
Journal of Machine Learning Research 11 (2010) 555-580 Submitted 12/08; Revised 9/09; Published 2/10

Approximate Tree Kernels

Konrad Rieck RIECK@CS.TU-BERLIN.DE

Technische Universität Berlin
Franklinstraße 28/29
10587 Berlin, Germany

Tammo Krueger TAMMO .KRUEGER@FIRST.FRAUNHOFER.DE

Fraunhofer Institute FIRST
Kekuĺestraße 7
12489 Berlin, Germany

Ulf Brefeld BREFELD@YAHOO-INC.COM

Yahoo! Research
Avinguda Diagonal 177
08018 Barcelona, Spain

Klaus-Robert Müller KLAUS-ROBERT.MUELLER@TU-BERLIN.DE

Technische Universität Berlin
Franklinstraße 28/29
10587 Berlin, Germany

Editor: John Shawe-Taylor

Abstract
Convolution kernels for trees provide simple means for learning with tree-structured data. The
computation time of tree kernels is quadratic in the size of the trees, since all pairs of nodes need
to be compared. Thus, large parse trees, obtained from HTML documents or structured network
data, render convolution kernels inapplicable. In this article, we propose an effective approximation
technique for parse tree kernels. The approximate tree kernels (ATKs) limit kernel computation to
a sparse subset of relevant subtrees and discard redundant structures, such that training and testing
of kernel-based learning methods are significantly accelerated. We devise linear programming ap-
proaches for identifying such subsets for supervised and unsupervised learning tasks, respectively.
Empirically, the approximate tree kernels attain run-timeimprovements up to three orders of mag-
nitude while preserving the predictive accuracy of regulartree kernels. For unsupervised tasks, the
approximate tree kernels even lead to more accurate predictions by identifying relevant dimensions
in feature space.

Keywords: tree kernels, approximation, kernel methods, convolutionkernels

1. Introduction

Learning from tree-structured data is an elementary problem in machine learning, as trees arise
naturally in many real-world applications. Exemplary applications involve parse trees in natural
language processing, HTML documents in information retrieval, molecule structures in computa-
tional chemistry, and structured network data in computer security (e.g., Manning and Scḧutze,
1999; Kashima and Koyanagi, 2002; Moschitti, 2006b; Cilia and Moschitti, 2007; Düssel et al.,
2008; Rieck et al., 2008; Bockermann et al., 2009).

c©2010 Konrad Rieck, Tammo Krueger, Ulf Brefeld and Klaus-Robert Müller.

RIECK, KRUEGER, BREFELD AND M ÜLLER

In general, trees carry hierarchical information reflecting the underlying dependency structure
of a domain at hand—an appropriate representation of which is often indispensable for learning ac-
curate prediction models. For instance, shallow representations of trees such as flat feature vectors
often fail to capture the underlying dependencies. Thus, the prevalenttools for learning with struc-
tured data are kernel functions, which implicitly assess pairwise similarities of structured objects
and thereby avoid explicit representations (see Müller et al., 2001; Scḧolkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004). Kernel functions for structureddata can be constructed using
the convolution of local kernels defined over sub-structures (Haussler, 1999). A prominent exam-
ple for such a convolution is the parse tree kernel proposed by Collins and Duffy (2002) which
determines the similarity of trees by counting shared subtrees.

The computation of parse tree kernels, however, is inherently quadratic inthe number of tree
nodes, as it builds on dynamic programming to compute the contribution of shared subtrees. Allo-
cating and updating tables for dynamic programming is feasible for small tree sizes, say less than
200 nodes, so that tree kernels have been widely applied in natural language processing, for exam-
ple, for question classification (Zhang and Lee, 2003) and parse tree reranking (Collins and Duffy,
2002). Figure 1(a) shows an exemplary parse tree of natural language text. Large trees involve
computations that exhaust available resources in terms of memory and run-time. For example, the
computation of a parse tree kernel for two HTML documents comprising 10,000nodes each, re-
quires about 1 gigabyte of memory and takes over 100 seconds on a recent computer system. Given
that kernel computations are performed millions of times in large-scale learning, it is evident that
regular tree kernels are an inappropriate choice in many learning tasks.

S

!NP

There

VP

is NP

no asbestos

PP

in NP

our products

(a) Parse tree for a sentence

RQ

ME URI

GET PATH

/index.php

PARAM PARAM

KEY VAL

search= SVM

KEY VAL

lang= english

(b) Parse tree for a HTTP request

Figure 1: Parse trees for natural language text and the HTTP network protocol.

The limitation of regular tree kernels becomes apparent when considering learning tasks based
on formal grammars, such as web spam detection. In web spam detection one seeks to find arrays
of linked fraudulent web pages, so-called link farms, that deteriorate theperformance of search
engines by manipulating search results (e.g., Wu and Davison, 2005; Drost and Scheffer, 2005;
Castillo et al., 2006). Besides being densely linked, these web pages share an important property:
they are generated automatically according to templates. Hence, a promising approach for web
spam detection is the analysis of structure in web pages using parse trees of HTML documents.
Unfortunately, HTML documents can grow almost arbitrarily large and render the computation of
conventional tree kernels impossible.

556

APPROXIMATE TREE KERNELS

Moreover, tree-structured data also arises as part of unsupervisedlearning problems, such as
clustering and anomaly detection. For instance, a critical task in computer security is the automatic
detection of novel network attacks (Eskin et al., 2002). Current detection techniques fail to cope
with the increasing amount and diversity of network threats, as they depend on manually generated
detection rules. As an alternative, one-class learning methods have beensuccessfully employed
for identifying anomalies in the context of intrusion detection (e.g., Eskin et al.,2002; Kruegel
and Vigna, 2003; Rieck and Laskov, 2007). Due to the already mentionedrun-time constraints
these approaches focus on shallow features, although efficient methods for extracting syntactical
structure from network data are available (e.g., Pang et al., 2006; Borisov et al., 2007; Wondracek
et al., 2008). Similar to natural language, network protocols are defined interms of grammars and
individual communication can be represented as parse trees, see Figure1(b).

To alleviate the limitations of regular tree kernels, we proposeapproximate tree kernels(ATKs)
which approximate the kernel computation and thereby allow for efficient learning with arbitrary
sized trees in supervised and in unsupervised settings. The efficacy gained by approximate tree
kernels rests on a two-stage process: A sparse set of relevant subtrees rooted at appropriate gram-
mar symbols is determined from a small sample of trees,prior to subsequent training and testing
processes. By decoupling the selection of symbols from the kernel computation, both, run-time
and memory requirements are significantly reduced. In the supervised setting, the subset of sym-
bols is optimized with respect to its ability to discriminate between the involved classes, while for
the unsupervised setting the optimization is performed with respect to node occurrences in order
to minimize the expected run-time. The corresponding optimization problems are translated into
linear programs that can be efficiently solved with standard techniques.

