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Abstract

Convolution kernels for trees provide simple means forregy with tree-structured data. The
computation time of tree kernels is quadratic in the sizénefttees, since all pairs of nodes need
to be compared. Thus, large parse trees, obtained from HTdtuments or structured network
data, render convolution kernels inapplicable. In thikrtwe propose an effective approximation
technique for parse tree kernels. The approximate treeske(ATKS) limit kernel computation to

a sparse subset of relevant subtrees and discard redutdentties, such that training and testing
of kernel-based learning methods are significantly acatddr We devise linear programming ap-
proaches for identifying such subsets for supervised asdpervised learning tasks, respectively.
Empirically, the approximate tree kernels attain run-timprovements up to three orders of mag-
nitude while preserving the predictive accuracy of regtriee kernels. For unsupervised tasks, the
approximate tree kernels even lead to more accurate piewidty identifying relevant dimensions
in feature space.

Keywords: tree kernels, approximation, kernel methods, convolutEmmels

1. Introduction

Learning from tree-structured data is an elementary problem in machiméngaas trees arise
naturally in many real-world applications. Exemplary applications involveeptieses in natural
language processing, HTML documents in information retrieval, moleculetstas in computa-
tional chemistry, and structured network data in computer security (e.g.niMamand Schtze,
1999; Kashima and Koyanagi, 2002; Moschitti, 2006b; Cilia and Moschitt/72@issel et al.,
2008; Rieck et al., 2008; Bockermann et al., 2009).
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In general, trees carry hierarchical information reflecting the underlgigpendency structure
of a domain at hand—an appropriate representation of which is often @miaple for learning ac-
curate prediction models. For instance, shallow representations of tretess flat feature vectors
often fail to capture the underlying dependencies. Thus, the prevatdatfor learning with struc-
tured data are kernel functions, which implicitly assess pairwise similaritieswaftgred objects
and thereby avoid explicit representations (se@lét et al., 2001; Sablkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004). Kernel functions for structul&z can be constructed using
the convolution of local kernels defined over sub-structures (Haud€i89). A prominent exam-
ple for such a convolution is the parse tree kernel proposed by Collmh®aify (2002) which
determines the similarity of trees by counting shared subtrees.

The computation of parse tree kernels, however, is inherently quadratie inumber of tree
nodes, as it builds on dynamic programming to compute the contribution oftsbaintrees. Allo-
cating and updating tables for dynamic programming is feasible for small treg siay less than
200 nodes, so that tree kernels have been widely applied in naturabigamguocessing, for exam-
ple, for question classification (Zhang and Lee, 2003) and parsectraeking (Collins and Duffy,
2002). Figure 1(a) shows an exemplary parse tree of natural laageay Large trees involve
computations that exhaust available resources in terms of memory and rur-ttmexample, the
computation of a parse tree kernel for two HTML documents comprising 10086s each, re-
quires about 1 gigabyte of memory and takes over 100 seconds omacenguter system. Given
that kernel computations are performed millions of times in large-scale leaihisgevident that
regular tree kernels are an inappropriate choice in many learning tasks.
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no asbestos in NP /index.php KEY VAL KEY VAL

| |
our products search= SVM lang= english

(a) Parse tree for a sentence (b) Parse tree for a HTTP request

Figure 1: Parse trees for natural language text and the HTTP netnatdcpl.

The limitation of regular tree kernels becomes apparent when consideaiming tasks based
on formal grammars, such as web spam detection. In web spam detectieeeks to find arrays
of linked fraudulent web pages, so-called link farms, that deteriorat@eh®rmance of search
engines by manipulating search results (e.g., Wu and Davison, 200%; &rdsScheffer, 2005;
Castillo et al., 2006). Besides being densely linked, these web pagesashanportant property:
they are generated automatically according to templates. Hence, a promipitgep for web
spam detection is the analysis of structure in web pages using parse ftid€®Mb documents.
Unfortunately, HTML documents can grow almost arbitrarily large andeetite computation of
conventional tree kernels impossible.
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Moreover, tree-structured data also arises as part of unsupeteemaihg problems, such as
clustering and anomaly detection. For instance, a critical task in computeitges the automatic
detection of novel network attacks (Eskin et al., 2002). Current detetdgithniques fail to cope
with the increasing amount and diversity of network threats, as they depemanually generated
detection rules. As an alternative, one-class learning methods havesbesgssfully employed
for identifying anomalies in the context of intrusion detection (e.g., Eskin eR@02; Kruegel
and Vigna, 2003; Rieck and Laskov, 2007). Due to the already mentinmmetime constraints
these approaches focus on shallow features, although efficient rsefthroelxtracting syntactical
structure from network data are available (e.g., Pang et al., 2006; Baisd., 2007; Wondracek
et al., 2008). Similar to natural language, network protocols are definednrs of grammars and
individual communication can be represented as parse trees, see Kiglure

To alleviate the limitations of regular tree kernels, we propggaroximate tree kerne(&\TKs)
which approximate the kernel computation and thereby allow for efficienmileg with arbitrary
sized trees in supervised and in unsupervised settings. The efficeaddday approximate tree
kernels rests on a two-stage process: A sparse set of relevargesibioted at appropriate gram-
mar symbols is determined from a small sample of treeisy to subsequent training and testing
processes. By decoupling the selection of symbols from the kernel ¢atigyy both, run-time
and memory requirements are significantly reduced. In the supervisedjséteénsubset of sym-
bols is optimized with respect to its ability to discriminate between the involved clasbkés for
the unsupervised setting the optimization is performed with respect to node@uces in order
to minimize the expected run-time. The corresponding optimization problems astated into
linear programs that can be efficiently solved with standard techniques.

Experiments conducted on question classification, web spam detectioretatkaintrusion
detection demonstrate the expressiveness and efficiency of ourapprekimate kernels. Through-
out all our experiments, approximate tree kernels are significantly fasterrégular convolution
kernels. Depending on the size of the trees, we observe run-time and yniempoovements up to
3 orders of magnitude. Furthermore, the approximate tree kernels notamystently yield the
same predictive performance as regular tree kernels, but evenfoutpéneir exact counterparts in
some tasks by identifying informative dimensions in feature space.

