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Abstract

We propose a novel generative deep learning ar-
chitecture based on generative moment matching
networks. The objective of our model is to learn
a distribution over distributions and generate new
sample distributions following the (possibly complex)
distribution of training data. We derive a custom
loss function for our model based on the maximum
mean discrepancy test. Our model is evaluated on
different datasets where we investigate the influence
of hyperparameters on performance.

1 Introduction

Neural networks have been shown to be universal
function approximators in the limit of infinite layer
width [1] or depth [2]. Particularly generative neural
networks make use of the full power of neural net-
works by transforming a simple prior distribution,
which allows for efficient sampling, into an arbitrar-
ily complex data generation distribution. Within
the domain of deep generational models, different
concepts were developed over the years such as vari-
ational autoencoders (VAE) Kingma and Welling [3].
They belong to the family of variational Bayesian
methods and can generate new instances by sam-
pling from a distribution over the latent space of
the autoencoder by making use of the reparameter-
ization trick. Alternatively, flow-based generative
models capture complex distributions by transform-
ing simpler ones using bijections and leveraging the
Change of Variables Theorem [4]. Especially in the
context of image generation, diffusion models [5]
have become prominent. Borrowing concepts from
the area of non-equilibrium thermodynamics, they
learn to denoise images so that, beginning with noise-
only, the image is iteratively denoised until a clear
image is obtained.

In this paper, however, we focus on Generative
Adversarial Networks (GANs) [6]. These networks
consist of a generator and a discriminator network.
The generator uses the beforementioned statistical
transformations to generate new data. The discrim-
inator then acts as a classifier and aims to separate
original training from generated data. The networks
are trained together in a zero-sum game, in which
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the generator tries to “fool” the discriminator into
incorrectly classifying generated data points as true
ones, and the discriminator tries to correctly classify
generated and true samples.

An interesting model related to GANs is the gen-
erative moment matching network (GMMN) [7, 8].
While the generator remains similar or even un-
changed to that of regular GANs, the discrimina-
tor is replaced by the maximum mean discrepancy
(MMD) [9] to measure distances between distribu-
tions p and q, given by

MMD[F , p, q] := sup
f∈F

(Ex∼p[f(x)]−Ey∼q[f(y)]).

The MMD, unlike other methods, such as the
Kullback-Leibler divergence, does not rely on den-
sity estimates of the distributions, but (implicitly)
embeds them into a reproducing kernel Hilbert space
in which the distance is determined. This renders
the MMD particularly useful in settings dealing with
sets of (generated) instances.

When the function space H is a universal RKHS
[10] on a compact domain X of distributions p, q,
the MMD fulfills all the properties of a metric [9],
in particular the correspondence

MMD[F , p, q] = 0⇔ p = q. (1)

However, to devise a generative model that samples
distributions based on a custom MMD loss while
preserving the convergence guarantees as portrayed
in Dziugaite et al. [7] and Li et al. [8], we need
to devise a universal kernel that acts on the set of
probability measures.
In this paper, we develop a new model based on

the GMMN architecture, capable of generating not
only distributions of vectors, but distributions of dis-
tributions. To achieve this goal, we devise an MMD
between distributions of distributions and develop a
new generator architecture based on Hypernetworks
[11]. The proposed architecture allows for a fully im-
plicit learning procedure, where the structures of the
distributions are parameterized by neural networks,
and the loss function is able to compare arbitrary
statistical moments of the set of distributions.
The remainder is structured as follows. We

present our main contribution, the derivation of
our GMMN for distributional data, in Section 2 and
report on empirical results in Section 3. Section 4
summarizes related work and Section 5 concludes.
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2 Main Contribution

2.1 Preliminaries

We are concerned with the problem of learning to
generate new samples from a distribution over a
set of datasets. Given a sample set of datasets,
our goal is to construct a model that is able to
approximate the underlying sampling distribution by
minimizing a discrepancy between the distribution
parameterized by the model and the distribution
underlying the data. To achieve this, we apply
the concept of maximum mean discrepancy to our
setting. Since the entities of interest are empirical
distributions represented by different datasets, we
use universal kernels [10] on the set of probability
measures.