Experiments conducted on question classification, web spam detection and network intrusion
detection demonstrate the expressiveness and efficiency of our novelapproximate kernels. Through-
out all our experiments, approximate tree kernels are significantly faster than regular convolution
kernels. Depending on the size of the trees, we observe run-time and memory improvements up to
3 orders of magnitude. Furthermore, the approximate tree kernels not onlyconsistently yield the
same predictive performance as regular tree kernels, but even outperform their exact counterparts in
some tasks by identifying informative dimensions in feature space.

The remainder of this article is organized as follows. We introduce regular parse tree kernels in
Section 2 and present our main contribution, the approximate tree kernels, inSection 3. We study
the characteristics of approximate kernels on artificial data in Section 4 and report on real-world
applications in Section 5. Finally, Section 6 concludes.

2. Kernels for Parse Trees

Let G = (S,P,s) be a grammar with production rulesP and a start symbols defined over a setS
of non-terminal and terminal symbols (Hopcroft and Motwani, 2001). A tree X is called a parse
tree ofG if X is derived by assembling productionsp ∈ P such that every nodex ∈ X is labeled
with a symbolℓ(x) ∈ S. To navigate in a parse tree, we address thei-th child of a nodex by xi and
denote the number of children by|x|. The number of nodes inX is indicated by|X| and the set of
all possible trees is given byX .

A kernel k : X ×X → R is a symmetric and positive semi-definite function, which implicitly
computes an inner product in a reproducing kernel Hilbert space (Vapnik, 1995). A generic tech-
nique for defining kernel functions over structured data is the convolution of local kernels defined

557

RIECK, KRUEGER, BREFELD AND M ÜLLER

z =x = A

B B

C A

A

B B

C A

(4)(4) (1)

AA BB CC

B

C A

B

C A

A

B B

A

B B

(1) (1)

Shared subtrees

Figure 2: Shared subtrees in two parse trees. The numbers in brackets indicate the number of
occurrences for each shared subtree pair.

over sub-structures (Haussler, 1999). Collins and Duffy (2002) apply this concept to parse trees by
counting shared subtrees. Given two parse treesX andZ, theirparse tree kernelis given by

k(X,Z) = ∑
x∈X

∑
z∈Z

c(x,z), (1)

where the counting functionc recursively determines the number of shared subtrees rooted in the
tree nodesx andz.

The functionc is defined asc(x,z) = 0 if x andz are not derived from the same production and
c(x,z) = λ if x andz are leave nodes of the same production. In all other cases, the definition of the
counting functionc follows a recursive rule given by

c(x,z) = λ
|x|

∏
i=1

(1+c(xi ,zi)) . (2)

The trade-off parameter 0< λ ≤ 1 balances the contribution of subtrees, such that small values of
λ decay the contribution of lower nodes in large subtrees (see Collins and Duffy, 2002). Figure 2
illustrates two simple parse trees and the corresponding shared subtrees.

Several extensions and refinements of the parse tree kernel have been proposed in the literature
to increase its expressiveness for specific learning tasks. For example, setting the constant term in
the product of Equation (2) to zero restricts the counting function to take only complete subtrees
into account (Vishwanathan and Smola, 2003). Kashima and Koyanagi (2002) extend the counting
function to generic trees—not necessarily derived from a grammar—by considering ordered subsets
of child nodes for computing the kernel. Further extensions to the counting function proposed by
Moschitti (2006b) allow for controlling the vertical as well as the horizontalcontribution of subtree
counts. Moreover, Moschitti and Zanzotto (2007) extend the parse treekernel to operate on pairs
of trees for deriving relations between sentences in tasks such as textual entailment recognition.
However, all of the above mentioned extensions depend on dynamic programming over all pairs of
nodes and thus yield prohibitive run-time and memory requirements if large trees are considered.

Selecting discriminative subtrees for tree kernels has been first studied by Suzuki et al. (2004)
in the domain of natural language processing. A feature selection procedure based on statistical
tests is embedded in the dynamic programming, such that relevant substructures are identified dur-
ing computation of the parse tree kernel (see also Suzuki and Isozaki, 2005). While this procedure

558

APPROXIMATE TREE KERNELS

significantly improves the expressiveness of corresponding tree kernels, the entanglement of fea-
ture selection and dynamic programming unfortunately prevents any improvement of run-time and
memory requirements over regular tree kernels.

First steps toward run-time improvement of tree kernels have been devisedby Moschitti (2006a),
who introduces an alternative algorithm limiting computation to node pairs with matching grammar
symbols. Although this extension reduces the run-time, it does not alleviate prohibitive memory
requirements, as counts for all possible node pairs need to be stored. Also note, that for large trees
with |X| ≫ |S|, only a minor speed-up is gained, since only a small fraction of node pairs can be
discarded from the kernel computation. Nevertheless, this algorithm is an efficient approach when
learning with small trees as in natural language processing.

3. Approximate Tree Kernels

The previous section argues that the computation of regular tree kernels using dynamic program-
ming is infeasible for large tree structures. In this section we introduce approximate tree kernels to
significantly decrease this computational burden. Our approximation of treekernels is based on the
observation that trees often contain redundant parts that are not only irrelevant for the learning task
but also slow-down the kernel computation unnecessarily. As an example for redundancy in trees
let us consider the task of web spam detection. While few HTML elements, such as header and
meta tags, are indicative for web spam templates, the majority of formatting tags is irrelevant and
may even harm performance. We exploit this observation by restricting the kernel computation to a
sparse set of subtrees rooted in only a few grammar symbols.

In general, selecting relevant subtrees for the kernel computation requires efficient means for
enumerating subtrees. The amount of generic subtrees contained in a single parse tree is exponential
in the number of nodes and thus intractable for large tree structures. Consequently, we refrain from
exhaustive enumeration and limit the selection to subtrees rooted at particulargrammar symbols.
We introduce a selection functionω : S→ {0,1}, which controls whether subtrees rooted in nodes
with the symbols∈ Scontribute to the convolution (ω(s) = 1) or not (ω(s) = 0). By means ofω,
approximate tree kernels are defined as follows.