The remainder of this article is organized as follows. We introduce regataefree kernels in
Section 2 and present our main contribution, the approximate tree kern8sciion 3. We study
the characteristics of approximate kernels on artificial data in Section 4egdton real-world
applications in Section 5. Finally, Section 6 concludes.

2. Kernels for Parse Trees

Let G = (S,P,s) be a grammar with production rulésand a start symbd defined over a se$

of non-terminal and terminal symbols (Hopcroft and Motwani, 2001). & Xds called a parse
tree of G if X is derived by assembling productiopse P such that every node € X is labeled
with a symbol/(x) € S. To navigate in a parse tree, we addresstiechild of a nodex by x; and
denote the number of children Ib¥|. The number of nodes iX is indicated by X| and the set of
all possible trees is given by.

A kernelk : X x X — R is a symmetric and positive semi-definite function, which implicitly

computes an inner product in a reproducing kernel Hilbert spacen{¥ap995). A generic tech-
nigue for defining kernel functions over structured data is the convoluidocal kernels defined
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Figure 2: Shared subtrees in two parse trees. The numbers in bradttetstenthe number of
occurrences for each shared subtree pair.

over sub-structures (Haussler, 1999). Collins and Duffy (200@lyahis concept to parse trees by
counting shared subtrees. Given two parse tkeaadZ, theirparse tree kerndk given by

k(X,Z)= XEZ(Z;C(X, 2), (@)

where the counting functioa recursively determines the number of shared subtrees rooted in the
tree nodex andz.

The functionc is defined ag(x,z) = 0 if x andz are not derived from the same production and
c(x,z) = A if xandz are leave nodes of the same production. In all other cases, the defiritian o
counting functiorc follows a recursive rule given by

x|

c(x,2) :)\’u(1+c(xi,z;)). 2

The trade-off parameterQ A < 1 balances the contribution of subtrees, such that small values of
A decay the contribution of lower nodes in large subtrees (see Collins aifyl R002). Figure 2
illustrates two simple parse trees and the corresponding shared subtrees.

Several extensions and refinements of the parse tree kernel hawvprbpesed in the literature
to increase its expressiveness for specific learning tasks. For exasafiiag the constant term in
the product of Equation (2) to zero restricts the counting function to takeaamplete subtrees
into account (Vishwanathan and Smola, 2003). Kashima and Koyar2@R)2xtend the counting
function to generic trees—not necessarily derived from a grammar-essidering ordered subsets
of child nodes for computing the kernel. Further extensions to the countmgiién proposed by
Moschitti (2006b) allow for controlling the vertical as well as the horizootadtribution of subtree
counts. Moreover, Moschitti and Zanzotto (2007) extend the parséérael to operate on pairs
of trees for deriving relations between sentences in tasks such asl temta#ment recognition.
However, all of the above mentioned extensions depend on dynami@pmogng over all pairs of
nodes and thus yield prohibitive run-time and memory requirements if largedreeconsidered.

Selecting discriminative subtrees for tree kernels has been first stugliedzuki et al. (2004)
in the domain of natural language processing. A feature selection pnacedsed on statistical
tests is embedded in the dynamic programming, such that relevant subssuataiidentified dur-
ing computation of the parse tree kernel (see also Suzuki and Iso28k).2Vhile this procedure
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significantly improves the expressiveness of corresponding treelkethe entanglement of fea-
ture selection and dynamic programming unfortunately prevents any impraovefein-time and
memory requirements over regular tree kernels.

First steps toward run-time improvement of tree kernels have been déyisédschitti (2006a),
who introduces an alternative algorithm limiting computation to node pairs with matgnammar
symbols. Although this extension reduces the run-time, it does not allevialigogive memory
requirements, as counts for all possible node pairs need to be storedndids that for large trees
with |X| > |S], only a minor speed-up is gained, since only a small fraction of node pairbe
discarded from the kernel computation. Nevertheless, this algorithm ilieier® approach when
learning with small trees as in natural language processing.

3. Approximate Tree Kernels

The previous section argues that the computation of regular tree kesie¢sdynamic program-
ming is infeasible for large tree structures. In this section we introducexzippate tree kernels to
significantly decrease this computational burden. Our approximation d¢reels is based on the
observation that trees often contain redundant parts that are not @igvant for the learning task
but also slow-down the kernel computation unnecessarily. As an exampledundancy in trees
let us consider the task of web spam detection. While few HTML elementh, asibeader and
meta tags, are indicative for web spam templates, the majority of formatting tagslévant and
may even harm performance. We exploit this observation by restrictingstimekcomputation to a
sparse set of subtrees rooted in only a few grammar symbols.

In general, selecting relevant subtrees for the kernel computatiofreeagificient means for
enumerating subtrees. The amount of generic subtrees contained itegsirsg tree is exponential
in the number of nodes and thus intractable for large tree structurese@argly, we refrain from
exhaustive enumeration and limit the selection to subtrees rooted at pargjcatamar symbols.
We introduce a selection functian: S— {0, 1}, which controls whether subtrees rooted in nodes
with the symbols € S contribute to the convolutiornu(s) = 1) or not ((s) = 0). By means ofw,
approximate tree kernels are defined as follows.

Definition 1 Given a selection functiom: S— {0, 1}, the approximate tree kernel is defined as

Akco(xaz) = Zw(s) ; 2 6()(7 Z)? ©))

((x)=s ((2)=s

where the approximate counting functiéris defined as (if(x,z) = 0 if x and z are not derived
from the same production, (ifj(x,z) = 0 if x or z has not been selected, that is(,¢/(x)) = 0 or
w(¢(z)) =0, and (iii) c(x,z) = A if x and z are leave nodes of the same production. In all other
cases, the approximate counting functiis defined as

x|

0¢2) = AT (1+%.2))

For the task at hand, the selection functioneeds to be adapted to the tree data before the resulting
approximate tree kernel can be applied together with learning algorithmstiNatie exact parse
tree kernel in Equation (1) is obtained as a special case of Equationu§®)if= 1 for all symbols

se S Irrespectively of the actual choice af Proposition 2 shows that the approximate keknis|

a valid kernel function.
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Proposition 2 The approximate tree kernel in Definition 1 is a kernel function.