Christmann and Steinwart [12] introduce universal
kernels on non standard input spaces. They show
that for a compact metric space X and a separable
Hilbert space H with an injective map ρ : X → H,
one can derive a universal Gaussian-type RBF-kernel
kσ : X × X → R with

(x, x′) 7→ exp(−σ2∥ρ(x)− ρ(x′)∥2H), σ > 0.

The authors further derive a kernel between proba-
bility distributions, based on the Fourier transform

kσ(P, P
′) := exp(−σ2∥P̂ − P̂ ′∥2L2(µ)

) (2)

Where the distributions P̂ and P̂ ′ are Fourier trans-
forms of elements of the set X :=M1(Ω) of proba-
bility measures on a compact set Ω ⊂ Rd, and µ is
a finite Borel measure on Rd with support(µ) = Rd.

Based on this similarity measure between distribu-
tions, we will derive an MMD between distributions
of distributions, which is then used as the loss func-
tion of a generative model.

2.2 Motivation

To solve the problem described above, we define a
training objective in form of an MMD loss L(y, ŷ),
a function of the generated samples and the train-
ing data. Our approach to generate samples is to
transform a prior distribution from which we can
easily sample new data points into the distribution
over sample sets q by using a deep neural network
as the transformation function Gθ. Our generation
process consists of two stages. First, we need to
sample a representation of the distribution Ql for
each sample set we want to generate. We do this by
modeling each Ql by a neural network Mwk

. The
weight vectors wk of the network are sampled i.i.d.
from a distribution that is parameterized by a second
neural network Hθ. In the second step, we sample
datasets from each Ql independently, by transform-
ing samples from a prior distribution q∗ using the

function Mwk
. This process produces a dataset ŷ,

comprising a set of tuples of vectors ŷji

ŷ =
((
ŷ11 , ŷ

2
1 , . . . , ŷ

s1
1

)
, . . . ,

(
ŷ1m, ŷ2m, . . . , ŷsmm

))
where ŷik = Mwk

(xi
k), wk ∼ Hθ , xi

k ∼ q∗ and
sk,m ∈ N+. To train our model, we first randomly
sample a new dataset ŷ ∼ q that we compare with
the training data y using the loss function L. By
choosing a differentiable loss function, we are able
to use backpropagation and gradient descent algo-
rithms to update the weights θ of our network. Next,
we will derive a suitable differentiable loss function
based on the concept of the maximum mean discrep-
ancy test.

2.3 Distribution MMD

We can derive an empirical estimate of a universal
kernel on empirical distributions of probability mea-
sures using the kernel defined in Equation (2). Given
a training set Y = (y1, y2, . . . , yn), n ∈ N, sampled
i.i.d. from a distribution P , an empirical approxi-
mation P̃ of the distribution can be calculated as
the sum of Dirac delta distributions centered on the
elements of Y . Applying the Fourier transformation

yields its characteristic function ˆ̃P :

P̃ (z) =
1

n

n∑
i=1

δ(yi − z) (3)

ˆ̃P (t) =

∫
ei⟨z,t⟩P̃ (z)dz =

1

n

n∑
i=1

ei⟨yi,t⟩. (4)

The probability density of the zero-centered mul-
tivariate Gaussian distribution with the diagonal
identity covariance matrix Σ = λ1 is given by

f(x) = (2πλ)−d/2 exp

(
−∥x∥

2
2

(2λ)

)
. (5)

Choosing this distribution as the Borel measure µ
for our L2 function space in Equation (2), we get
the following approximation of our kernel kσ(P, P

′)
based on the empirical distributions P̃ and P̃ ′,
where P̃ ′ is defined analogously to P̃ as P̃ ′(z) =
1
m

∑m
k=1 δ(y

′
k − z):

kσ(P, P
′) = exp

(
−σ2∥P̂ − P̂ ′∥2L2(µ)