Definition 1 Given a selection functionω : S→{0,1}, the approximate tree kernel is defined as

k̂ω(X,Z) = ∑
s∈S

ω(s) ∑
x∈X

ℓ(x)=s

∑
z∈Z

ℓ(z)=s

c̃(x,z), (3)

where the approximate counting functionc̃ is defined as (i)̃c(x,z) = 0 if x and z are not derived
from the same production, (ii)̃c(x,z) = 0 if x or z has not been selected, that is,ω(ℓ(x)) = 0 or
ω(ℓ(z)) = 0, and (iii) c(x,z) = λ if x and z are leave nodes of the same production. In all other
cases, the approximate counting functionc̃ is defined as

c̃(x,z) = λ
|x|

∏
i=1

(1+ c̃(xi ,zi)) .

For the task at hand, the selection functionω needs to be adapted to the tree data before the resulting
approximate tree kernel can be applied together with learning algorithms. Notethat the exact parse
tree kernel in Equation (1) is obtained as a special case of Equation (3) ifω(s) = 1 for all symbols
s∈ S. Irrespectively of the actual choice ofω, Proposition 2 shows that the approximate kernelk̂ is
a valid kernel function.

559

RIECK, KRUEGER, BREFELD AND M ÜLLER

Proposition 2 The approximate tree kernel in Definition 1 is a kernel function.

Proof Let φ(X) be the vector of frequencies of all subtrees occurring inX as defined by Collins and
Duffy (2002). Then, by definition,̂kω can always be written as

k̂ω(X,Z) = 〈Pωφ(X),Pωφ(Z)〉,

wherePω projects the dimensions ofφ(X) on the subtrees rooted in symbols selected byω. For any
ω, the projectionPω is independent of the actualX andZ, and hencêkω is a valid kernel.

Proposition 2 allows to view approximate tree kernels as feature selection techniques. If the
selection function effectively identifies relevant symbols, the dimensionality of the feature space is
reduced and the kernel provides access to a refined data representation. We will address this point in
Section 4 and 5 where we study eigendecompositions in the induced featuresspaces. Additionally,
we note that the approximate tree kernel realizes a run-time speed-up by a factor of qω, which
depends on the number of selected symbols inω and the amount of subtrees rooted at these symbols.
For two particular treesX,Z we can state the following simple proposition.

Proposition 3 The approximate tree kernelk̂ω(X,Z) can be computed qω times faster than k(X,Z).

Proof Let #s(X) denote the occurrences of nodesx∈X with ℓ(x) = s. Then the speed-upqω realized
by k̂ω is lower bounded by

qω ≥
∑s∈S #s(X)#s(Z)

∑s∈Sω(s)#s(X)#s(Z)
(4)

as all nodes with identical symbols inX andZ are paired. For the trivial case where for all elements
ω(s) = 1, the factorqω equals 1 and the run-time is identical to the parse tree kernel. In all other
casesqω > 1 holds since at least one symbol is discarded from the denominator in Equation (4).

The quality ofk̂ω and alsoqω depend on the actual choice ofω. If the selection functionω
discards redundant and irrelevant subtrees from the kernel computation the approximate kernel can
not only be computed faster but also preserves the discriminative expressiveness of the regular tree
kernel. Sections 3.1 and 3.2 deal with adaptingω for supervised and unsupervised learning tasks, re-
spectively. Although, the resulting optimization problems are quadratic in the number of instances,
selecting symbols can be performed on a small fraction of the data prior to the actual learning pro-
cess; hence, performance gains achieved in the latter are not affectedby the initial selection process.
We show in Section 5 that reasonable approximations can be achieved for moderate sample sizes.

3.1 The Supervised Setting

In the supervised setting, we are givenn labeled parse trees(X1,y1), . . . ,(Xn,yn) with yi ∈ Y . For
binary classification we may haveY = {−1,1}while a multi-class scenario withκ classes gives rise
to the setY = {1,2, . . . ,κ}. In the supervised case, the aim of the approximation is to preserve the
discriminative power of the regular kernel by selecting a sparse but expressive subset of grammar
symbols. We first note thatY with elements[Yi j]i, j=1,...,n given by

Yi j = [[yi = y j]]− [[yi 6= y j]], (5)

560

APPROXIMATE TREE KERNELS

represents an optimal kernel matrix where[[u]] is an indicator function returning 1 ifu is true and
0 otherwise. For binary classification problems, Equation (5) can also be computed by the outer
productY = yyT, wherey = (y1, . . . ,yn)

T.
Inspired by kernel target alignment (Cristianini et al., 2001), a simple measure of the similarity

of the approximate kernel̂Kω = [k̂ω(Xi ,Xj)]i, j=1,...,n and the optimalY is provided by the Frobenius
inner product〈·, ·〉F that is defined as〈A,B〉F = ∑i j ai j bi j . We have,

〈Y, K̂ω〉F = ∑
yi=y j

k̂i j − ∑
yi 6=y j

k̂i j . (6)

The right hand side of Equation (6) measures the within class (first term) and the between class
(second term) similarity. Approximate kernels that discriminate well between the involved classes
realize large values of〈Y, K̂ω〉F , hence maximizing Equation (6) with respect toω suffices for
finding approximate kernels with high discriminative power.

We arrive at the following integer linear program that has to be maximized with respect toω to
align K̂ω to the labelsy,

max
ω∈{0,1}|S|

n

∑
i, j=1
i 6= j

yiy j k̂ω(Xi ,Xj). (7)

Note that we exclude diagonal elements, that is,k̂ω(Xi ,Xi), from Equation (7), as the large self-
similarity induced by the parse tree kernel impacts numerical stability on large tree structures (see
Collins and Duffy, 2002).

Optimizing Equation (7) directly will inevitably reproduce the regular convolution kernel as all
subtrees contribute positively to the kernel computation. As a remedy, we restrict the number of
supporting symbols of the approximation by a pre-defined constantN. Moreover, instead of opti-
mizing the integer program directly, we propose to use a relaxed variant thereof, where a threshold
is used to discretizeω. Consequently, we obtain the following relaxed linear program that can be
solved with standard solvers.

Optimization Problem 1 (Supervised Setting)Given a labeled training sample of size n and let
N ∈ N. The optimal selection functionω∗ can be computed by solving

ω∗ = argmax
ω∈[0,1]|S|

n

∑
i, j=1
i 6= j

yiy j ∑
s∈S

ω(s) ∑
x∈Xi

ℓ(x)=s

∑
z∈Xj
ℓ(z)=s

c̃(x,z)

subject to ∑
s∈S

ω(s)≤ N,

(8)

where the counting functioñc is given in Definition (3).

