02 3.39 ±0.03 2.74 ±0.03

2.5 Velocity 2.58 ±0.01 5.51 ±0.01
2.5 CTSA 1.45 ±0.00 1.60 ±0.01 1.32 ±0.01 2.97 ±0.01 2.39 ±0.01
2.5 GVNN 1.44 ±0.01 1.58 ±0.01 1.31 ±0.00 2.93 ±0.01 2.36 ±0.01
2.5 GNN 1.43 ±0.01 1.56 ±0.00 1.30 ±0.00 2.90 ±0.01 2.34 ±0.01

5 Velocity 2.06 ±0.00 4.82 ±0.01
5 CTSA 3.82 ±0.02 1.37 ±0.01 1.14 ±0.01 2.82 ±0.02 2.28 ±0.02
5 GVNN 3.83 ±0.02 1.33 ±0.00 1.10 ±0.00 2.71 ±0.01 2.19 ±0.01
5 GNN 3.82 ±0.02 1.33 ±0.01 1.11 ±0.00 2.73 ±0.01 2.20 ±0.01

Table 2: Ablation study for CTSA at 1 Hz

Step model Mean LL SE

CTSA (as proposed) −1.493 ±0.006

CTSA w/o ctx. mask −1.497 ±0.004
CTSA w/o ctx. attn. −1.503 ±0.005

not statistically significant (p-value of 0.375) though.
Whether the latter result relates to the rather shal-
low CTSA architecture (with only two CTSA decoder
layers) or whether this might be an indication that at-
tention does not need to be guided explicitly regarding
alignment of past trajectories and targets remain open
questions. We also explored the option of concatenat-
ing the context to target and query representations
(including necessary transforms), however this did not
result in any performance improvements over a model
with elementwise addition.

5.3 Fitting Synthetic One-dimensional
Movements of Two Coordinated Agents

To highlight the capacities of the GNN, GVNN and
CTSA respectively, we further experiment on a simple
synthetic dataset. We assume two agents are moving
a single coordinated step on the real line; one on the
x-axis and one on the y-axis. Each agent has infor-
mation wrt. the location of different two-dimensional
Gaussians, which they combine in a mixture model to
coordinate their movements.

We use downsized models to fit the data in form of lo-
cal agent information and samples from the joint move-
ment distribution. Notably, we employ four mixture
components in the Gaussian mixture output distribu-
tion of the MDN architecture, which still amounts to
strictly more capacity than is needed to fit the data.
We show resulting distribution estimates by sampling
from fitted models in Figure 5. While both the GVNN
and CTSA can fit the data reasonably well, the GNN
fails to model the data as is to be expected, since it as-
sumes independent distributions per agent. We want
to point out, that fitting the data with the GVNN took
several approaches, and that we still observe artifacts
of wrongly placed Gaussians in Figure 5c. Arguably, it
is easier to fit a GVNN with a single Gaussian output
distribution to the data.

6 RELATED WORK

Generative models for soccer player trajectories have
recently been argued to bear potential for in-depth
game analysis, especially considering the study of
counterfactual movements (Tuyls et al., 2021). While
early work on modeling multiagent trajectories in-
volved heuristics to account for player ordering (Le
et al., 2017; Zhan et al., 2019), the use of GNNs (cf.
Battaglia et al., 2018) with attention (Xu et al., 2015;
Bahdanau et al., 2015) or in the form of transform-
ers (Vaswani et al., 2017) to model agent interaction
is widespread. Notable applications to sports include
Hoshen (2017) and Kipf et al. (2018). Variational au-
toencoding approaches towards sports trajectories in-
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(a) Ground truth (b) GNN fit

(c) GVNN fit (d) CTSA fit

Figure 5: Synthetic data with 2 agents jointly moving
on the x- and y-axis respectively. Samples from the
ground truth distribution as well as from fitted models.

clude Felsen et al. (2018), Zhan et al. (2019) and Yeh
et al. (2019). A recently proposed autoregressive ap-
proach is Alcorn and Nguyen (2021a). Fadel et al.
(2021) propose to model agent movements conditioned
on other agents via a combination of GNNs and con-
ditional flows (Lu and Huang, 2020), however they do
not consider joint movement distributions.

The closest approach to our proposed method, we con-
sider to be Alcorn and Nguyen (2021a), who employ
a standard transformer encoder with autoregressive
mask over both the timestep and agent dimension to
model basketball trajectory data in a discretized out-
put space. Abstracting from initial locations, for each
timestep and agent, positional representations are aug-
mented with target representations, which are inserted
sequentially to the right. While this allows to use a
standard autoregressive mask for subsequent represen-
tations, this in effect doubles the number of represen-
tations in which attention is quadratic. Redundan-
cies are introduced, as each previous position is at-
tend to twice (once as query representation and once
as target representation). While we also introduce ad-
ditional nodes, we do not explicitly attend over differ-
ent timesteps, since we employ an RNN architecture to
encode past trajectories. Most importantly, the model
proposed in Alcorn and Nguyen (2021a) requires at-
tention to implicitly align all representations belong-
ing to the same trajectory, while we propose to align
trajectories more explicitly in CTSA.

