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Abstract. We study frequent pattern mining from positional data stre-
ams. Existing approaches require discretised data to identify atomic
events and are not applicable in our continuous setting. We propose
an efficient trajectory-based preprocessing to identify similar movements
and a distributed pattern mining algorithm to identify frequent trajec-
tories. We empirically evaluate all parts of the processing pipeline.

1 Introduction

Recent advances in telecommunication, sensing, and recording technologies allow
for storing positions from moving objects at large scales in (near) real time.
Analysing positional data streams is highly important in many applications;
examples range from navigation and routing systems, network traffic, animal
migration/tracking, movements of avatars in computer games to tactics in team
sports.

In this paper, we focus on identifying frequent movement patterns in posi-
tional data streams that consist of a possible infinite sequence of coordinates.
Existing approaches to frequent pattern mining [3, 29, 20] use identities of atomic
events to define sequences (episodes) [17, 15]. In positional data, events corre-
spond to sequences of positions (i.e., trajectories) and due to the continuous
domain it is very unlikely to observe a trajectory twice. Instead, we observe a
multitude of different trajectories that give rise to an exponentially growing set
of possibly frequent sequences. Consequentially, mining positional data can only
be addressed in the context of big data.

Our contribution is threefold: (i) To remedy the absence of matching atomic
events, we propose an efficient preprocessing of the positional data using locality
sensitive hashing and approximate dynamic time warping. (ii) To process the
resulting near-neighbour trajectories we present a novel frequent pattern mining
algorithm that generalises Achar et al. [1] to positional data. (iii) We present a
distributed algorithm for processing positional data at large-scales. Empirically,
we evaluate all stages of our approach on positional data of a real soccer game
where cameras and sensors realise a bird’s eye view of the pitch that allows for
locating the players and the ball several times per second.

The next section reviews related work. Section 3 introduces the representa-
tion and the efficient computation of near neighbours. We present our algorithm
to detect frequent trajectories in Section 4. Section 5 reports on empirical results
and Section 6 concludes.
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2 Related Work

Spatio-temporal data mining aims to extract the behaviour and relation of mov-
ing objects from (positional) data streams and is frequently used in computa-
tional biology for mining animal movements. In [11], the authors aim to detect
closely moving objects. Although composition and location of the group may
change over time, the identity of the group is considered fixed. Such groups of
objects are called moving clusters.

Trajectory-based patterns are first introduced by [6]. These patterns repre-
sent a set of individual trajectories that share the property of visiting the same
sequence of places within similar travel time. Trajectory-based approaches use
a discretisation of the movements to identify places that are also known before-
hand. Our contribution considers a continuous generalisation: every coordinate
on the pitch is a place of interest and trajectories are relations between coordi-
nates and travel time.

Event sequence mining has been introduced by [3] as a problem of mining
frequent sequential patterns in a set of sequences. Sequential pattern mining
discovers frequent subsequences as patterns in a sequence database. The most
common example is the cart analysis proposed by [3]. Their approach discov-
ers items that are often bought together by customers. Efficient generalisations
have been proposed to mine large sequence databases [29, 20]. A special case of
sequential pattern mining that aims at closed patterns is introduced in [28]. Fre-
quent episode discovery algorithms [17] summarise techniques to describe and
find patterns in a stream of events. Applications in several domains have been
developed like manufacturing [15], telecommunication [17], biology [19], and text
mining [9]. However, these algorithms are restricted to specific types of episodes.
Achar et al. [1] propose the first approach to mine unrestricted episodes. Our
approach generalises [1] to mining positional data streams.

Data mining for team sports mostly focuses on event recognition in videos [5,
27] or the conversion of video data into a positional data stream [10]. [10] also
report on simple descriptive statistics including heat maps and passing accura-
cies. [12] uses positional data to assess player positions in particular areas of
the pitch, such as catchable, safe or competing zones. Prior work also utilises
positional data of basketball games [21] and military operations [24] to identify
tactical patterns, respectively. However, the presented approaches focus on de-
tecting a priori known patterns in the data stream. By contrast, we devise a
purely data-driven approach to find frequent patterns in positional data without
making any assumptions on zones, tasks or movements.