3.2 The Unsupervised Setting

Optimization Problem 1 identifiesN symbols providing the highest discriminative power given a
labeled training set. In the absence of labels, for instance in an anomaly detection task, the opera-
tional goal needs to be changed. In these cases, the only accessible information for findingω are
the tree structures themselves. Large trees are often characterized by redundant substructures that
strongly impact run-time performance while encoding only little information. Moreover, syntactical

561

RIECK, KRUEGER, BREFELD AND M ÜLLER

structure present in all trees of a data set do not provide any informationsuitable for learning. As a
consequence, we seek a selection of symbols using a constraint on the expected run-time and thereby
implicitly discard redundant and costly structures with small contribution to the kernel value.

Given unlabeled parse treesX1,X2, . . . ,Xn, we introduce a functionf (s) which measures the
average frequency of node comparisons for the symbols in the training set, defined as

f (s) =
1
n2

n

∑
i, j=1

#s(Xi)#s(Xj). (9)

Using the average comparison frequencyf , we bound the expected run-time of the approximate
kernel byρ ∈ (0,1], the ratio of expected node comparisons with respect to the exact parse tree ker-
nel. The following optimization problem details the computation of the optimalω∗ for unsupervised
settings.

Optimization Problem 2 (Unsupervised Setting)Given an unlabeled training sample of size n
and a comparison ratioρ ∈ (0,1].

ω∗ = argmax
ω∈[0,1]|S|

n

∑
i, j=1
i 6= j

∑
s∈S

ω(s) ∑
x∈Xi

ℓ(x)=s

∑
z∈Xj
ℓ(z)=s

c̃(x,z)

subject to
∑s∈Sω(s) f (s)

∑s∈S f (s)
≤ ρ,

(10)

where the counting functioñc is given in Definition 3 and f defined as in Equation (9).

The optimal selection functionω∗ gives rise to a tree kernel that approximates the regular kernel
as close as possible, while on average considering a fraction ofρ node pairs for computing the sim-
ilarities. Analogously to the supervised setting, we solve the relaxed variantof the integer program
and use a threshold to discretize the resultingω.

3.3 Extensions

The supervised and unsupervised formulations in Optimization Problem 1 and2 build on different
constraints for determining a selection of appropriate symbols. Depending on the learning task at
hand, these constraints are exchangeable, such that approximate tree kernels in supervised settings
may also be restricted to the ratioρ of expected node comparisons and the unsupervised formulation
can be alternatively conditioned on a fixed number of symbolsN. Both constraints may even be
applied jointly to limit expected run-time and the number of selected symbols. For ourpresentation,
we have chosen a constraint on the number of symbols in the supervised setting, as it provides
an intuitive measure for the degree of approximation. By contrast, we employa constraint on the
expected number of node comparisons in the unsupervised formulation, asin the absence of labels,
it is easier to bound the run-time, irrespective of the number of selected symbols.

Further extensions incorporating prior knowledge into the proposed approximations are straight
forward. For instance, the approximation procedure can be refined using logical compounds based
on conjunctions and disjunctions of symbols. If the activation of symbolsj requires the activation
of sj+1, the constraintω(sj)−ω(sj+1) = 0 can be included in Equation (8) and (10). A conjunction
(AND) of m symbols can then be efficiently encoded bym−1 additional constraints as

∀m−1
j=1 ω(sj)−ω(sj+1) = 0.

562

APPROXIMATE TREE KERNELS

For a disjunction (OR) of symbolssj , . . . ,sj+m the following constraint guarantees that at least one
representative of the group is active in the solution

ω(sj)+ω(sj+1)+ . . .+ω(sj+m)≥ 1. (11)

Alternatively, Equation (11) can be turned into an exclusive disjunction (XOR) of symbols by chang-
ing the inequality into an equality constraint.

3.4 Implementation

A standard technique for computing tree kernels is dynamic programming, where a table of|X|×|Z|
elements is used to store the counts of subtrees during recursive evaluations. The kernel computa-
tion is then carried out in either a systematic or a structural fashion, where intermediate results are
stored in the table as sketched in Figure 3. The systematic variant processes the subtrees with as-
cending height, such that at a particular height, all counts for lower subtrees can be looked up in
the table (Shawe-Taylor and Cristianini, 2004). For the structural variant, the dynamic program-
ming table acts as a cache, which stores previous results when computing the recursive counting
directly (Moschitti, 2006a). This latter approach has the advantage that only matching subtrees are
considered and mismatching nodes do not contribute to the run-time as in the systematic variant.

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(a) Systematic mode

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(b) Structural mode

Figure 3: Dynamic programming for tree kernels. The convolution of subtree counts is computed
in a systematic (Shawe-Taylor and Cristianini, 2004) or structural manner (Moschitti,
2006a). The termh(x) denotes the height of the subtree rooted inx∈ X.

We now provide details on an implementation of approximate tree kernels using thestructural
approach. The inputs of our implementation are parse treesX, Z and a selection functionω which
has been determined in advance using the supervised or unsupervised approximation (Optimization
Problems 1 and 2). The implementation proceeds by first generating pairs ofmatching nodes from
the treesX,Z, similarly to the algorithm proposed by Moschitti (2006a). However, pairs whose
symbols are not selected byω are omitted. The computation of the tree kernel is then carried out
by looping over the node pairs and counting the number of shared subtrees rooted at each pair. An
exemplary implementation of the approximate kernel is given in Algorithms 1, 2 and3.

563

RIECK, KRUEGER, BREFELD AND M ÜLLER

Algorithm 1 Approximate Tree Kernel
1: function KERNEL(X,Z,ω)
2: L← GENERATEPAIRS(X,Z,ω)
3: k← 0
4: for (x,z)← L do ⊲ Loop over selected pairs of nodes
5: k← k+ COUNT(x,z)

6: return k

Algorithm 1 realizes a generic tree kernel, which determines the number of shared subtrees by
looping over a list of node pairs. Algorithm 2 shows the corresponding analogue of the counting
function in Equation (2) which is called during each iteration of the loop. While the standard
implementation of the parse tree kernel (e.g., Shawe-Taylor and Cristianini, 2004; Moschitti, 2006a)
uses a dynamic programming table to store the contribution of subtree counts, we employ a hash
table denoted byH. A hash table guarantees constant reading and writing of intermediate results
yet it grows with the number of selected node pairs and thereby reduces memory in comparison to a
standard table of all possible pairs. Note that if all symbols inω are selected,H realizes the standard
dynamic programming approach.