Proof Let@(X) be the vector of frequencies of all subtrees occurrirg as defined by Collins and
Duffy (2002). Then, by definitiork, can always be written as

ko(X,Z) = (Pu@(X), Pu®(2)),
wherePR,, projects the dimensions gf X) on the subtrees rooted in symbols selectedbffor any
w, the projectiorP, is independent of the actuglandZ, and hencé,, is a valid kernel. |

Proposition 2 allows to view approximate tree kernels as feature selectiamdaeh. If the
selection function effectively identifies relevant symbols, the dimensiondlityeofeature space is
reduced and the kernel provides access to a refined data reptieseée will address this point in
Section 4 and 5 where we study eigendecompositions in the induced fespaces. Additionally,
we note that the approximate tree kernel realizes a run-time speed-upauyoa 6f ., which
depends on the number of selected symbols &md the amount of subtrees rooted at these symbols.
For two particular treeX, Z we can state the following simple proposition.

Proposition 3 The approximate tree keranL(X,Z) can be computed,gtimes faster than(X, Z).

Proof Let#s(X) denote the occurrences of nodesX with ¢(x) = s. Then the speed-up, realized
by ke is lower bounded by 0#(2)
Y ses#s(X) #s(Z
o= ¥ ses(S) #s(X) #s(Z) “)
as all nodes with identical symbolsXandZ are paired. For the trivial case where for all elements
w(s) = 1, the factor,, equals 1 and the run-time is identical to the parse tree kernel. In all other
caseqg], > 1 holds since at least one symbol is discarded from the denominator itidiv(4). B

The quality ofk, and alsoqg, depend on the actual choice @f If the selection functionw
discards redundant and irrelevant subtrees from the kernel cotigputize approximate kernel can
not only be computed faster but also preserves the discriminative simesss of the regular tree
kernel. Sections 3.1 and 3.2 deal with adaptirfgr supervised and unsupervised learning tasks, re-
spectively. Although, the resulting optimization problems are quadratic in timbeuof instances,
selecting symbols can be performed on a small fraction of the data prior tatied Bearning pro-
cess; hence, performance gains achieved in the latter are not affgdteslinitial selection process.
We show in Section 5 that reasonable approximations can be achievedderatesample sizes.

3.1 The Supervised Setting

In the supervised setting, we are givetabeled parse tregXy,y1), ..., (X, Yn) With y; € 9. For
binary classification we may hagé = {—1, 1} while a multi-class scenario withclasses gives rise

to the set)’ = {1,2,...,K}. In the supervised case, the aim of the approximation is to preserve the
discriminative power of the regular kernel by selecting a sparse buessige subset of grammar
symbols. We first note that with elements;;Ji j—1,...n given by

Yij =i =yl - Ivi # vils (5)
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represents an optimal kernel matrix whété is an indicator function returning 1 if is true and
0 otherwise. For binary classification problems, Equation (5) can alsoieuwted by the outer
productY = yy', wherey = (y1,...,yn)T.

Inspired by kernel target alignment (Cristianini et al., 2001), a simple nnead the similarity
of the approximate kernéd,, = [Ak(‘o(Xi,Xj)]i’j:l,m’n and the optimaY is provided by the Frobenius
inner product-, -) 7 that is defined agA, B) » = 3;; aijbij. We have,

(Y. Ko)g = > kj— > kij. (6)
Yi=Yj YiZYj

The right hand side of Equation (6) measures the within class (first temrtharbetween class
(second term) similarity. Approximate kernels that discriminate well between Yob/éd classes
realize large values ofY, Kw>¢, hence maximizing Equation (6) with respectdaosuffices for
finding approximate kernels with high discriminative power.

We arrive at the following integer linear program that has to be maximized esgbect tao to
align K, to the labelsy,

we%,al)}(\ﬂ .le Y|YJ (X, Xj)- (7)
i
Note that we exclude diagonal elements, thakigX;, X), from Equation (7), as the large self-
similarity induced by the parse tree kernel impacts numerical stability on largestimectures (see
Collins and Duffy, 2002).

Optimizing Equation (7) directly will inevitably reproduce the regular convotukernel as all
subtrees contribute positively to the kernel computation. As a remedy, strictéhe number of
supporting symbols of the approximation by a pre-defined conbtamoreover, instead of opti-
mizing the integer program directly, we propose to use a relaxed variarbfhe/here a threshold
is used to discretizep. Consequently, we obtain the following relaxed linear program that can be
solved with standard solvers.

Optimization Problem 1 (Supervised Setting) Given a labeled training sample of size n and let
N € N. The optimal selection functian* can be computed by solving

W' = argmax Zy.yJZoo X; 2 .cxz

I8
we(0,1] =1 s os ®)

subject to st <N,
Se

where the counting functiofis given in Definition (3).

3.2 The Unsupervised Setting

Optimization Problem 1 identifie symbols providing the highest discriminative power given a
labeled training set. In the absence of labels, for instance in an anomatyicletask, the opera-
tional goal needs to be changed. In these cases, the only accessibheatidn for findingw are
the tree structures themselves. Large trees are often characterizedumyglant substructures that
strongly impact run-time performance while encoding only little information. Meee syntactical
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structure present in all trees of a data set do not provide any informsiitable for learning. As a
consequence, we seek a selection of symbols using a constraint op#uteekrun-time and thereby
implicitly discard redundant and costly structures with small contribution to theekgalue.

Given unlabeled parse treg, Xz, ..., X,, we introduce a functiorf (s) which measures the
average frequency of node comparisons for the syrabothe training set, defined as

1 n
()= a3 #X)As(X). ©)

Using the average comparison frequerfcywe bound the expected run-time of the approximate
kernel byp € (0,1], the ratio of expected node comparisons with respect to the exact pEedetr
nel. The following optimization problem details the computation of the opturidbr unsupervised
settings.