3 Efficiently Finding Similar Movements

3.1 Representation

Given a positional data stream D with ` objects o1, . . . ,o`. Every object oi

is represented by a sequence of coordinates Pi = 〈xi
1,x

i
2, . . .〉 where xt =

(x1, x2, . . . , xd)> denotes the position of the object in d-dimensional space at
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time t. A trajectory or movement of the i-th object is a subset p[t,t+m] ⊆ Pi of
the stream, e.g., p[t,t+m] = 〈xi

t,x
i
t+1, . . . ,x

i
t+m〉, where m is the length of the

trajectory. In the remainder, the time index t is omitted and each element of a
trajectory is indexed by offsets 1, . . . ,m.

For generality, we focus on finding similar trajectories where (i) the exact
location of a trajectory does not matter (translation invariance), (ii) the range
of the trajectory is negligible (scale invariance), and where turns such as left
or right are considered identical (rotation invariance). Note that, depending on
the application at hand, one or more of these requirements may be inappropri-
ate and can be dropped by altering the representation accordingly. Using the
requirements (i)-(iii) gives rise to the so-called angle/arc-length representation
[26] of trajectories that represents movements as a list of tuples of angles θt and
distances vt = xt − xt−1, The difference vt is called the movement vector at
time t and the angles are computed with respect to a (randomly drawn) reference
vector vref = (1, 0)>,

θi = sign(vi,vref )

[
cos−1

(
v>i vref

‖vi‖ ‖vref‖

)]
,

where the sign function computes the direction (clockwise or counterclockwise)
of the movement with respect to the reference.

Additionally, transformed trajectories are normalised by subtracting the av-
erage so that θi ∈ [−π,+π] for all i and by normalising the total distance to
one. Finally, we discard the difference vectors and represent trajectories solely
by their sequences of angles, p 7→ p̃ = 〈θ1, . . . , θn〉.

3.2 Approximate Dynamic Time Warping

Recall that pairs of trajectories may contain phase shifts, that is, a movement
may begin slowly and then speeds-up while another starts fast and then slows
down towards the end. Such phase shifts are well captured by alignment-based
similarity measures such as dynamic time warping [22].

Dynamic time warping (DTW) is a non-metric distance function that mea-
sures the distance between two sequences and is often used to compare time re-
lated signals in biometrics or speech recognition problems. Given two sequences
s = 〈s1, . . . , sn〉 and q = 〈q1, . . . , qm〉 and a cost function cost(si, qj) detailing
the costs of matching si with qj . The goal of dynamic time warping is to find
an alignment Λ = {(ηi, µi)} for ηi ∈ [0, n] and µi ∈ [0,m] of sequences s and q
that has minimal costs subject to the constraints that (i) the alignment starts at
position (1, 1) and ends at position (n,m) (boundary), (ii) being in step (ηi, µj)
after being in step (ηk, µl) implies that i− k ≤ 1 and j− l ≤ 1 (continuity), and
(iii) being in step (ηi, µj) after being in step (ηk, µl) implies that i− k ≥ 0 and
j− l ≥ 0 (monotonicity). An alignment that fulfils the above conditions is given
by [18] using g(∅, ∅) = 0, g(s, ∅) = cost(∅, q) =∞, and

g(s, q) = cost(s1, q1) +min

g(s, 〈q2, . . . , qm〉)
g(〈s2, . . . , sm〉, q)
g(〈s2, . . . , sm〉, 〈q2, . . . , qm〉)

 .
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The cost function cost is arbitrary and any metric or non-metric distance func-
tions can be used. Dynamic time warping has a complexity of O(|s||q|) which is
prohibitive for mining positional data streams.