Algorithm 2 Counting Function
1: function COUNT(x,z)
2: if x andzhave different productionsthen
3: return 0
4: if x or z is a leaf nodethen
5: return λ
6: if (x,z) stored in hash tableH then
7: return H(x,z) ⊲ Read dynamic programming cell

8: c← 1
9: for i← 1 to |x| do

10: c← c· (1+ COUNT(xi ,zi))

11: H(x,z)← λc ⊲ Write dynamic programming cell
12: return H(x,z)

Algorithm 3 implements the function for generating pairs of nodes with selected symbols. The
function first sorts the tree nodes using a predefined order in line 2–3. For our implementation
we apply a standard lexicographic sorting on the symbols of nodes. Algorithm 3 then proceeds
by generating a set of matching node pairsL, satisfying the invariant that included pairs(x,z) ∈ L
have matching symbols (i.e.,ℓ(x) = ℓ(z)) and are selected viaω (i.e., ω(x) = 1). The generation
of pairs is realized analogously to merging sorted arrays (see Knuth, 1973). The function removes
elements from the lists of sorted nodesNX andNZ in parallel until a matching and selected pair(x,z)
is discovered. With a slight abuse of notation, all available node pairs(a,b) with labelℓ(x) are then
added toL and removed fromNX andNZ in lines 12–14 of Algorithm 3.

564

APPROXIMATE TREE KERNELS

Algorithm 3 Node Pair Generation

1: function GENERATEPAIRS(X,Z,ω)
2: NX← SORTNODES(X)
3: NZ← SORTNODES(Z)
4: while NX andNZ not emptydo
5: x← head ofNX

6: z← head ofNZ

7: if ℓ(x) < ℓ(z) or ω(x) = 0 then
8: removex from NX ⊲ x mismatches or not selected
9: else if ℓ(x) > ℓ(z) or ω(z) = 0 then

10: removez from NZ ⊲ y mismatches or not selected
11: else
12: N←{(a,b) ∈ NX×NZ with labelℓ(x)}
13: L← L ∪ N ⊲ Add all pairs with labelℓ(x)
14: removeN from NX andNZ

15: return L

3.5 Application Setup

In contrast to previous work on feature selection for tree kernels (seeSuzuki et al., 2004), the
efficiency of our approximate tree kernels is rooted indecouplingthe selection of symbols from
later application of the learned kernel function. In particular, our tree kernels are applied in a two-
stage process as detailed in the following.

1. Selection stage.In the first stage, a sparse selectionω of grammar symbols is determined on
a sample of tree data, where depending on the learning setting either OptimizationProblem 1
or 2 is solved by linear programming. As solving both problems involves computing exact
tree kernels, the selection is optimized on a small fraction of the trees. To limit memory
requirements, the sample may be further filtered to contain only trees of reasonable sizes.

2. Application stage.In the subsequent application stage, the approximate tree kernels are em-
ployed together with learning algorithms using the efficient implementation detailed inthe
previous section. The optimizedω reduces the run-time and memory requirements of the
kernel computation, such that learning with trees of almost arbitrary size becomes feasible.

The approximate tree kernels involve the parameterλ as defined in Equation (2). The parameter
controls the contribution of subtrees; values close to zero emphasize shallow subtrees andλ = 1
corresponds to a uniform weighting of all subtrees. To avoid repeatedlysolving Optimization Prob-
lem 1 or 2 for different values ofλ, we fix λ = 1 in the selection stage and perform model selection
only in the application stage forλ ∈ [10−4,100]. This procedure ensures that the approximate tree
kernels are first determined over equally weighted subtrees, hence allowing for an unbiased opti-
mization in the selection phase. A potential refinement ofλ is postponed to the application stage to
exploit performance gains of the approximate tree kernel. Note that if priorknowledge is available,
this may be reflected by a different choice ofλ in the selection stage.

565

RIECK, KRUEGER, BREFELD AND M ÜLLER

4. Experiments on Artificial Data

Before studying the expressiveness and performance of approximatetree kernels in real-word ap-
plications, we aim at gaining insights into the approximation process. We thus conduct experiments
using artificial data generated by the following probabilistic grammar, whereA,B,C,D denote non-
terminal symbols anda,b terminal symbols. The start symbol isS.

S
[1.0]

−−−−−−−−−→ A B (*1)

A
[0.2|0.2|0.6]

−−−−−−−−−→ A A | C D | a (*2)

B
[0.2|0.2|0.6]

−−−−−−−−−→ B B | D C | b (*3)

C
[0.3|0.3|0.3]

−−−−−−−−−→ A B | A | B (*4)

D
[0.3|0.3|0.3]

−−−−−−−−−→ B A | A | B (*5)

Parse trees are generated from the above grammar by applying the ruleS→ AB and randomly
choosing matching production rules according to their probabilities until all branches end in terminal
nodes. Recursions are included in (*2)–(*5) to ensure that symbols occur at different positions and
depths in the parse trees.

4.1 A Supervised Learning Task

To generate a simple supervised classification task, we assign the first rulein (*4) as an indicator
of the positive class and the first rule in (*5) as one of the negative class. We then prepare our
data set, such that one but not two of the rules are contained in each parse tree. That is, positive
examples possess the ruleC→ AB and negative instances exhibit the ruleD→ BA. Note that due
to the symmetric design of the production rules, the two classes can not be distinguished from the
symbolsC andD alone but from the respective production rules.

Using this setup, we generate training, validation, and test sets consisting of500 positive and
negative trees each. We then apply the two-stage process detailed in Section3.5: First, the selection
function ω is adapted by solving Optimization Problem 1 using a sample of 250 randomly drawn
trees from the training set. Second, a Support Vector Machine (SVM) is trained on the training data
and applied to the test set, where the optimal regularization parameter of the SVM and the depth
parameterλ are selected using the validation set. We report on averages over 10 repetitions and
error bars indicate standard errors.

The classification performance of the SVM for the two kernel functions is depicted in Figure 4,
where the number of selected symbolsN for the approximate kernel is given on the x-axis and the
attained area under the ROC curve (AUC) is shown on the y-axis. The parse tree kernel (PTK) leads
to a perfect discrimination between the two classes, yet the approximate tree kernel (ATK) performs
equally well, irrespectively of the number of selected symbols. That is, the approximation captures
the discriminant subtrees rooted at either the symbolC or D in all settings. This selection of discrim-
inative subtrees is also reflected in the optimal value of the depth parameterλ determined during
the model selection. While for the exact tree kernel the optimalλ is 10−2, the approximate kernel
yields best results withλ = 10−3, thus putting emphasis on shallow subtrees and the discriminative
production rules rooted atC andD.