Optimization Problem 2 (Unsupervised Setting) Given an unlabeled training sample of size n
and a comparison rati@ < (0, 1].
n
" = argmax w(s) 2 &(x,2)
we[0,1]18 i,ij#:jl s XER 7€

]

(0= (2)=s (10)
ZSES('O(S) f(S) <

ZSGS f (S) -
where the counting functiodis given in Definition 3 and f defined as in Equation (9).

subject to

The optimal selection functiow* gives rise to a tree kernel that approximates the regular kernel
as close as possible, while on average considering a fractipmade pairs for computing the sim-
ilarities. Analogously to the supervised setting, we solve the relaxed vafiti integer program
and use a threshold to discretize the resultng

3.3 Extensions

The supervised and unsupervised formulations in Optimization Problem 2 lanitd on different
constraints for determining a selection of appropriate symbols. Dependitigedearning task at
hand, these constraints are exchangeable, such that approximatertrels kn supervised settings
may also be restricted to the rapmf expected node comparisons and the unsupervised formulation
can be alternatively conditioned on a fixed humber of symbblBoth constraints may even be
applied jointly to limit expected run-time and the number of selected symbols. Fpresentation,
we have chosen a constraint on the number of symbols in the supervised,sas it provides
an intuitive measure for the degree of approximation. By contrast, we emaptoypstraint on the
expected number of node comparisons in the unsupervised formulationthasabsence of labels,
it is easier to bound the run-time, irrespective of the number of selectedosymb

Further extensions incorporating prior knowledge into the proposedx=ippations are straight
forward. For instance, the approximation procedure can be refined lagjical compounds based
on conjunctions and disjunctions of symbols. If the activation of syrspotquires the activation
of sj11, the constraintu(sj) — w(sj+1) = 0 can be included in Equation (8) and (10). A conjunction
(AND) of msymbols can then be efficiently encodedrby- 1 additional constraints as

Vi i(s) — w(sj+1) = 0.
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For a disjunction (OR) of symbols, ...,sj.m the following constraint guarantees that at least one
representative of the group is active in the solution

W(Sj) + W(Sj+1) + ...+ W(Sj+m) > 1. (11)
Alternatively, Equation (11) can be turned into an exclusive disjuncti@@R)Xof symbols by chang-
ing the inequality into an equality constraint.

3.4 Implementation

A standard technique for computing tree kernels is dynamic programminge\ahable ofX| x |Z|
elements is used to store the counts of subtrees during recursive evaudtienkernel computa-
tion is then carried out in either a systematic or a structural fashion, wheren@diate results are
stored in the table as sketched in Figure 3. The systematic variant pretessmibtrees with as-
cending height, such that at a particular height, all counts for loweresbtran be looked up in
the table (Shawe-Taylor and Cristianini, 2004). For the structural variae dynamic program-
ming table acts as a cache, which stores previous results when computirgtingive counting
directly (Moschitti, 2006a). This latter approach has the advantage thatatching subtrees are
considered and mismatching nodes do not contribute to the run-time as in thenatis variant.

z z
h(x) h(x)
- 1 A 1
> 2 2
X X
- 3 3
Y Y Y >
< [ J
h(z) 1 2 3 h(z) 1 2 3
(a) Systematic mode (b) Structural mode

Figure 3: Dynamic programming for tree kernels. The convolution of seldoeints is computed
in a systematic (Shawe-Taylor and Cristianini, 2004) or structural mamesdhitti,
2006a). The ternh(x) denotes the height of the subtree rootes éX.

We now provide details on an implementation of approximate tree kernels usistralceural
approach. The inputs of our implementation are parse Xe&sand a selection functioe which
has been determined in advance using the supervised or unsupepgpseximation (Optimization
Problems 1 and 2). The implementation proceeds by first generating pai&tafiing nodes from
the treesX, Z, similarly to the algorithm proposed by Moschitti (2006a). However, palisse
symbols are not selected lbyare omitted. The computation of the tree kernel is then carried out
by looping over the node pairs and counting the number of shared ssibb@ed at each pair. An
exemplary implementation of the approximate kernel is given in Algorithms 1, 3and
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Algorithm 1 Approximate Tree Kernel
1: function KERNEL(X,Z, w)

2: L « GENERATEPAIRS(X,Z, )

3: k—0

4 for (x,z) — L do > Loop over selected pairs of nodes
5: k «— k+ COUNT(X,2)

6 return k

Algorithm 1 realizes a generic tree kernel, which determines the numbeaddkubtrees by
looping over a list of node pairs. Algorithm 2 shows the correspondidpgne of the counting
function in Equation (2) which is called during each iteration of the loop. Whikedtandard
implementation of the parse tree kernel (e.g., Shawe-Taylor and Cristiad@di; Rloschitti, 2006a)
uses a dynamic programming table to store the contribution of subtree coengnploy a hash
table denoted byd. A hash table guarantees constant reading and writing of intermediatesresu
yet it grows with the number of selected node pairs and thereby reducesmnisn comparison to a
standard table of all possible pairs. Note that if all symbots are selected; realizes the standard
dynamic programming approach.

Algorithm 2 Counting Function
1: function COUNT(X,2)
2: if xandz have different productionshen
return O
if xorzis a leaf nodehen
return A
if (x,z) stored in hash tabld then
return H(x,2) > Read dynamic programming cell

c—1

fori — 1to|x| do

10: c«C- (14 CouNT(Xi,Z))

11: H(x,z) < Ac > Write dynamic programming cell
12: return H(x,z)

Algorithm 3 implements the function for generating pairs of nodes with selegtatias. The
function first sorts the tree nodes using a predefined order in line 2eB.ou implementation
we apply a standard lexicographic sorting on the symbols of nodes. AlgoBtthen proceeds
by generating a set of matching node pairsatisfying the invariant that included paips z) € L
have matching symbols (i.€/(x) = ¢(z)) and are selected via (i.e., w(x) = 1). The generation
of pairs is realized analogously to merging sorted arrays (see KnutB).19fe function removes
elements from the lists of sorted nodésandN in parallel until a matching and selected p@irz)
is discovered. With a slight abuse of notation, all available node paibg with label/(x) are then
added td- and removed froniNx andNz in lines 12—-14 of Algorithm 3.
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Algorithm 3 Node Pair Generation

1: function GENERATEPAIRS(X,Z, w)

2 Nx < SORTNODES(X)

3 Nz < SORTNODES(Z)

4: while Nx andNz not emptydo

5: X «+— head ofNy

6: z+— head of\,

7 if £(x) < £(z) or w(x) =0then
8
9

removex from Ny > X mismatches or not selected
; else if £(x) > ¢(z) or w(z) =0 then

10: removez from Nz > Yy mismatches or not selected
11: else
12: N < {(a,b) € Nx x Nz with label¢(x) }
13: L—LUN > Add all pairs with labeF(x)
14: removeN from Ny andNz
15: return L

3.5 Application Setup

In contrast to previous work on feature selection for tree kernels $seeki et al., 2004), the
efficiency of our approximate tree kernels is rootedl@couplingthe selection of symbols from
later application of the learned kernel function. In particular, our treedte are applied in a two-
stage process as detailed in the following.