A great deal of methods has been proposed to speed-up the computation of
dynamic time warping. Besides global constraints (e.g., [23, 8]), efficient approx-
imations can be obtained by lower bounds. The rationale is that lower bound
functions can be computed in less time and are therefore often used as prun-
ing techniques in applications like indexing or information retrieval. The exact
DTW computation only needs to be carried out if the lower bound value is
above a given threshold. We make use of two lower bound functions, fkim [14]
and fkeogh [13], that are defined as follows: fkim focuses on the first, last, greatest
and smallest values of two sequences [14] and can be computed in O(m):

fkim(s, q) = max {|s1 − q1|, |sm − qm|, |max(s)−max(q)|, |min(s)−min(q)|} .

If the greatest and smallest entries are normalised to a specific value their compu-
tation can be ignored and the time complexity reduces to O(1). The second lower
bound fkeogh [13] uses minimum `i and maximum values ui for sub-sequences of
the query q given by

`i = min(qi−r, . . . , qi+r) and ui = max(qi−r, qi+r),

where r is a user defined threshold. Trivially, ui ≥ qi ≥ `i holds for all i and the
lower bound fkeogh is given by

fkeogh(q, s) =

√√√√ m∑
i=1

ci with ci =

(si − ui)2 : if si > ui
(si − `i)2 : if si < `i

0 : otherwise

which can also be computed inO(m). The result is a non-metric distance function
that only violates the triangle inequality of a metric distance.

3.3 An N-Best Algorithm

Given a trajectory q ∈ D, the goal is to find the most similar trajectories in
D. Trivially, a straight forward approach is to compute the DTW values of
q for all trajectories in D and sort the outcomes accordingly. However, this
requires |D| DTW computations, each of which is quadratic in the length of the
trajectories, and renders the approach clearly infeasible. Algorithm 1 computes
the N most similar trajectories for a given query q efficiently by making use
of the lower bound functions fkim and fkeogh. Lines 2–9 compute the DTW
distances of the first N entries in the database and stores the entry with the
highest distance to q. Lines 10–21 loop over the other trajectories in D by first
applying the lower bound functions fkim and fkeogh to efficiently filter irrelevant
movements before using the exact DTW distance for the remaining candidates.
Every trajectory, realising a smaller DTW distance than the current maximum,
replaces its peer; maxdist and maxind are updated accordingly. Note that the
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Algorithm 1 N -Best(N,q,D)

Input: number of near-neighbours N , query trajectory q, stream D
Output: The N most similar trajectories to q in D
1: output = ∅; maxdist = 0; maxind = −1
2: for i = 1, . . . , N do
3: dist = DTW (q,D[i])
4: output[i] = D[i]
5: if dist > maxdist then
6: maxdist = dist; maxind = i
7: end if
8: end for
9: for i = N + 1, . . . , |D| do

10: if fkim(q,D[i]) < maxdist then
11: if fkeogh(q,D[i]) < maxdist then
12: dist = DTW (q,D[i])
13: if dist < maxdist then
14: output[maxind] = D[i]
15: maxdist = max{DTW (q, output[j]) : 1 ≤ j ≤ N}
16: maxind = argmaxj DTW (q, output[j])
17: end if
18: end if
19: end if
20: end for

complexity of Algorithm 1 is linear in the number of trajectories in D. In the
worst case, the sequences are sorted in descending order by the DTW distance,
which requires to compute all DTW distances. In practice, however, much lower
run-times are observed. A crucial factor is the tightness of the lower bound
functions. The better the approximation of the DTW, the better the pruning.
For N = 1, the maximum value drops faster towards the lowest possible value.
By contrast, setting N = |D| requires to compute the exact DTW distances for
all entries in the database. Hence, in most cases, N � |D| is required to reduce
the overall computation time. The computation can trivially be distributed with
Hadoop; computing distances is performed in the mapper and sorting is done in
the reducer.