)
≈

exp

− σ2

λd/2

 1

n2

n∑
i,j=1

∫
Rd

ei⟨yi−yj ,t⟩e−
⟨t,t⟩
2λ dtd

− 1

nm

n∑
i=1

m∑
l=1

∫
Rd

ei⟨yi−y′
l,t⟩e−

⟨t,t⟩
2λ dtd

− 1

nm

n∑
i=1

m∑
l=1

∫
Rd

ei⟨y
′
l−yi,t⟩e−

⟨t,t⟩
2λ dtd

+
1

m2

m∑
k,l=1

∫
Rd

ei⟨y
′
k−y′

l,t⟩e−
⟨t,t⟩
2λ dtd

 (6)
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Each of the four resulting integrals can be solved
using the Fourier transformation of multivariate
Gaussians:

1
√
2π

d

∫
Rd

e−
at2

2 e−iωtdtd =
1
√
a
d
e−

ω2

2a

By setting a = 1
λ and ω = yj − yi for the first term,

adapting the other terms correspondingly, we obtain

kσ(P, P
′) = exp

(
−σ2∥P̂ − P̂ ′∥2L2(µ)

)
≈ exp

− σ2

(2πλ)d/2

 1

n2

n∑
i,j=1

√
λ
d/2

e−
λ(yj−yi)

2

2

− 1

nm

n∑
i=1

m∑
l=1

√
λ
d/2

(
e−

λ(y′
l−yi)

2

2 + e−
λ(yi−y′

l)
2

2

)

+
1

m2

m∑
k,l=1

√
λ
d/2

e−
λ(y′

l−y′
k)2

2

 (7)

= exp

−σ2

 1

n2

n∑
i,j=1

e−
λ(yj−yi)

2

2

− 1

nm

n∑
i=1

m∑
l=1

(
e−

λ(y′
l−yi)

2

2 + e−
λ(yi−y′

l)
2

2

)

+
1

m2

m∑
k,l=1

e−
λ(y′

l−y′
k)2

2

 (8)

= exp

−σ2

 1

n2

n∑
i,j=1

e−
λ
2 ∥yi−yj∥2

2

− 2

nm

n∑
i=1

m∑
l=1

e−
λ
2 ∥yi−y′

l∥
2
2

+
1

m2

m∑
k,l=1

e−
λ
2 ∥y′

k−y′
l∥

2
2

 , (9)

a closed form solution for the empirical Fourier trans-
formation based kernel kσ(P, P

′) between sample
distributions given by

kσ(P, P
′) ≈ exp

−σ2

 1

n2

n∑
i,j=1

e−
λ
2 ∥yi−yj∥2

2

− 2

nm

n∑
i=1

m∑
l=1

e−
λ
2 ∥yi−y′

l∥
2
2

+
1

m2

m∑
k,l=1

e−
λ
2 ∥y′

k−y′
l∥

2
2

 (10)

With Qi ∼ q, Pi ∼ p the MMD based loss function
is now given as an empirical estimate of a squared
MMD between empirical distributions over distribu-

tions:

LMMD(p, q) =
1

M2 −M

M∑
i ̸=j

kσ(Pi, Pj) (11)

− 2

MN

M,N∑
i,j=1

kσ(Pi, Qj) +
1

N2 −N

N∑
i ̸=j

kσ(Qi, Qj).

This is however a theoretical loss function, based
on the assumption of having knowledge about the
underlying distributions Pi and Qj , when in our
experiments we only used empirical estimates of the
distributions based on sets of data points sampled
from the respective distributions. The approxima-
tion of the kernel function is given in Equation (10).

2.4 Generative Model

The generative model consists of two major compo-
nents. The first network which generates the weights
for the second network will be called Hypernetwork,
in accordance with Ha et al. [11]. Accordingly, the
second network is called the main network, since it
performs the main task, generating samples from the
different distributions, which are parameterized by
its weights that were sampled by the Hypernetwork,
see Figure 1.
By using the MMD as the loss function for our

model, we build upon the ideas of the GMMN pro-
posed by Li et al. [8] and Dziugaite et al. [7]. Instead
of comparing sets of data points represented by vec-
tors, we directly compare sets of datasets, using the
custom distribution MMD defined in Equation (10).
We assume that the distributions underlying dif-

ferent datasets can have a shared structure that can
be directly learned by the main network using layers
with weights shared between all main networks. We
call these parameters ϕ, whereas the parameters
generated by the Hypernetwork are denoted by wk.
The former weights can be directly trained using
gradient descent and backpropagation. Algorithm 1
shows the general structure of the training process
of the proposed generative network.