1. Selection stagdn the first stage, a sparse selectionf grammar symbols is determined on
a sample of tree data, where depending on the learning setting either OptimRatidam 1
or 2 is solved by linear programming. As solving both problems involves conpetiact
tree kernels, the selection is optimized on a small fraction of the trees. To limit rgemor
requirements, the sample may be further filtered to contain only trees oheddssizes.

2. Application stageln the subsequent application stage, the approximate tree kernels are em-
ployed together with learning algorithms using the efficient implementation detailéx in
previous section. The optimized reduces the run-time and memory requirements of the
kernel computation, such that learning with trees of almost arbitrary stzantes feasible.

The approximate tree kernels involve the paramgtas defined in Equation (2). The parameter
controls the contribution of subtrees; values close to zero emphasizevsisalitrees and = 1
corresponds to a uniform weighting of all subtrees. To avoid repeasetiting Optimization Prob-
lem 1 or 2 for different values of, we fix A = 1 in the selection stage and perform model selection
only in the application stage for € [10~4,10°]. This procedure ensures that the approximate tree
kernels are first determined over equally weighted subtrees, henceéngllfay an unbiased opti-
mization in the selection phase. A potential refinememt sfpostponed to the application stage to
exploit performance gains of the approximate tree kernel. Note that if pmmwledge is available,
this may be reflected by a different choicehoh the selection stage.
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4. Experiments on Artificial Data

Before studying the expressiveness and performance of approxireatkernels in real-word ap-
plications, we aim at gaining insights into the approximation process. We thdsicoexperiments
using artificial data generated by the following probabilistic grammar, whdBeC, D denote non-

terminal symbols and, b terminal symbols. The start symbol$s

s — 1 | AB (*1)
A 28 . AA | CcD | a (*2)
B 102200 gg | pc | b (*3)
c 0.30.30.3] AB | A | B (a)
b 0.30.30.3] BA | A | B 5)

Parse trees are generated from the above grammar by applying tf&-+ukeB and randomly
choosing matching production rules according to their probabilities untilatidires end in terminal
nodes. Recursions are included in (*2)—(*5) to ensure that symbolg @t different positions and
depths in the parse trees.

4.1 A Supervised Learning Task

To generate a simple supervised classification task, we assign the first (t4@ as an indicator
of the positive class and the first rule in (*5) as one of the negative.cM&sthen prepare our
data set, such that one but not two of the rules are contained in eaehtpges That is, positive
examples possess the r@e— AB and negative instances exhibit the rile~ BA Note that due
to the symmetric design of the production rules, the two classes can not bguiistiad from the
symbolsC andD alone but from the respective production rules.

Using this setup, we generate training, validation, and test sets consisti@f) gfositive and
negative trees each. We then apply the two-stage process detailed in Sdatibinst, the selection
function w is adapted by solving Optimization Problem 1 using a sample of 250 randomlydraw
trees from the training set. Second, a Support Vector Machine (SVMjirsetl on the training data
and applied to the test set, where the optimal regularization parameter of Mea/the depth
parameteiA are selected using the validation set. We report on averages over diiliogg and
error bars indicate standard errors.

The classification performance of the SVM for the two kernel functionggaled in Figure 4,
where the number of selected symbhlg$or the approximate kernel is given on the x-axis and the
attained area under the ROC curve (AUC) is shown on the y-axis. Tke pae kernel (PTK) leads
to a perfect discrimination between the two classes, yet the approximatetres (ATK) performs
equally well, irrespectively of the number of selected symbols. That is,gheaimation captures
the discriminant subtrees rooted at either the syr@hmiD in all settings. This selection of discrim-
inative subtrees is also reflected in the optimal value of the depth paramdétermined during
the model selection. While for the exact tree kernel the optirial10-2, the approximate kernel
yields best results with = 103, thus putting emphasis on shallow subtrees and the discriminative
production rules rooted & andD.

To analyze the feature space induced by the selection of subtreestfauerpa kernel principle
component analysis (PCA) (see sttopf et al., 1998; Braun et al., 2008) for the exact and the
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Figure 4: Classification performance and kernel PCA plot for the sigsaf toy data.

approximate tree kernel. Figure 4(b) shows the sorted magnitudes ofitlcgpl components in
feature space. Although the differences are marginal, comparing tbapéows for viewing the
approximate kernel as a denoised variant of the regular parse timee.k&he variance of smaller
components is shifted towards leading principle components, resulting in aglonality reduction
in feature space (see Mika et al., 1999).

4.2 An Unsupervised Learning Task

In order to obtain an unsupervised learning task, we modify the artificeahgrar to reflect the
notion of anomaly detection. First, we incorporate redundancy into the grabyniacreasing the
probability of irrelevant production rules in (*4)—(*5) as follows

c (0.1/0.4/0.4]

D

AB |
BA |

(*4)

A B
[0.1/0.4/0.4] A 5 (5)

Second, we sample the parse trees such that training, validation, and settrgpntain 99%
positive and 1% negative instances each, thus matching the anomaly deseetiamio. We pursue
the same two-stage procedure as in the previous section but first soliveiZtion Problem 2
for adapting the approximate tree kernel to the unlabeled data and then esnpih@yclass SVM
(Scholkopf et al., 1999) for training and testing.

Figure 5(a) shows the detection performance for the parse tree karhéhe approximate tree
kernel for varying values gb. The parse tree kernel reaches an AUC value of 57%. Surprisingly, w
observe a substantial gain in performance for the approximate kerrdihdet®@ an almost perfect
separation of the two classes fore= 0.3. Moreover, for the approximate kernel shallow subtrees
are sufficient for detection of anomalies which is indicated by an optrall0—2, whereas for the
exact kernel subtrees of all depths need to be considered due tdimalop= 1.