3.4 Distance-based Hashing

An alternative to the introduced N -Best algorithm provides locality sensitive
hashing (LSH) [7]. A general class of LSH functions are called distance-based
hashing (DBH) that can be used together with arbitrary spaces and (possibly
non-metric) distances [4]. The hash family is constructed as follows. Let h :
X → R be a function that maps elements x ∈ X to a real number. Choosing two
randomly drawn members x1, x2 ∈ X , the function h is defined as

hx1,x2
(x) =

dist(x, x1)2 + dist(x1, x2)2 − dist(x, x2)2

2 dist(x1, x2)
.
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Algorithm 2 FSATransition(α, fsa, t, events)

1: if fsa.currentState.Open = ∅ then
2: return fsa {FSA is in final state}
3: end if
4: for n ∈ sourceNodes(fsa.currentState.Open) do
5: for e ∈ events do
6: if e ∼ nodeMappingα(n) then
7: fsa.currentState.Open = fsa.currentState.Open \ n
8: fsa.currentState.Done = fsa.currentState.Done ∪ n
9: fsa.lastTransition = t

10: if fsa.startT ime == undefined then
11: fsa.startT ime = t
12: end if
13: break inner loop {Only one possible similarity (injective episode)}
14: end if
15: end for
16: end for
17: return fsa

The binary hash value for x simply verifies whether h(x) lies in an interval [t1, t2],

h[t1,t2]x1,x2
(x) =

{
1 : hx1,x2

(x) ∈ [t1, t2]
0 : otherwise

,

where the boundaries t1 and t2 are chosen so that the probability that a randomly
drawn x ∈ X lies with 50% chance within and with 50% chance outside of the
interval. Given the set T of admissible intervals and function h, the DBH family
is now defined as

HDBH =
{
h[t1,t2]x1,x2

: x1, x2 ∈ R ∧ [t1, t2] ∈ T (x1, x2)
}
.

Using random draws from HDBH , new hash families can be constructed using
AND- and OR-concatenation.

We use DBH to further improve the efficiency of the N -Best algorithm by
removing a great deal of trajectories before processing them with Algorithm 1.
Given a query trajectory q ∈ D, the retrieval process first identifies candidate
objects that are hashed to the same bucket for at least one of the hash functions,
and then computes the exact distances of the remaining candidates using the
N -Best algorithm. As distance measure of the DBH hash family we use the lower
bound fkim. The computation is again easily distributed with Hadoop.

4 Frequent Episode Mining for Positional Data

The main difference between frequent episode mining (e.g., [1]) and mining fre-
quent trajectories from positional data streams is the definition of events. In
contrast to having a predefined set of atomic events, every trajectory in the
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Algorithm 3 Map(id, α)

1: eventStream = loadEventStreamFormFile()
2: frequency = 0; fsas = {new FSA}
3: for all (t, events) ∈ eventsStream do
4: for all fsa ∈ fsas do
5: inStartState = inStartState(fsa)
6: hasChanged = FSATransition(α, fsa, t, events)
7: if inStartState and hasChanged then
8: fsas = fsas ∪ new FSA
9: end if

10: if inF inalState(fsa) then
11: fsas = {new FSA}
12: frequency+ = 1
13: else
14: fsas = RemoveAllOlderFSAsInSameState(fsas)
15: end if
16: end for
17: end for
18: if frequency >= userDefinedThreshold then
19: EMIT (blockstart− id(α), α)
20: end if

stream is considered an event. Thus, events may overlap and are very unlikely to
occur more than just once. In the absence of a predefined set of atomic events,
we use the previously defined approximate distance functions in the mining step.

An event stream is a time-ordered stream of trajectories. Every event is
represented by a tuple (A, t) where A is an event and t denotes its timestamp.
An episode α is a directed acyclic graph, described by a triplet (V,≤,m) where
V is a set of nodes, ≤ is a partial order on V (directed edges between the nodes),
and m : V → E is a bijective function that maps nodes to events in the event
stream. We focus on transitive closed episodes [25] in the remainder, that is if
node A is ordered before B (A < B) there must be a direct edge between A and
B, that is, ∀A,B ∈ V if A < B =⇒ edge(A,B).