While we chose to model past trajectories individually,
others (e.g. Dick et al., 2021; Yeh et al., 2019) suc-

cessfully model interactions in trajectories within the
RNN. This is related to graph recurrent neural net-
works (GRNNs, e.g. Sanchez-Gonzalez et al., 2018).
We consider this a design choice as we can arrive at
context representations accounting for interactions in
different ways. Regarding the general problem of esti-
mating conditional distributions with aligned observa-
tions, we however consider the proposed encoder ap-
proach a somewhat universal solution.

7 CONCLUSION

In this paper, we proposed an autoregressive ap-
proach to model conditional distributions over joint
movements in multiagent trajectories, or more gen-
eral conditional distributions with aligned random and
observed variables. We further proposed a method
(CTSA) to train such conditional distributions effi-
ciently while adhering to a random autoregressive fac-
torization. We validated the proposed autoregressive
approach, training scheme and model choices on tra-
jectory data from professional soccer matches and find
that our method models low frequency data better
than other approaches. We conjecture, that this is
due to low frequency data being prone to more con-
ditional dependencies in joint distribution over move-
ments within each timestep.
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Supplementary Material:
Modeling Conditional Dependencies in Multiagent Trajectories

A ADDITIONAL EXPERIMENTS

In this section, we present the results of additional
experiments, which refute the presumption that the
success of CTSA on the 1 Hz data is connected to
shorter sequence lengths. The results strengthen our
conjecture, that the performance of CTSA on the 1
Hz data is rather due to the low data frequency, which
probably comes with more conditional dependencies in
the joint distribution over movements.

Since we fixed the lengths of the sequences we exper-
imented with in Section 5 to five seconds each, but
experimented wrt. different amounts of frames per sec-
ond, the sequences at 5 Hz, 2.5 Hz and 1 Hz differ in
terms of absolute timesteps. As we point out in Sec-
tion 5, the resulting sequences have 25, 13 and 5 frames
respectively. While the experiments in this section are
still wrt. different Hz, we fix the amount of timesteps
for sequences at all frequencies to five timesteps each.
When generating trajectories from the models, we con-
dition on two frames of data and generate the final
three frames (instead of seconds, as in Section 5).

We present our findings in Table 3. The results for the
experiment on the 1 Hz data carry over one to one from
Section 5, as the experiment was run with five frames
in the first place. For the 2.5 Hz and 5 Hz experiments,
we cut the sequences to the first five frames each. This
way, the models train on the same amount of timesteps
per sequence and on the same overall amount of data
in experiments at all three frequencies.

Overall, we find that the additional experiments sup-
port the results presented in Section 5. While CTSA
is best at 1 Hz, and thus probably models conditional
dependencies better than the other models, it does not
provide benefits at higher frequencies. Instead, we find
that all models operating on five frames sequences at 5
Hz and 2.5 Hz perform roughly the same. That CTSA
results in the best log-likelihood for the 2.5 Hz data is
in accordance with the experiments presented in Sec-
tion 5, although it seems that the result is a bit more
pronounced for the experiments that are presented in
this section.

Unrelated to our findings, we want to note something
wrt. L2 deviations at 5 Hz, where the samples gen-
erated from the models have larger mean and final
deviations than the velocity baseline: We find that

this result is due to the regularity in the data and the
noise that is introduced via sampling. If we generate
the trajectories wrt. means of intra-timestep distribu-
tions rather than wrt. samples, we find that all three
models are consistently better than the baseline.

B MODEL ARCHITECTURES

In this section, we describe implementation details and
especially the model architectures which we used in our
experiments on the soccer data. Figures 6 through
9 sketch our feature extraction process, the GNN,
GVNN and CTSA models, as well as the mixture den-
sity network part (MDN, Bishop, 1994). All opera-
tions other than the transformer and CTSA layers are
applied to individual nodes.

