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1 Introduction

We investigate how to learn functions that rate game
situations on a soccer pitch according to their poten-
tial to lead to successful attacks. We follow a purely
data-driven approach using techniques from deep re-
inforcement learning to valuate multi-player position-
ings based on positional data.

From a conceptual point of view, the execution of
a successful (good) attack pattern should raise the
likelihood of scoring a goal. That is, the likelihood
of scoring before the execution of the pattern should
be smaller than afterwards. We follow this concep-
tual line and explore likelihoods of ’being successful’
from arbitrary game settings. We argue that, by be-
ing able to derive such valuations, we will be able
find good (and bad) attacking patterns by measuring
differences in likelihoods.

2 Contribution

We use tracking data consisting of a sequence of x/y-
coordinates of all players and the ball for a set of
soccer games, sampled at 2 frames per second [1, 2].
The data is split into episodes of continuous ball pos-
sessions of either team. Every episode is assigned a
binary target value that is 1 if the ball possessing
team carries the ball into the final 25m of the oppo-
nent’s half and 0 otherwise.

The goal is to compute a value function that maps
an arbitrary positioning of players and ball to its ex-
pected return, that is the average target value of all
possible subsequent episodes. We take a Deep Re-
inforcement Learning-based approach and learn the

value function with convolutional neural networks
(CNNs) [4, 3, 5]. The CNN treats every positioning
of players and ball as a 2D image with nine channels
such that the resulting 3D tensor encodes the posi-
tions as well as the velocities of the players and the
ball and a ball possession indicator. The model is
then optimized with stochastic gradients using back-
propagation.

Figure 1: Averaged AUC values and standard errors.

3 Empirical Results

We extract episodes from 10 soccer games. The bi-
nary target variables render the evaluation a binary
ranking problem and we use the area under the ROC
curve (AUC) to quantify the quality of the scoring
functions. We report on leave-one-game-out cross
validation results.

The AUC scores are shown in Figure 1. Our ap-
proach is able to learn value functions of player posi-
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Figure 2: Example

tioning for all areas of the pitch. Not surprisingly, the
closer the ball possessing team is to the opponent’s
goal, the higher the average AUC. The closer a team
gets to the dangerous zone, the less chance influences
entering into it. Figure 2 shows a pattern for which
the learned valuation changed the most. Red broad-
ens the game with a long diagonal ball to an open
player on the right wing.
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