The partial ordering of nodes upper bounds the number of possible directed
acyclic graphs on the event stream. The ordering makes it impossible to include
two identical (or similar) events in the same episode. Episodes that do not allow
duplicate events are called injective episodes [1]. An episode α is called frequent,
if it occurs often enough in the event stream. The process of counting the episode
α consists of finding all episodes that are similar to α. A sub-episode β of an
episode α can be created by removing exactly one node n and all its edges from
and to n; e.g., for the episode A→ B → C the sub-episodes are A→ B, A→ C
and B → C. The sub-episode of a singleton is denoted by the empty set ∅.

Generally, frequent episodes can be found by Apriori-like algorithms [2]. The
principles of dynamic programming are exploited to combine already frequent
episodes to larger ones [17, 16]. We differentiate between alternating episode gen-
eration and counting phases. Every newly generated episodes must be unique,
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transitive closed, and injective. Candidates possessing infrequent sub-episodes
are discarded due to the downward closure lemma [1]. We now present counting
and episode generation algorithms for processing positional data with Hadoop.

4.1 Counting phase

The frequency of an episode is defined as the maximum number of non-overlapp-
ing occurrences of the episode in the event stream [16].1 Non-overlapping episodes
can be detected and counted with finite state automata (FSAs), where every FSA
is tailored to accept only a particular episode. The idea is as follows. For every
episode that needs to be counted, an FSA is created and the event stream is
processed by each FSA. If an FSA moves out of the initial state, a new FSA is
created for possibly later occurring episodes and once the final state has been
reached, the episode counter is incremented and all FSA-instances of the episode
are deleted except for the one still remaining in the initial state.

Algorithm 2 shows the FSA transition function that counts an instance of an
episode. Whenever the FSA reaches its final state its frequency is incremented.
As input, Algorithm 2 gets the fsa instance which contains the current state, the
last transition time and the first transition time. Additionally, the appropriate
episode, the current time stamp and the events starting at that time stamp are
passed to the function. First, in case the FSA is already in the final state, the
function returns without doing anything (line 1). Algorithm 2 iterates over all
source nodes in the current state and all events that had happened at time t
(line 4-5). Whenever there is an event e that is similar to the appropriate event
of source node n (line 6), the FSA is traversed to the next state. The algorithm
also keeps track of the start time and the last transition time to check the expiry
time (line 9 and line 11).

The FSA transition function can be defined as a counting algorithm shown in
Algorithm 3 in terms of a map-function for the Hadoop/MapReduce framework.
The function first loads the event stream2 (line 1) and initialises an empty FSA
for every episode. Next, the event stream and the FSAs are traversed and passed
to the FSA transition function. Whenever an FSA leaves the start state a new
FSA must be added to the set of FSAs. This ensures that there is exactly one
FSA in a start state. In case an FSA reaches its final state, all other FSAs can
be removed and the process starts again with only one FSA in start state. In
case more than one FSA reaches the final state, Algorithm 3 removes all but the
youngest one in final state as this one has higher chances to meet the expiry time
constraints. The test for expiry time is not shown in the pseudo code. Instances
violating the expiry time do not contribute to the frequency count. Neither do
FSAs that associate overlapping events with the same object. Note that the
general idea of the counting algorithm is very similar to [1]. However, due to the
different notions of an event, many optimisation do not apply in our case.

1 Two occurrences of an episode are said to be non-overlapping, if no event associated
with one appears in between the events associated with the other.

2 In practice one would read the event stream block wise instead of loading the whole
data at once into memory. We chose the latter for ease of presentation.
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Algorithm 4 Align(α, β)

Require: |nodes(α)| = |nodes(β)|
1: f = int array of length |nodes(α)|
2: used = boolean array of length |nodes(α)|
3: n = 0
4: for i = 1 to |nodes(α)| do
5: eventi,α = m(α)[i]
6: found = false
7: for j = 1 to |nodes(β)| do
8: eventj,β = m(β)[j]
9: if (not used[j]) and eventi,α ∼ eventj,β then

10: f [i] = j
11: used[j] = true
12: found = true
13: end if
14: end for
15: if found = false then
16: f [i] = −1
17: increment(n)
18: end if
19: end for
20: return f, n

Following [1] we also employ bidirectional evidence as frequencies alone are
necessary but not sufficient for detecting frequent episodes. The entropy-based
bidirectional evidence can be integrated in the counting algorithm, see [1] for
details. We omit the presentation here for lack of space.