3 Empirical Results

3.1 Family of univariate Gaussians

Starting from a simple and easily interpretable case,
our goal is to learn a distribution over the family
of univariate Gaussian distributions using our pro-
posed model. We generate a training dataset by
sampling a set of sample distributions, where each
of the datasets follow a normal distribution. The
means µ and standard deviations σ of the sample
distributions are distributed independently in the
following way:

µ ∼ N (µµ, σ
2
µ), log(σ) ∼ N (µσ, σ

2
σ)

3



Figure 1. Architecture of the proposed generative model.

Algorithm 1 Training the Hyper-GMMN

Parameters: θ, ϕ
Prior Distribution: p∗

Hypernetwork: Hθ

Main Network: Mϕ,wk

Data: y =
((
y11 , . . . , y

s1
1

)
, . . . ,

(
y1n, . . . , y

sn
n

))
while not converged do
m← Determine m, m ∈ N+

for k ← 1 to m do
wk ∼ Hθ

mk ← Determine mk(k), mk ∈ N+

for sk ← 1 to mk do
xsk
k ∼ q∗, sk ∈ {1, 2, . . . ,mk}

ŷskk ←Mϕ,wk
(xsk

k )
end for

end for
L← DistributionMMD(ŷ, y)
θ ← θ −∇θL
ϕ← ϕ−∇ϕL

end while

We use our knowledge about the data generation pro-
cess in the construction of our generative network,
which acts as an inductive bias but significantly sim-
plifies the network architecture to a one-layer main
network with nin = nout = 1. We use a standard
normal prior N (0, 1) to independently sample the
seeds α0, α1. The Hypernetwork takes the form

Hµµ,σµ,µσ,σσ (α) =

(
exp (α0σσ + µσ)

α1σµ + µµ

)
=

(
σ
µ

)
and generates the “weight” σ and the “bias” µ of
the main network M

ŷ = Mµ,σ(x0) = x0σ + µ

the main network generates the data by applying the
reparameterization trick to data points x0 sampled
i.i.d. from a univariate standard normal distribution.
We generate data comprising 20 sample distri-

butions of 20 samples each using the parameters

µµ = 10, σµ = 2.5, µσ = 1, σσ = .5. We use the
MMD loss defined in Equation (11) and train the
model using backpropagation and stochastic gradi-
ent descent for 10000 epochs. In each epoch, we gen-
erate a dataset of the same size as the training data.
In Figure 2, the evolution of the Hypernetworks’ pa-
rameters are plotted over the training process. These
parameters correspond to the statistical moments
of the parameters of the main network, and can be
interpreted as the moments of the distribution over
the sample distributions. The plots suggest a stable
convergence to values close to the model parameters
used in the data generation process. It can be seen
that the bias w.r.t. the true parameters is smaller
for lower order statistical moments.

3.2 Rotated Uniform

The second experiment is based on a dataset consist-
ing of sets of data points uniformly distributed over
a rectangular region of R2. The training data is gen-
erated by independently sampling the coordinates of
vectors zi ∈ R2 from one dimensional uniform distri-
butions z0i ∼ U [0.2, 1], z1i ∼ U [−0.1, 0.1], and then
multiplying each vector of the respective dataset by
a dataset specific rotation matrix

A(γ) =

(
cos(γ) − sin(γ)
sin(γ) cos(γ)

)
.