The high detection performances can be explained by considering al @A of the two
tree kernels in Figure 5(b). The redundant production rules intronftelevant and noisy dimen-
sions into the feature space induced by the parse tree kernel. Cleapy=f0.3, the approximate

tree kernel effectively reduces the intrinsic dimensionality by shifting thimee towards leading
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Figure 5: Detection performance and kernel PCA plot for the unsigezhtoy data.

components. Compared to the exact kernel, the resulting eigenspectthenagfproximate kernel
possesses more explanatory and fewer noisy components.

5. Real-world Experiments

We now proceed to study the expressiveness, stability, and run-timarparice of approximate
tree kernels in real-world applications, namely supervised learning tasksg with question clas-
sification and web spam detection, respectively, and an unsupervesednkp task on intrusion
detection for HTTP and FTP traffic. In all experiments we employ the exarseptree kernel and
state-of-the-art implementations as baseline methods.

¢ Question Classification. Question classification is an important step for automatic answer-
ing of questions (Voorhees, 2004). The task is to categorize a ugpliedi question into
predefined semantic categories. We employ the data collection by Li and Zafi#)(con-
sisting of 6,000 English questions assigned to six classes (abbreviattdp, @escription,
human, location, numeric value). Each question is transformed to a resppatse tree us-
ing the MEI Parsér(Charniak, 1999). For simplicity, we learn a discrimination between the
category “entity” (1,339 instances) and all other categories using alags-Support Vector
Machine (SVM).

e Web Spam Detection.Web spam refers to fraudulent HTML documents, which yield high
ranks in search engines through massive amounts of links. The detetgorcalled link
farms is essential for providing proper search results and protectang frem fraud. We use
the web spam data as described by Castillo et al. (2006). The collectisistsoaf HTML
documents from normal and spam websites in the UK. All sites are examin®ahizgns and
manually annotated. We use a fault-tolerant HTML p&rs@obtain parse trees from HTML
documents. From the top 20 sites of both classes we sample 5,000 parsmuerasgy 974
web spam documents and 4,026 normal HTML pages. Again, we use daa®lVM as the
underlying learning algorithm.

1. Maximum-Entropy-Inspired Parser, dde: / / ft p. c¢s. br own. edu/ pub/ nl par ser.
2. Beautiful Soup Parser, sbet p: / / ww. cr ummy. con sof t war e/ Beaut i f ul Soup.
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¢ Intrusion Detection. Intrusion detection aims to automatically identify unknown attacks in
network traffic. As labels for such data are hard to obtain, unsupernésening has been
a major focus in intrusion detection research (e.g., Eskin et al., 2002g&raad Vigna,
2003; Rieck and Laskov, 2007; Laskov et al., 2008). Thus, foreaperiments we employ
a one-class SVM (Schkopf et al., 1999) in the variant of Tax and Duin (1999) to detect
anomalies in network traffic of the protocols HTTP and FTP. Network tréiicdHTTP is
recorded at the Fraunhofer FIRST institute, while FTP traffic is obtaired the Lawrence
Berkeley National Laboratory (see Paxson and Pang, 2003). Both traffic traces cover a
period of 10 days. Attacks are additionally injected into the traffic using laogacking
tools? The network data is converted to parse trees using the protocol gramrowidegl in
the specifications (see Fielding et al., 1999; Postel and Reynolds,. 19@&®) the generated
parse trees for each protocol we sample 5,000 instances and add &8 &taed TTP and
62 for FTP, respectively. This setting is similar to the data sets used in the DARBSsiIon
detection evaluation (Lippmann et al., 2000).

Figure 6 shows the distribution of tree sizes in terms of nodes for each difitbe learning
tasks. For question classification, the largest tree comprises 113 mddlesseveral parse trees in
the web spam and intrusion detection data consist of more than 5,000 nodes.

For each learning task, we pursue the two-stage procedure deseori®ection 3.5 and conduct
the following experimental procedure: parse trees are randomly drawndach data set and split
into training, validation and test partitions consisting of 1,000 trees eacluot Btated otherwise,
we first draw 250 instances at random from the training set for thetemiestage, where we solve
Optimization Problem 1 or 2 with fixed = 1. In the application stage, the resulting approximate
kernels are then compared to exact kernels using SVMs as underlyminganethods. Model
selection is performed for the regularization parameter of the SVM and fite darametek. We
measure the area under the ROC curve of the resulting classifiers amtgemverages over 10
repetitions with error bars indicate standard errors. In all experimenisaie use of the LIBSVM
library developed by Chang and Lin (2000).

5.1 Results for Question Classification

We first study the expressiveness of the approximate tree kernel arek#itt parse tree kernel
for the question classification task. We thus vary the number of selectedlsymtDptimization
Problem 1 and report on the achieved classification performance fapgiteximate tree kernel for
varyingN and the exact tree kernel in Figure 7(a).

As expected, the approximation becomes more accurate for increasirgg N, meaning
that the more symbols are included in the approximation, the better is the resugttnignthation.
However, the curve saturates to the performance of the regular paedestmel for selecting 7 and
more symbols. The selected symbols apre vP, PP, S1, SBARQ, SQ, andTERM. The symbols\p,
PP, andvP capture the coarse semantics of the considered text, aBirRQ andsQ correspond to
the typical structure of questions. Finally, the symiekm corresponds to terminal symbols and
contains the actual sequence of tokens including interrogative prendure optimal depth for
the approximate kernel is again lower with~?an comparison to the optimal value of 1bfor the
exact kernel, as discriminative substructures are close to the selentbdlsy

3. LBNL-FTP-PKT,ht t p: // ww« nr g. ee. | bl . gov/ anonymi zed- traces. htni .
4. Metasploit Framework, séet p: / / ww. met aspl oi t. org.
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Figure 7: Classification performance and kernel PCA plot for the quesltassification task.

Figure 7(b) shows the eigenspectra of the parse tree kernel and iitscapate variant with the
above 7 selected symbols. Even though the proposed kernel is onlpaoxepation of the regular
tree kernel, their eigenspectra are nearly identical. That is, the apptexirea kernel leads to a
nearly identical feature space to its exact counterpart.