4.2 Generation phase

Algorithm 5 is designed to efficiently find the indices of the differentiated
nodes of two episodes α and β. Therefore, it first tries to find the bijective
mapping π, that maps each node (and its corresponding event) of episode α
to episode β (line 1). In case such a complete mapping can not be found, π
returns only the possible mappings and n contains the number of missing nodes
in the mapping (see Algorithm 4). Episodes α and β are combinable, if and
only if n = 1. The remainder of the algorithm finds the missing node indices
by accumulating over the existing indices and by subtracting the accumulated
result from the sum of all indices. This little trick finds the missing indices in
time O(n). The function returns the node indices that differentiate between α
and β. To prevent the computation of Algorithm 5 on all pairs of episodes, each
episode is associated with its block start identifier [1]. The idea is the following.
All generated episodes from an episode α share the same sub-episode. This sub-
episode is trivially identical to α as it originates from adding a node to α. The
generation step thus takes only those episodes into account that possess the same
block start identifier.
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Algorithm 5 Combine(α,β)

1: π, n = Align(α, β)
2: if n 6= 1 then
3: return −1
4: end if
5: sumα = 0; sumβ = 0

6: sum = |π|×(|π|−1)
2

7: for i = 1 to |π| do
8: if π[i] ≥ −1 then
9: sumα = sumα + i

10: sumβ = sumβ + π[i]
11: end if
12: end for
13: return (sum− sumα, sum− sumβ)

Given two combinable episodes α and β and the differentiated nodes a and
b (found by Algorithm 5), it is now possible to combine these episodes to up to
three new candidates, as described by [1]. The first candidate originates from
adding node b to episode α including all its edges from and to b. The second
candidate is generated from the first candidate by adding an edge from node a
to node b and the third one adds an edge from b to a to the first candidate.
In contrast to [1], we do not test wether all sub-episodes of each candidate are
frequent as this would require an efficient lookup of all episodes which can be
quite complex for positional data. Candidates with infrequent sub-episodes are
allowed at this stage of the algorithm as they will be eliminated in the next
counting step anyway.

The complete episode generation algorithm is shown in Algorithm 6. As in-
put, a list of frequent episodes ordered by their block start identifier is given.
The result of the algorithm is a list of new episodes that are passed on to the
counting algorithm. In line 2 and line 4, all episode pairs are processed as long
as they share the same block start identifier (line 6). Then, three possible candi-
dates are generated (line 7) and kept in case they are transitive closed (line 9).
Before adding it to the result set, the block start identifier of the new episode
is updated (line 10). Analogously to the counting phase, domain specific con-
straints may be added to filter out unwanted episodes (e.g. in terms of expiry
time, overlapping trajectories of the same object, etc.).

5 Empirical Evaluation

5.1 Positional Data

For the experiments, we use positional data from the DEBS Grand Challenge
20133. The data is recorded from a soccer game of two teams with eight players

3 http://www.orgs.ttu.edu/debs2013
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Algorithm 6 Reduce(blockstartId, xs)

1: k = −1; result = ∅
2: for i = 0 to |xs| do
3: α = xs(i); currentBlockStart = k + 1
4: for j = i+ 1 to |xs| do
5: β = xs(j)
6: if α.blockStart == β.blockStart then
7: candidates = Combine(α, β)
8: for c ∈ candidates do
9: if transitiveClose(c) then

10: c.blockStart = currentBlockStart
11: result = result ∪ c
12: k = k + 1
13: end if
14: end for
15: else
16: break
17: end if
18: end for
19: end for
20: EMIT (id, result)

on each side. Each player is equipped with two sensors, one for each foot. We
average every pair of sensors to obtain only a single measurement for every player
at each point in time. Events happening before and after the game or during the
half time break are removed as well as coordinates occurring outside of the pitch
are discarded. To reduce the overall amount of data, we average the positional
data of each player over 100ms. The set of trajectories is created by introducing
a sliding window of constant size for each player so that trajectories begin every
500ms and last for one second. This procedure gives us 111.041 trajectories in
total, 50.212 for team A, 50.245 for team B, and 10.584 for the ball.