The dataset specific parameter γ, the angle of the
rotation, is sampled from a uniform distribution over
[0, 2π). A set of 10 sample distributions generated
is displayed in Figure 3. In our experiments, we use
a training dataset set of 5000 sample distributions,
comprising 50 data points each. Having equally
sized sample sets is not required by our framework,
but facilitates implementation.
To generate a set of datasets that matches the

training set in distribution, we train a GMMN for
distributions using the distribution MMD loss. The
Hypernetwork has 4 hidden layers, with 20, 20, 50
and 100 nodes respectively. It samples the weights
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Figure 2. Evolution of Statistical moments
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Figure 3. Visualization of the data

and biases of the second and third hidden layer of
the main network with 10 and 5 nodes respectively,
representing the individual distributions. The first
layer of the main network comprises 10 nodes and
shares its weights between all main networks; its
weights are trained together with those of the Hy-
pernetwork using the Adam optimizer introduced
by Paszke et al. [13].

MMD Hyperparameters We are especially in-
terested in the influence of the kernel width parame-
ters of the MMD loss function on the quality of the
generated distributions. We trained our model 10
times for different combinations of the distribution

Figure 4. Results for σ ∈ {0.2, 0.5, 1, 2, 5, 10} and
λ ∈ {1, 2, 5, 10, 20, 50, 100}.

kernel width λ and the parameter σ of the kernel
between data points. In Figure 4, generated data
are plotted for each combination of the hyper pa-
rameters combination. For each setting, 10 random
sample sets are displayed that were generated by
the network achieving the minimal training loss in
terms of distribution MMD.
One can see that our model has successfully

learned to transform the prior distribution in a distri-
bution over datasets that is very close to the training
data. It is difficult to compare the performance of
the algorithm for different hyperparameters σ and λ,
since they parameterize the loss function. Inspection
by eye suggests optimal parameters of 1 ≤ λ ≤ 100
and 0.5 ≤ σ ≤ 2.

4 Related Work

There are multiple possible ways to approach the
problem of modeling distributions of distributions
and to generate samples from those models. One
way is to use the concept of Dirichlet processes [14].
The realizations of this statistical process can be
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seen as individual probability distributions. At every
step in the sampling process, the next data point is
sampled either from a continuous base distribution
H or, based on a weighting parameter α, from one
of the previously sampled values, based on their
respective frequency.
Similarly, Gaussian processes allow the sampling

of datasets following different distributions by sam-
pling positions from a base distribution, which are
then randomly but interdependently transformed
using a randomly sampled Gaussian process.

The main advantage of our proposed method over
the stochastic processes mentioned here is that the
latter require explicit assumptions on the statistical
model. Using the higher expressive power of neural
networks, our neural network-based approach can
approximate complex distributions effectively.
In general, conditional GANs [15] may offer an

alternative to our approach. Conditional GANs are
generative models that learn to generate distribu-
tions over a random variable x dependent on an
input y by transforming a simple prior distribution
into the desired (and possibly complex) conditional
distribution G(x|y). Our network also learns to
parameterize distributions by generator functions,
but, unlike conditional GANs, our network does not
receive the dependency y as input. Instead, our
approach can be thought of as learning a probability
distribution P (y) jointly with G(x|y).
Alternative approaches to learning distributions

over distributions may be offered by other genera-
tive families, including variational autoencoders [3],
flows [4], or diffusion models [5]. We settled mainly
on GANs because the inclusion of a statistical test,
which is key to adequately solving the problem, fits
nicely into the framework as a surrogate discrimina-
tor.

5 Conclusions

We presented a promising proof of concept for learn-
ing distributions over distributions. Our approach
relied on a Hypernetwork that parameterized a set
of main networks that finally generated the desired
data. All networks were trained simultaneously and
the overall training loss is a tailored MMD-based
loss function. Preliminary empirical results on small-
scale toy data showed that the underlying concepts
can indeed be learned, although stability of the
training process is still an issue.

In this paper, our model was used to generate low-
dimensional datasets leading to promising results.

Another limitation is the stability of the training
process. Figure 4 clearly shows a strong correlation
between the hyperparameter values and the outcome.
While some settings lead to the desired distributions,
others just produce nonsense. Although it is natural
that hyperparameters of learning algorithms have

to be adjusted to a problem at hand, a larger range
of suitable parametrizations was preferable. Thus,
evaluating different training algorithms or changing
the distribution estimate from sums of Dirac dis-
tributions to kernel density estimates seem to be
promising avenues to stabilize the training behavior
for future work.
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