The above experiments demonstrate the ability of the approximation to seledtiistive
symbols, yet it is not clear how the expressiveness of the approximatel&elepends on the re-
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Figure 8: Stability plot for the question classification task.

duced sample size in the selection stage. To examine this issue, wblke&pfixed and vary the
amount of data supplied for adapting the approximate tree kernel. Figareli8plays the assign-
ments of the selection functian, where the size of the provided data is shown on the x-axis and
the IDs of the grammar symbols are listed on the y-axis. The intensity of eashrpbiects the
average number of times the corresponding symbol has been chosesmniepidtitions. The selec-
tion remains stable for sample sizes of 150 parse trees, where consistertbyriéct 7 symbols are
identified. Even if label noise is injected in the data, the approximation remabie #tat least 150
trees are considered for the selection as depicted in Figure 8(b) gnd 8(c

The results on question classification show that exploiting the redundaipeyse trees can be
beneficial even when dealing with small trees. Approximate tree kernelsfidarsimplified rep-
resentation that proves robust against label noise and leads to thelaasifcation rate compared
to regular parse tree kernels.

5.2 Results for Web Spam Detection

We now study approximate tree kernels for web spam detection. Unftetyntraining SVMs
using the exact parse tree kernel proves intractable for many largeitrélee data due to their
excessive memory requirements. We thus exclude trees from the weldgpaset with more than
1,500 nodes for the following experiments. Again, we vary the numberrabsis to be selected
and measure the corresponding AUC value over 10 repetitions.

The results are shown in Figure 9(a). The approximation is consistentlgronifh the regular
parse tree kernel for four and more selected labels, as the differenttes interval are not signifi-
cant. However, the best result is obtained for selecting only two symbbésapproximation picks
the tagsHTML andBODY. We credit this finding to the usage of templates in spam websites inducing
a strict order of high-level tags in the documents. In particular, heat®mnegeta tags occurring
in subtrees below thBTML tag are effective for detecting spam templates. As a consequence, the
optimalA = 10~* for the approximate kernel effectively captures discriminative feataiescting
web spam templates rooted at theML andBODY tag. The eigendecomposition of the two kernels
in Figure 9(b) hardly show any differences. As for the question claasifin task, the exact and
approximate tree kernels share the same expressiveness.

Figure 10 shows the stability of the selection function for varying amountatafebnsidered in
the selection stage whelkeis fixed to 2. The selection saturates for samples containing at least 120
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Figure 10: Stability plot for the web spam detection task.

parse trees and the two symbelsML andBODY are chosen consistently. Moreover, the selection
of symbols for web spam detection proves robust against label noigen fiér a noise ratio of
10% which corresponds to flipping every tenth label, the same symbolslactesk This result
confirms the property of web spam to be generated from templates whicldgsa strong feature
for discrimination even in presence of label noise.

5.3 Results for Intrusion Detection

In this section, we study the expressiveness of approximate kernalagapervised intrusion de-
tection. Since label information is not available, we adapt the selection fartctithe data using
Optimization Problem 2. The resulting approximate tree kernels are then emptmether with a
one-class SVM for the detection of attacks in HTTP and FTP parse treetet&rmine the impact
of the approximation on the detection performance, we vary the numbepet®d node compar-
isons, that is, variablp in Optimization Problem 2. We again exclude trees comprising more than
1,500 nodes due to prohibitive memory requirements for the exact treelkern

Figures 11 (HTTP) and 12 (FTP) show the observed detection rate® deftlior the approx-
imate and the exact tree kernel. Clearly, the approximate tree kernefmsridentically to its
exact counterpart if the ratio of node comparisprsquals 100%. However, when the number of
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Figure 11: Detection performance and analysis of the intrusion detectio(Ha3 P).
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Figure 12: Detection performance and analysis of the intrusion detectio(RaR).

comparisons is restricted to only a fraction, the approximate kernel sigmtlficautperforms the
exact parse tree kernel and leads to a superior detection rate. Tioxiapgte tree kernel realizes
an AUC improvement of 1% for HTTP data. For the FTP protocol, the diffegs are more severe:
the approximate kernel outperforms its exact counterpart and yield&J@niraprovement of 20%.
The optimal depth parametarfor the approximate kernel is 18 for HTTP and 102 for FTP,
while the exact tree kernel requirds= 101 in the optimal setting. This result demonstrates that
the approximation identifies relevant grammar symbols by focusing on shallawess comprising
discriminative patterns.

These gains in performance can be explained by looking at the respedagenspectra, de-
picted in Figures 11(b) and 12(b). Compared to the regular kernel, pr@ximate kernel yields
remarkably fewer noisy components. This is particularly the case for Faffctr Moreover, the
variance is shifted toward only a few leading components. The approxineat&drnel performs a
dimensionality reduction by suppressing noisy and redundant parts fefahee space. For HTTP
traffic, such redundancy is for instance induced by common web brsvike Internet Explorer
and Mozilla Firefox whose header attributes constitute a good portion otthting parse trees.
This syntactical information is delusive in the context of intrusion detectidrhance their removal
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improves the detection performance. Note that the observed gain in penfoersaachieved using
only less than 10% of the grammar symbols. That is, the approximation is notmamby accurate
than the exact parse tree kernel but also concisely represented.

5.4 Run-time Performance

As we have seen in the previous sections, approximate kernels can leadrtoige description of
the task at hand by selecting discriminative substructures in data. In ttimse'e compare the run-
time and memory requirements of the approximate tree kernel with state-oftihgplementations

of the exact tree kernels. We first measure the time for selection, traimddesating phases using
SVMs as underlying learning methods. For all data sets, we use 250méndoawn trees in the

selection stage where training and test sets consist of 1,000 instanbegégam, we exclude large
trees with more than 1,500 nodes because of excessive memory requgemen

Selection stage on 250 parse trees

Question classification 17s+0
Web spam detection 144s+28
Intrusion detection (HTTP) 43s+7
Intrusion detection (FTP) 31s+2

Table 1: Selection stage prior to training and testing phase.

The run-time for the selection of symbols prior to application of the SVMs agegmted in
Table 1. For all three data sets, a selection is determined in less than 3 mirmessdrating the
advantage of phrasing the selection as a simple linear program. Table 5.4liss1ing and testing
times using the approximate tree kernel (ATK) and a fast implementation foxtut tee kernel
(PTK2) devised by Moschitti (2006a). As expected, the size of the trdleences the observed
results. For the small trees in the question classification task we recotohrammprovements by
a factor of 1.7 while larger trees in the other tasks give rise to speed:tgrddetween.8 — 13.8.
Note that the total run-time of the application stage is only marginally affectedsigitial selection
stage that is performed only once prior to the learning process. For éxamihe task of web spam
detection a speed-up of roughly 10 is attained for the full experimenthlai@n, as the selection
is performed once, whereas 25 runs of training and testing are necéssanodel selection.