To analyze the feature space induced by the selection of subtrees, we perform a kernel principle
component analysis (PCA) (see Schölkopf et al., 1998; Braun et al., 2008) for the exact and the

566

APPROXIMATE TREE KERNELS

1 2 3 4 5
0.9

0.92

0.94

0.96

0.98

1

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Selected symbols (N)

ATK
PTK

(a) Classification performance

0 50 100 150

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forN = 1

Figure 4: Classification performance and kernel PCA plot for the supervised toy data.

approximate tree kernel. Figure 4(b) shows the sorted magnitudes of the principal components in
feature space. Although the differences are marginal, comparing the spectra allows for viewing the
approximate kernel as a denoised variant of the regular parse tree kernel. The variance of smaller
components is shifted towards leading principle components, resulting in a dimensionality reduction
in feature space (see Mika et al., 1999).

4.2 An Unsupervised Learning Task

In order to obtain an unsupervised learning task, we modify the artificial grammar to reflect the
notion of anomaly detection. First, we incorporate redundancy into the grammar by increasing the
probability of irrelevant production rules in (*4)–(*5) as follows

C
[0.1|0.4|0.4]

−−−−−−−−−→ A B | A | B (*4)

D
[0.1|0.4|0.4]

−−−−−−−−−→ B A | A | B (*5)

Second, we sample the parse trees such that training, validation, and testingsets contain 99%
positive and 1% negative instances each, thus matching the anomaly detectionscenario. We pursue
the same two-stage procedure as in the previous section but first solve Optimization Problem 2
for adapting the approximate tree kernel to the unlabeled data and then employa one-class SVM
(Scḧolkopf et al., 1999) for training and testing.

Figure 5(a) shows the detection performance for the parse tree kerneland the approximate tree
kernel for varying values ofρ. The parse tree kernel reaches an AUC value of 57%. Surprisingly, we
observe a substantial gain in performance for the approximate kernel, leading to an almost perfect
separation of the two classes forρ = 0.3. Moreover, for the approximate kernel shallow subtrees
are sufficient for detection of anomalies which is indicated by an optimalλ = 10−3, whereas for the
exact kernel subtrees of all depths need to be considered due to an optimal λ = 1.

The high detection performances can be explained by considering a kernel PCA of the two
tree kernels in Figure 5(b). The redundant production rules introduceirrelevant and noisy dimen-
sions into the feature space induced by the parse tree kernel. Clearly, for ρ = 0.3, the approximate
tree kernel effectively reduces the intrinsic dimensionality by shifting the variance towards leading

567

RIECK, KRUEGER, BREFELD AND M ÜLLER

0.0001 0.001 0.01 0.1 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Expected node comparisons (ρ)

ATK
PTK

(a) Detection performance

0 50 100 150
10

−7

10
−5

10
−3

10
−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forρ = 0.3

Figure 5: Detection performance and kernel PCA plot for the unsupervised toy data.

components. Compared to the exact kernel, the resulting eigenspectrum ofthe approximate kernel
possesses more explanatory and fewer noisy components.

5. Real-world Experiments

We now proceed to study the expressiveness, stability, and run-time performance of approximate
tree kernels in real-world applications, namely supervised learning tasks dealing with question clas-
sification and web spam detection, respectively, and an unsupervised learning task on intrusion
detection for HTTP and FTP traffic. In all experiments we employ the exact parse tree kernel and
state-of-the-art implementations as baseline methods.

• Question Classification.Question classification is an important step for automatic answer-
ing of questions (Voorhees, 2004). The task is to categorize a user-supplied question into
predefined semantic categories. We employ the data collection by Li and Roth (2002) con-
sisting of 6,000 English questions assigned to six classes (abbreviation, entity, description,
human, location, numeric value). Each question is transformed to a respective parse tree us-
ing the MEI Parser1 (Charniak, 1999). For simplicity, we learn a discrimination between the
category “entity” (1,339 instances) and all other categories using a two-class Support Vector
Machine (SVM).

• Web Spam Detection.Web spam refers to fraudulent HTML documents, which yield high
ranks in search engines through massive amounts of links. The detection of so-called link
farms is essential for providing proper search results and protecting users from fraud. We use
the web spam data as described by Castillo et al. (2006). The collection consists of HTML
documents from normal and spam websites in the UK. All sites are examined byhumans and
manually annotated. We use a fault-tolerant HTML parser2 to obtain parse trees from HTML
documents. From the top 20 sites of both classes we sample 5,000 parse treescovering 974
web spam documents and 4,026 normal HTML pages. Again, we use a two-class SVM as the
underlying learning algorithm.

1. Maximum-Entropy-Inspired Parser, seeftp://ftp.cs.brown.edu/pub/nlparser.
2. Beautiful Soup Parser, seehttp://www.crummy.com/software/BeautifulSoup.

568

APPROXIMATE TREE KERNELS

• Intrusion Detection. Intrusion detection aims to automatically identify unknown attacks in
network traffic. As labels for such data are hard to obtain, unsupervised learning has been
a major focus in intrusion detection research (e.g., Eskin et al., 2002; Kruegel and Vigna,
2003; Rieck and Laskov, 2007; Laskov et al., 2008). Thus, for ourexperiments we employ
a one-class SVM (Schölkopf et al., 1999) in the variant of Tax and Duin (1999) to detect
anomalies in network traffic of the protocols HTTP and FTP. Network trafficfor HTTP is
recorded at the Fraunhofer FIRST institute, while FTP traffic is obtained from the Lawrence
Berkeley National Laboratory3 (see Paxson and Pang, 2003). Both traffic traces cover a
period of 10 days. Attacks are additionally injected into the traffic using popular hacking
tools.4 The network data is converted to parse trees using the protocol grammars provided in
the specifications (see Fielding et al., 1999; Postel and Reynolds, 1985). From the generated
parse trees for each protocol we sample 5,000 instances and add 89 attacks for HTTP and
62 for FTP, respectively. This setting is similar to the data sets used in the DARPA intrusion
detection evaluation (Lippmann et al., 2000).

Figure 6 shows the distribution of tree sizes in terms of nodes for each of thethree learning
tasks. For question classification, the largest tree comprises 113 nodes,while several parse trees in
the web spam and intrusion detection data consist of more than 5,000 nodes.

