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1 Introduction

Anomaly detection (AD) [1, 2] is the task of iden-
tifying items that differ from the majority of data.
While AD is addressing the distinction between
normal and abnormal data, it is typically treated as
an unsupervised learning problem, since it is rather
difficult to find or construct a counter class cap-
turing everything else outside the regarded target
class.

As in many AD methods [8, 6], the underlying
objective is to find the smallest enclosure of data
with minimum volume by using a hyperplane or a
hypersphere respectively. However, based on their
objective, those methods suffer from a hypersphere
collapse if the architecture of the model does not
comply with certain constraints. Recently, outlier
exposure (OE) [3] aims to overcome the sparsity
of data by including auxiliary class labels in the
training of the anomaly detector for robustness.

Using OE data during training promises stun-
ning results [4, 7], while just using a number of
128 random samples in the OE dataset. However,
we show that the selection of those samples actu-
ally has a major influence on the detector’s per-
formance. Intuitively, one might think that when
learning features for a target class, including a va-
riety of alternative classes (anomalies) should in-
crease performance. We show that this does not
always hold. Using more classes in the OE dataset
during training can likewise result in decreasing
the performance. We study multiple variations of
training data and its effects on the performance
and observe significant dependencies of the target
data and data used as OE that may either foster or
prohibit predictive performance. We show that (i)
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random samples of auxiliary data may not give op-
timal results and (ii) while increasing the number
of classes in the auxiliary OE data (i.e. increas-
ing the variety of anomalies), can in fact result in
decreased performance.

2 Network Architecture

Let D = {(x1, y), (x2, y), . . . , (xn, y)} be a dataset
with xi ∈ Rd and y ∈ {0, 1, . . . ,m}. Here D is a
composition of a target dataset DT and an auxil-
iary dataset DOE, where y = 0 denotes the nom-
inal data, while y ∈ {1, 2, . . . ,m} denotes anoma-
lies. Let φf : Rd → Rr be a neural network for
feature extraction of DT and DOE and φq : Rr →
{1, 2, . . . ,m} a sub network for classification of the
features produces by φf .

Figure 1: Networks’ architecture used in this work.
The network φf (·) extracts features from both
datasets, while additional layers of φq(·) are used
for the auxiliary data to calculate lD.

Using additional data during training, we pro-
pose a composite loss lD(DOE)+λlC(DT ) to ad-
dress the two desired characteristics comparative-
ness and descriptiveness (cmp Patel [5]), given by
a compactness loss lC computed by squared intra-
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batch distances

lC =
1

n

n∑
i=1

(φf (xi; θ)−mi)
2, (1)

and a descriptive loss lD being the cross entropy
loss over all classes C,

lD = −
C∑
i=1

yilog(φq(xi; θ))
2 (2)

where mi = 1
n−1

∑
j 6=i(φf (xj ; θ)) is the mean vec-

tor of the rest of the features of the regarded sam-
ple. We make use of the AlexNet CNN architecture
for the structure of φf .

3 Experiments

Using a multi-class dataset like CIFAR, we follow
the common one vs. rest setting for anomaly de-
tection. All models are trained on the target class
DT as well as on OE classes DOE , while test data
includes the test set of the target class and the re-
maining classes, treated as anomalies DA, of the
considered dataset. We study how the auxiliary
dataset DOE should be assembled given a target
class DT . We use CIFAR-10 classes as normal and
abnormal data, while selected classes of CIFAR-100
are used as outlier data DOE .

To determent the influence of each separate class,
we run further testing using each time one of the
nine classes. In contrast to related literature, we
are not using more classes in OE, but try to gain
a better understanding of the usage of OE in AD
through the reduction of factors. Note that, re-
ducing the number of influence factors also results
in excluding a pre-trained network, since the pre-
trained layers include already a certain influence
from the network they are trained with.

3.1 Results

The results in Table 2 show counter-intuitive as well
as non-surprising outcomes. For example, includ-
ing whales in DOE constantly deteriorates perfor-
mance. Distinguishing between dogs and any other
class improves when wolfs are present in DOE . The
same result holds true for cats in DOE . If both DT

and DA are animals, it is beneficial to have cattle
in DOE .

Figure 2: Leaving out whales, results in a better
classifier for most of the target classes, while wolves
are beneficial when dogs are in DA.

4 Conclusions

We showed that using the selection of auxiliary
classes in OE is crucial for the performance of the
classifier. To the best of our knowledge, this effect
has not been studied in the literature so far. We
demonstrated that increasing numbers of classes in
DOE do not per se result in better performances.
Even worse, putting together the wrong classes will
significantly decrease the detection accuracy. Note
that an OE sample from more classes might com-
pensate for the effect of some classes. However,
making a careful selection can help to increase the
performance. This study constituted a first step in
determining the influence of classes in OE, which
can help to choose additional classes for training in
AD problems. However, more experimentation is
necessary.
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