B.1 Feature Extraction

As noted in Section 5, for every timestep t we encode
past trajectories into representations ht by means of an
RNN with GRU cells (Cho et al., 2014). Specifically,
we chose to use two layers with 256 dimensional hidden
state. We further provide the models with current po-
sitions xt−1, as well as last time differences ∆xt−1, on
both of which we apply simple feed-forward networks
for feature extraction. The input to the GNN, GVNN
and CTSA models is a concatenation of the represen-
tation extracted by the RNN with the representations
of the current positions as well as the last time dif-
ferences. Positions are normalized such that the pitch
ranges from −1 to 1 in both, x and y dimension. Time
differences are standardized wrt. the training data; this
also holds for targets, as used in the GVNN and CTSA
models. See Figure 6 for a visualization, including de-
tails on the feed-forward networks. The output of the
feature extraction is fed into the step models. This is
also where role embeddings are added (see Figures 7
and 8 for details).

B.2 GNN, GVNN and CTSA Step Models

The GNN, GVNN and CTSA components make up
the core of our models. Architectures for the GNN
and CTSA component are depicted in Figure 7, the
architecture for the GVNN is depicted in Figure 8. All
operations other than transformer and CTSA layers
are applied to individual nodes.
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RNN (GRU, 2 layers, 256 dim)

xt−1

FC to 128

ReLU

FC to 128

∆xt−1

FC to 128

ReLU

FC to 128

concatenate

Figure 6: Feature extraction (FC = fully-connected layers, ReLU = rectified linear unit functions)

For our implementation of CTSA, we intentionally
choose to stay as close as possible to a standard trans-
former encoder-decoder architecture. To that end,
we use standard transformer layers (or blocks, includ-
ing all residual-, normalization- and positional feed-
forward-layers, as introduced in Vaswani et al., 2017)
in the encoder. For the CTSA decoder, we also share
most details with the transformer architecture. In
principle we only add the query-stream in the decoder
and ensure appropriate masking. We share parameters
of transformer blocks for queries and targets. Due to
the above choices, we decided to implement the GNN
and GVNN with transformer encoder layers as well.
As stated in Section 5: all three models have been
designed to have roughly 4.5 million parameters and
were trained with Adam (Kingma and Ba, 2014) at a
learning rate of 0.001 and standard parameters other-
wise. For all models we fairly tweaked architectures
and experimented with different levels of regulariza-
tion via dropout (cf. Srivastava et al., 2014) in the
transformer layers, as well as with different learning
rates in preliminary experiments.

In all transformer layers, we ended up using 256 di-
mensional node representations and eight heads. We
set the dimensionality for positional feed-forward net-
works to be 512. While attention within the encoders
is always unmasked, we found that it helped with
training when we restrict the attention layers to only
the nodes which result in outputs (i.e. the nodes cor-
responding to the ten defending field players) for the
later layers. For the GVNN, we employ a 32 dimen-
sional latent variable that is modeled with a Gaussian
with diagonal covariance matrix. It turns out, that a
dropout rate of 0.1 in the transformer and CTSA lay-
ers provided good regularization for all models. Note
however, that we further regularize individual runs by
early stopping wrt. log-likelihood or ELBO values on
the validation data.

B.3 Mixture Density Network

As stated in Section 5, output distributions for in-
dividual agents, i.e. p(∆xt

k| . . . ), are modeled with a
mixture density network approach with ten mixture
components. Given the trajectory data, components
are two-dimensional. We further chose to restrict the
models to use diagonal covariance matrices. The MDN
part of our models is depicted in Figure 9.

C PSEUDO CODE

With Algorithm 1, we provide some pseudo code for
the implementation of CTSA. Specifically, we sketch
neural network modules to be defined, the initializa-
tion and the forward pass through the CTSA archi-
tecture. For the backward pass we can rely on back-
propagation; hence pseudo code for the backward pass
is not provided. Note, that the code only describes
the CTSA part of our architecture and that the whole
architecture is trained end-to-end. Further note, that
within the pseudo code we use the notation introduced
in Section 4 but depart from it in minor details: For
succinctness, we refrain from using tilde symbols and
out subscripts for updated representations. What we
refer to as context mask in the pseudo code is depicted
as ∼target mask in Figure 3.
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input to step model

FC to 256

add embeddings

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

(a) GNN

input to step model

FC to 256

add embeddings

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

∆xt

FC to 128

ReLU

FC to 256

add embeddings

elementwise add

q

add embeddings

elementwise add

CTSA decoder layer

CTSA decoder layer

(b) CTSA

Figure 7: GNN and CTSA models (in blue transformer encoder layers attention is wrt. all nodes; striped green:
attention only wrt. output nodes; striped blue highlights CTSA layers with autoregressive attention)

Table 3: Results for experiments at different frequencies, but with sequence lengths fixed to five timesteps each.
For details about methods, baselines and evaluation please refer to Section 5. We again want to point out, that
metrics are not comparable over experiments at different Hz. Further: LL = log-likelihood, SE = standard error,
and L2 deviations are in meter.