5.2 Near Neighbour Search

The first set of experiments evaluates the run-time of the three distance func-
tions Exact, N -Best, and LSH. Since the exact variant needs quadratically many
comparisons in the length of the stream, we focus on only a subset of 15,000
consecutive positions of team A in the experiment. We fix N = 1000 and mea-
sure the total computation time for all approaches. Figure 1 (left) shows the
run-times in seconds for varying sample sizes.
Unsurprisingly, the computation time of the exact distances grows exponentially
in the size of the data. By contrast, the N -Best algorithm performs slightly
super-linear and significantly outperforms its exact counterpart. Pre-filtering
trajectories using LSH results in only a small additional speed-up. The figure
also shows that distributing the computation significantly improves the run-time
of the algorithms and indicates that parallelisation allows for computing near-
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trajectories (|D|) fkim fkeogh DBH Total

1000 0% 0% 11.42% 11.42%
5000 0.28% 34.00% 16.33% 50.61%
10000 9.79% 41.51% 17.80% 60.10%
15000 17.50% 46.25% 11.82% 75.57%
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Figure 5.2: Accuracy of DBH.
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Figure 5.3: Influence of each individual player to the similarity set

Table 5.5: Most similar trajectories for a given query.

Query 1st 2nd 3rd

A (common)

B (common)

A (uncommon)

B (uncommon)

10 (common)

14 (common)
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Fig. 2. Left: Accuracy of LSH. Right: Most similar trajectories for a given query

neighbours on large data sets very efficiently. The observed improvements in
run-time are the result of a highly efficient pruning strategy. Figure 1 (right)
details the amount of pruned trajectories for the respective approaches. The
table shows that the effectiveness of the pruning for fkim and fkeogh increases
with increasing numbers of trajectories. By contrast, pruning LSH is more or
less constant and does not change in terms of the number of trajectories but
depends on the overall data size and on the the ratio N

|D| .

We now investigate the accuracy of the proposed LSH pruning. The 1,000
most similar trajectories are compared with the ground truth given by the exact
approach. That is, for each trajectory, the two result lists are compared. Fig-
ure 2 reports averaged precision@N scores with N ∈ {100, 200, . . . , 1000} for
all trajectories. The average precision decreases slightly for larger N . We credit
this observation to the small data set that comprises only a few trajectories.
While highly similar trajectories are successfully found, the approximate near-
neighbour method fills up remaining slots with non-similar trajectories. The
worst precision is therefore close to zero for N = 100 and increases slightly for
larger N due to only a few true near neighbours in the data.

Although LSH performs well and only slightly decreases in the size of N we
focus on the N -Best algorithm with N = 1, 000 in the remainder for a loss-
free and exact computation of the top-N matches. According to Figure 1 (left)
the slightly longer execution time is negligible. Figure 2 shows the most similar
trajectories for three query trajectories. For common trajectories (top rows),
the most similar trajectories are true near neighbours. It can also be seen that
the proposed distance function is rotation invariant. For uncommon trajectories
(bottom row), the found candidates are very different from the query.
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Figure 5.4: Di↵erent similarity thresholds

5.3.1 Amount of counted and generated episodes

The first experiments of the episode discovery alogrtihm focus on the in-
fluence of the parameters to the number of generated and counted episode.
For this and all following experiments only the trajectories of team A with-
out the ball are used to find tactical patterns in the game. The algorithm
depends on four di↵erent parameters. First, the similarity threshold de-
fines, if two trajectories are similar or not. For example, given a similarity
threshold of 0.15, two trajectories a and b are similar, if d(a, b)  0.15. The
frequency threshold and the bidirectional evidence threshold decide, if a gen-
erate episode is frequent in the data set. Only if an episode exceeds both
thresholds an episode is called frequent. Finally, the expiry time threshold
defines the maximum length of an episode.