For each learning task, we pursue the two-stage procedure describedin Section 3.5 and conduct
the following experimental procedure: parse trees are randomly drawn from each data set and split
into training, validation and test partitions consisting of 1,000 trees each. If not stated otherwise,
we first draw 250 instances at random from the training set for the selection stage, where we solve
Optimization Problem 1 or 2 with fixedλ = 1. In the application stage, the resulting approximate
kernels are then compared to exact kernels using SVMs as underlying learning methods. Model
selection is performed for the regularization parameter of the SVM and the depth parameterλ. We
measure the area under the ROC curve of the resulting classifiers and report on averages over 10
repetitions with error bars indicate standard errors. In all experiments wemake use of the LIBSVM
library developed by Chang and Lin (2000).

5.1 Results for Question Classification

We first study the expressiveness of the approximate tree kernel and the exact parse tree kernel
for the question classification task. We thus vary the number of selected symbols in Optimization
Problem 1 and report on the achieved classification performance for theapproximate tree kernel for
varyingN and the exact tree kernel in Figure 7(a).

As expected, the approximation becomes more accurate for increasing values ofN, meaning
that the more symbols are included in the approximation, the better is the resulting discrimination.
However, the curve saturates to the performance of the regular parse tree kernel for selecting 7 and
more symbols. The selected symbols areNP, VP, PP, S1, SBARQ, SQ, andTERM. The symbolsNP,
PP, andVP capture the coarse semantics of the considered text, whileSBARQ andSQ correspond to
the typical structure of questions. Finally, the symbolTERM corresponds to terminal symbols and
contains the actual sequence of tokens including interrogative pronouns. The optimal depthλ for
the approximate kernel is again lower with 10−2 in comparison to the optimal value of 10−1 for the
exact kernel, as discriminative substructures are close to the selected symbols.

3. LBNL-FTP-PKT,http://www-nrg.ee.lbl.gov/anonymized-traces.html.
4. Metasploit Framework, seehttp://www.metasploit.org.

569

RIECK, KRUEGER, BREFELD AND M ÜLLER

10
1

10
2

10
3

10
4

0

0.03

0.06

0.09

0.12

0.15

Tree size (nodes)

F
re

qu
en

cy

(a) Question classification

10
1

10
2

10
3

10
4

0

0.03

0.06

0.09

0.12

0.15

Tree size (nodes)

F
re

qu
en

cy

(b) Web spam detection

10
1

10
2

10
3

10
4

0

0.03

0.06

0.09

0.12

0.15

Tree size (nodes)

F
re

qu
en

cy

(c) Intrusion detection (HTTP)

10
1

10
2

10
3

10
4

0

0.03

0.06

0.09

0.12

0.15

Tree size (nodes)

F
re

qu
en

cy

(d) Intrusion detection (FTP)

Figure 6: Tree sizes for question classification, web spam detection and intrusion detection.

1 2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Selected symbols (N)

ATK
PTK

(a) Classification performance

0 50 100 150
10

−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forN = 7

Figure 7: Classification performance and kernel PCA plot for the question classification task.

Figure 7(b) shows the eigenspectra of the parse tree kernel and its approximate variant with the
above 7 selected symbols. Even though the proposed kernel is only an approximation of the regular
tree kernel, their eigenspectra are nearly identical. That is, the approximate tree kernel leads to a
nearly identical feature space to its exact counterpart.

The above experiments demonstrate the ability of the approximation to select discriminative
symbols, yet it is not clear how the expressiveness of the approximate kernels depends on the re-

570

APPROXIMATE TREE KERNELS

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

(a) Selection

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

(b) Selection with 5% label noise

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

(c) Selection with 10% label noise

Figure 8: Stability plot for the question classification task.

duced sample size in the selection stage. To examine this issue, we keepN = 7 fixed and vary the
amount of data supplied for adapting the approximate tree kernel. Figure 8(a) displays the assign-
ments of the selection functionω, where the size of the provided data is shown on the x-axis and
the IDs of the grammar symbols are listed on the y-axis. The intensity of each point reflects the
average number of times the corresponding symbol has been chosen in five repetitions. The selec-
tion remains stable for sample sizes of 150 parse trees, where consistently the correct 7 symbols are
identified. Even if label noise is injected in the data, the approximation remains stable if at least 150
trees are considered for the selection as depicted in Figure 8(b) and 8(c).

The results on question classification show that exploiting the redundancy inparse trees can be
beneficial even when dealing with small trees. Approximate tree kernels identify a simplified rep-
resentation that proves robust against label noise and leads to the same classification rate compared
to regular parse tree kernels.

5.2 Results for Web Spam Detection

We now study approximate tree kernels for web spam detection. Unfortunately, training SVMs
using the exact parse tree kernel proves intractable for many large trees in the data due to their
excessive memory requirements. We thus exclude trees from the web spamdata set with more than
1,500 nodes for the following experiments. Again, we vary the number of symbols to be selected
and measure the corresponding AUC value over 10 repetitions.

The results are shown in Figure 9(a). The approximation is consistently on par with the regular
parse tree kernel for four and more selected labels, as the differences in this interval are not signifi-
cant. However, the best result is obtained for selecting only two symbols. The approximation picks
the tagsHTML andBODY. We credit this finding to the usage of templates in spam websites inducing
a strict order of high-level tags in the documents. In particular, header and meta tags occurring
in subtrees below theHTML tag are effective for detecting spam templates. As a consequence, the
optimalλ = 10−1 for the approximate kernel effectively captures discriminative featuresreflecting
web spam templates rooted at theHTML andBODY tag. The eigendecomposition of the two kernels
in Figure 9(b) hardly show any differences. As for the question classification task, the exact and
approximate tree kernels share the same expressiveness.

Figure 10 shows the stability of the selection function for varying amounts of data considered in
the selection stage whereN is fixed to 2. The selection saturates for samples containing at least 120

571

RIECK, KRUEGER, BREFELD AND M ÜLLER

1 2 3 4 5 6 7 8 9 10
0.9

0.92

0.94

0.96

0.98

1

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Selected symbols (N)

ATK
PTK

(a) Classification performance

0 50 100 150
10

−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forN = 2

Figure 9: Classification performance and kernel PCA plot for the web spam detection task.