LL Avg. L2 Avg. L2 (best) Fin. L2 Fin. L2 (best)

Hz Step model Mean SE Mean SE Mean SE Mean SE Mean SE

1 Velocity 3.35 ±0.01 5.58 ±0.01
1 CTSA −1.49 ±0.01 2.24 ±0.01 1.81 ±0.01 3.31 ±0.02 2.61 ±0.01
1 GVNN −1.65 ±0.00 2.29 ±0.01 1.90 ±0.01 3.39 ±0.02 2.74 ±0.01
1 GNN −1.65 ±0.00 2.29 ±0.02 1.90 ±0.02 3.39 ±0.03 2.74 ±0.03

2.5 Velocity 0.76 ±0.00 1.30 ±0.00
2.5 CTSA 1.21 ±0.01 0.70 ±0.00 0.57 ±0.00 1.13 ±0.00 0.91 ±0.00
2.5 GVNN 1.17 ±0.01 0.71 ±0.00 0.58 ±0.00 1.13 ±0.01 0.92 ±0.01
2.5 GNN 1.17 ±0.01 0.70 ±0.00 0.58 ±0.00 1.12 ±0.01 0.91 ±0.01

5 Velocity 0.23 ±0.00 0.39 ±0.00
5 CTSA 3.30 ±0.04 0.25 ±0.00 0.20 ±0.00 0.41 ±0.00 0.34 ±0.00
5 GVNN 3.32 ±0.02 0.25 ±0.00 0.21 ±0.00 0.42 ±0.00 0.34 ±0.00
5 GNN 3.26 ±0.00 0.25 ±0.00 0.21 ±0.00 0.41 ±0.00 0.34 ±0.00
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input to
step model

∆xt

FC to 128

ReLU

FC to 64 FC to 192

concatenate

add embeddings

transformer enc. layer

transformer enc. layer

FC to 32 (µ) FC to 32 (logσ2)

Normal with diagonal covariance matrix

z

(a) Encoder

z

FC to 128

ReLU

FC to 64

input to
step model

FC to 192

concatenate

add embeddings

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

transformer enc. layer

(b) Decoder

Figure 8: GVNN model (32 dimensional latent variable; in blue layers attention is wrt. all nodes; striped green:
attention only wrt. output nodes; µ denotes the mean and σ2 denotes the variance of the variational distribution)

output of step models

FC to 10 (logits for π) FC to 10× 2 (µ) FC to 10× 2 (logσ2)

GMM with diagonal covariance matrices in components

(∼ ∆x̃t during generation)

Figure 9: Mixture density network (with 10 mixture components; π are mixture weights, µ and σ2 denote means
and variances respectively)



Modeling Conditional Dependencies in Multiagent Trajectories

Algorithm 1 CTSA pseudo code

Definitions: ▷ define stateful procedures / neural network modules
procedure TransformerEncoder(context)

. . .
end procedure ▷ standard transformer encoder

procedure MaskedMultiHeadAttention(query, key, value, mask)
. . .

end procedure ▷ standard transformer multi-head attention, attending to values according to mask

procedure QueryStreamLayer(query, target, context, query mask, context mask)
query ← MaskedMultiHeadAttention(query, target, target, query mask)
. . .
query ← MaskedMultiHeadAttention(query, context, context, context mask)
. . .

end procedure ▷ standard transformer decoder layer (including all residual-, normalization-, dropout- and
positional feed-forward-layers) with custom calls to MaskedMultiHeadAttention

procedure TargetStreamLayer(target, context, target mask, context mask)
target ← MaskedMultiHeadAttention(target, target, target, target mask)
. . .
target ← MaskedMultiHeadAttention(target, context, context, context mask)
. . .

end procedure ▷ standard transformer decoder layer (including all residual-, normalization-, dropout- and
positional feed-forward-layers) with custom calls to MaskedMultiHeadAttention

Initialization:
initialize shared query embedding q (i.e. q1 = · · · = qK) and necessary transformer modules

Forward pass:
for instances ht and ϕ(∆xt) do

set o randomly ▷ shuffled integers 1 through K
generate query mask, such that attention query with index ok attends only to values with indices o<k
generate target mask, such that attention query with index ok attends only to values with indices o≤k

generate context mask, such that attention query with index ok attends only to values with indices o>k

ht ← TransformerEncoder(ht)
qt ← q⊕ ht

ϕ(∆xt)← ϕ(∆xt)⊕ ht

for i in number of decoder layers do
qt ← QueryStreamLayeri(q

t, ϕ(∆xt), ht, query mask, context mask)
ϕ(∆xt)← TargetStreamLayeri(ϕ(∆xt), ht, target mask, context mask)

end for
ψt ← qt

end for
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