The most interesting and problematic parameter is the similarity thresh-
old. While di↵erent values lead to di↵erent final episodes, the similarity
threshold also has a strong impact to the number of generated episodes.
Figure 5.4a shows this influence. Only a small change to the threshold leads
to an exponential growth in the number of trajectories. A further increase
of the similarity threshold leads to even more trajectories and the total com-
putation quickly increases to a time span of several days or weeks; even on
a Hadoop cluster. A similar e↵ect can be discovered with the expiry time
threshold (Figure 5.7). Incrementing the expiry time often just works by
decreasing the similarity threshold.

The main influence to the number of counted episode is given by the
frequency threshold (Figure 5.5b). The number of generated episodes can
be reduced often by one or more orders of magnitudes. In contrast, the
bidirectional evidence threshold has only minimal e↵ects to the end result
(Figure 5.5a).
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Figure 5.5: Di↵erent frequency thresholds
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Figure 5.6: Di↵erent bidirectional evidence thresholds
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Figure 5.7: Di↵erent expiry time
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Fig. 3. Top row: Varying similarity (first and second columns) and frequency (third
and fourth columns) thresholds. Bottom row: Varying bidirectional evidence (first and
second columns) and expiry time (third and fourth columns) thresholds.

5.3 Episode discovery

The first experiments of the episode discovery algorithm focus on the influ-
ence of the parameters wrt the number of generated and counted episodes. The
algorithm depends on four different parameters, the similarity, frequency, the
bidirectional evidence, and the expiry time. For this set of experiments, we use
the trajectories of team A to find frequent tactical patterns in the game. The
results are shown in Figure 3

An interesting parameter is the similarity threshold as it strongly impacts
the number of generated episodes: small changes may already lead to an expo-
nential growth in the number of trajectories and large values quickly render the
problem infeasible even on medium-sized Hadoop clusters. A similar effect can
be observed for the expiry time threshold. Incrementing the expiry time often
requires decreasing the similarity threshold. The number of counted episodes is
adjusted by the frequency threshold. As shown in the figure, the number of gen-
erated episodes can often be reduced by one or more orders of magnitudes. By
contrast, the bidirectional evidence threshold affects the result only marginally.

Finally, we present two frequent episodes in Figure 4. The ball is presented
with a black line. All other lines describe the players of team A during the time
span of the episode. The involved trajectories are displayed by thick lines and
a circle at the beginning to indicate movement directions. A small circle at the
beginning of a trajectory indicates that the trajectory depends on one or more
other trajectories. Additionally, each trajectory is labeled with player ID and
timestamp. For completeness, the opponent goal keeper is drawn with a red line
at the bottom. The displayed episodes present a well known pattern of soccer
games: players move towards the ball. In the left figure, the ball is played towards
the opponent goal and players 1, 2, 3, 6, and 7 follow the direction of the ball. In
the right figure the opponent team prepares an attack by passing the ball from
one side to the other. The players of team A follow the direction of the ball to
prevent the attacking team from moving forward.
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Figure 5.9: Two node serial episode of team A. (similarity threshold: 0.25;
frequency threshold: 20; bidirectional evidence threshold: 0.0; expiry time:

5 seconds)
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Fig. 7. Exemplary two node serial episodes (similarity threshold: 0.25; frequency
threshold: 20; bidirectional evidence threshold: 0.0; expiry time: 5 seconds)

Fig. 4. Exemplary episodes

6 Conclusion

We proposed a novel method to mining frequent patterns in positional data
streams where consecutive coordinates of objects are treated as movements. Our
contribution is threefold: We firstly proposed an efficient and accurate method
to find similar trajectories for a given query. Secondly, we proposed an algorithm
that uses these distances to efficiently combine individual movements to complex
frequent patterns consisting of multiple trajectories. Thirdly, we presented a
distributed version for big data and Hadoop/MapReduce frameworks. Empirical
results on positional data from a soccer game showed that the found patterns
are intuitive and interpretable.
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