However, the interpretability of the results reported in Table 5.4 is limited begaause trees
containing more than 1,500 nodes have been excluded from the expeaindgght true performance
gain induced by approximate tree kernels cannot be estimated. Mordwegported training and
testing times refer to a particular learning method and cannot be transferoider methods and
applications, such as clustering and regression tasks. To addresgsthess, we study the run-time
performance and memory consumption of tree kernels explicitly—indep#pdena particular
learning method. Notice that for these experiments we include parse traksiaés. As baselines,
we include a standard implementation of the parse tree kernel (PTK1) ddtpifthwe-Taylor and
Cristianini (2004) and the improved variant (PTK2) proposed by Mitts¢B006a).

For each kernel, we estimate the average run-time and memory requirementajoyting ker-
nels between reference trees of fixed sizes and 100 randomly dreegn Wée also consider the
worst-case scenario for each data set, which occurs if kernels mguted between identical parse
trees, thus realizing the maximal number of matching node pairs. We focus experiments on
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| ATK PTK2 | Speed-up
Training time on 1,000 parse trees
Question classification 42s+4 72s+7 1.7x
Web spam detection 111s+17 | 1,487s+435 13.4x
Intrusion detection (HTTP) | 123s+20 | 349s+80 2.8x

Intrusion detection (FTP) 125s+14 | 517s+129 5.8x
Testing time on 1,000 parse trees

Question classification 40s+4 70s+2 1.8x
Web spam detection 112s+18 | 1,5425+471 13.8x
Intrusion detection (HTTP) 81s+14 | 225s+71 2.8x

Intrusion detection (FTP) 107s+15| 45554112 4.1x

Table 2: Training and testing time of SVMs using the exact and the approxireatkdrnel.

the learning tasks of web spam and intrusion detection (HTTP), wharksésr question classifi-
cation and FTP are analogous.
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Figure 13: Run-times for web spam (WS) and intrusion detection (ID).

Figure 13 illustrates the run-time performance of the approximate and the aebtese kernels.
The run-time is given in milliseconds (ms) per kernel computation on the y-agishee size of the
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considered trees is shown on the x-axis. Both axes are presentedsodl®g- Although the im-
proved variant by Moschitti (PTK2) is significantly faster than the stashtaplementation, neither
of the two show compelling run-times in both tasks. For both implementations ofgoéardree
kernel, a single kernel computation can take more than 10 seconds, tiugsing large-scale ap-
plications infeasible. By contrast, the approximate tree kernel computes giesldretween trees
up to three orders of magnitude faster and yields a worst-case computatioof fiess than 40 ms
for the web spam detection task and less than 20 ms for the intrusion deteskioffilti@ worst-case
analysis shows that the exact tree kernel scales quadratically in the nofmmedes whereas the
approximate tree kernel is computed in sub-quadratic time in the size of the trees
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Figure 14: Memory requirements for web spam (WS) and intrusion dete¢in (

Figure 14 reports on average and worst-case memory requiremente fgelthspam detection
and intrusion detection task. The memory consumption in kilobytes is depicted gnakis and
the size of the considered trees is shown on the x-axis. Both axes areigilogarithmic scale.
In all figures, the curves of the approximate kernel are significantlyb#ie variants of the parse
tree kernel. The allocated memory for the regular tree kernel exceedaldytes in both learning
tasks, which is clearly prohibitive for a single kernel computation. In estthe approximate tree
kernel requires at most 800 kilobytes. For the worst-case estimation, themeonsumption of
the exact kernel scales quadratically in the number of tree nodes whilpphexanate tree kernel
scales sub-quadratically due to the sparse selection of symbols.
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6. Conclusions

Learning with large trees render regular parse tree kernels inapplidabléo quadratic run-time
and memory requirements. As a remedy, we propose to approximate regaldeetnels. Our
approach splits into a selection and an application stage. In the selectionteeagemputation of
tree kernels is narrowed to a sparse subset of subtrees rooted apagig grammar symbols. The
symbols are chosen according to their discriminative power for supdrseténgs and to minimize
the expected number of node comparisons for unsupervised settisgsctigely. We derive linear
programming approaches to identify such symbols, where the resulting oftonipaoblems can
be solved with standard techniques. In the subsequent applicationlstgé)g algorithms benefit
from the initial selection because run-time and memory requirements for thelkemputation are
significantly reduced.

We evaluate the approximate trees kernels with SVMs as underlying learigiogtlams for
guestion classification, web spam detection and intrusion detection. Irpaltiments, the approx-
imate tree kernels not only replicate the predictive performances of kaawtls but also provide
concise representations by operating on only 2—10% of the available grasymhbols. The result-
ing approximate kernels lead to significant improvements in terms of run-time amadmyeequire-
ments. For large trees, the approximation reduces a single kernel comp@itatioh gigabyte to
less than 800 kilobytes, accompanied by run-time improvements up to thres ofdaagnitude.
We also observe improvements for parse trees generated for seritenaggal language, however,
at a smaller scale. The most dramatic results are obtained for intrusion detddgoe, a kernel
PCA shows that approximate tree kernels effectively identify relevantriiioes in feature space
and discard redundant and noisy subspaces from the kernel cdaimpu@onsequently, the approx-
imate kernels perform more efficiently and more accurately than their ezaoterparts achieving
AUC improvements of up to 20%.

To the best of our knowledge, we present the first efficient apprtalearning with large trees
containing thousands of nodes. In view of the many large-scale applicathomsrising structured
data , the presented work provides means for efficient and accuratentpavith large structures.
Although we focus on classification, approximate tree kernels are easéisatped to other kernel-
based learning tasks, such as regression and clustering, using tidei@etidechniques. Moreover,
the devised approximate tree kernels build on the concept of convoluterthamal kernel functions.
Our future work will focus on transferring attained performance gainhedramework of convo-
lution kernels, aiming at rendering learning with various types of complextsired data feasible
in large-scale applications.
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