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

80

90

(a) Selection

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

80

90

(b) Selection with 5% label noise

Sample size for selection

S
ym

bo
l I

D

50 150 250 350 450

10

20

30

40

50

60

70

80

90

(c) Selection with 10% label noise

Figure 10: Stability plot for the web spam detection task.

parse trees and the two symbolsHTML andBODY are chosen consistently. Moreover, the selection
of symbols for web spam detection proves robust against label noise. Even for a noise ratio of
10% which corresponds to flipping every tenth label, the same symbols are selected. This result
confirms the property of web spam to be generated from templates which provides a strong feature
for discrimination even in presence of label noise.

5.3 Results for Intrusion Detection

In this section, we study the expressiveness of approximate kernels forunsupervised intrusion de-
tection. Since label information is not available, we adapt the selection function to the data using
Optimization Problem 2. The resulting approximate tree kernels are then employed together with a
one-class SVM for the detection of attacks in HTTP and FTP parse trees. To determine the impact
of the approximation on the detection performance, we vary the number of expected node compar-
isons, that is, variableρ in Optimization Problem 2. We again exclude trees comprising more than
1,500 nodes due to prohibitive memory requirements for the exact tree kernel.

Figures 11 (HTTP) and 12 (FTP) show the observed detection rates on the left for the approx-
imate and the exact tree kernel. Clearly, the approximate tree kernel performs identically to its
exact counterpart if the ratio of node comparisonsρ equals 100%. However, when the number of

572

APPROXIMATE TREE KERNELS

0.0001 0.001 0.01 0.1 1.0
0.5

0.6

0.7

0.8

0.9

1

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Expected node comparisons (ρ)

ATK
PTK

(a) Detection performance

0 50 100 150
10

−3

10
−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forρ = 0.1

Figure 11: Detection performance and analysis of the intrusion detection task (HTTP).

0.0001 0.001 0.01 0.1 1.0
0.5

0.6

0.7

0.8

0.9

1

A
re

a
un

de
r

th
e

R
O

C
 c

ur
ve

Expected node comparisons (ρ)

ATK
PTK

(a) Detection performance

0 50 100 150

10
−5

10
−3

10
−1

10
1

10
3

M
ag

ni
tu

de
 o

f c
om

po
ne

nt
s

Kernel PCA components

ATK
PTK

(b) Kernel PCA plot forρ = 0.003

Figure 12: Detection performance and analysis of the intrusion detection task (FTP).

comparisons is restricted to only a fraction, the approximate kernel significantly outperforms the
exact parse tree kernel and leads to a superior detection rate. The approximate tree kernel realizes
an AUC improvement of 1% for HTTP data. For the FTP protocol, the differences are more severe:
the approximate kernel outperforms its exact counterpart and yields an AUC improvement of 20%.
The optimal depth parameterλ for the approximate kernel is 10−2 for HTTP and 10−2 for FTP,
while the exact tree kernel requiresλ = 10−1 in the optimal setting. This result demonstrates that
the approximation identifies relevant grammar symbols by focusing on shallow subtrees comprising
discriminative patterns.

These gains in performance can be explained by looking at the respective eigenspectra, de-
picted in Figures 11(b) and 12(b). Compared to the regular kernel, the approximate kernel yields
remarkably fewer noisy components. This is particularly the case for FTP traffic. Moreover, the
variance is shifted toward only a few leading components. The approximate tree kernel performs a
dimensionality reduction by suppressing noisy and redundant parts of thefeature space. For HTTP
traffic, such redundancy is for instance induced by common web browsers like Internet Explorer
and Mozilla Firefox whose header attributes constitute a good portion of the resulting parse trees.
This syntactical information is delusive in the context of intrusion detection and hence their removal

573

RIECK, KRUEGER, BREFELD AND M ÜLLER

improves the detection performance. Note that the observed gain in performance is achieved using
only less than 10% of the grammar symbols. That is, the approximation is not onlymore accurate
than the exact parse tree kernel but also concisely represented.

5.4 Run-time Performance

As we have seen in the previous sections, approximate kernels can lead to aconcise description of
the task at hand by selecting discriminative substructures in data. In this section we compare the run-
time and memory requirements of the approximate tree kernel with state-of-the-art implementations
of the exact tree kernels. We first measure the time for selection, training, and testing phases using
SVMs as underlying learning methods. For all data sets, we use 250 randomly drawn trees in the
selection stage where training and test sets consist of 1,000 instances each. Again, we exclude large
trees with more than 1,500 nodes because of excessive memory requirements.

Selection stage on 250 parse trees
Question classification 17s±0
Web spam detection 144s±28
Intrusion detection (HTTP) 43s±7
Intrusion detection (FTP) 31s±2

Table 1: Selection stage prior to training and testing phase.

The run-time for the selection of symbols prior to application of the SVMs are presented in
Table 1. For all three data sets, a selection is determined in less than 3 minutes, demonstrating the
advantage of phrasing the selection as a simple linear program. Table 5.4 lists the training and testing
times using the approximate tree kernel (ATK) and a fast implementation for the exact tree kernel
(PTK2) devised by Moschitti (2006a). As expected, the size of the treesinfluences the observed
results. For the small trees in the question classification task we record run-time improvements by
a factor of 1.7 while larger trees in the other tasks give rise to speed-up factors between 2.8−13.8.
Note that the total run-time of the application stage is only marginally affected by the initial selection
stage that is performed only once prior to the learning process. For example, in the task of web spam
detection a speed-up of roughly 10 is attained for the full experimental evaluation, as the selection
is performed once, whereas 25 runs of training and testing are necessary for model selection.

However, the interpretability of the results reported in Table 5.4 is limited because parse trees
containing more than 1,500 nodes have been excluded from the experimentand the true performance
gain induced by approximate tree kernels cannot be estimated. Moreover,the reported training and
testing times refer to a particular learning method and cannot be transferredto other methods and
applications, such as clustering and regression tasks. To address these issues, we study the run-time
performance and memory consumption of tree kernels explicitly—independently of a particular
learning method. Notice that for these experiments we include parse trees ofall sizes. As baselines,
we include a standard implementation of the parse tree kernel (PTK1) detailedby Shawe-Taylor and
Cristianini (2004) and the improved variant (PTK2) proposed by Moschitti (2006a).

For each kernel, we estimate the average run-time and memory requirements bycomputing ker-
nels between reference trees of fixed sizes and 100 randomly drawn trees. We also consider the
worst-case scenario for each data set, which occurs if kernels are computed between identical parse
trees, thus realizing the maximal number of matching node pairs. We focus in our experiments on

574

APPROXIMATE TREE KERNELS

ATK PTK2 Speed-up
Training time on 1,000 parse trees
Question classification 42s±4 72s±7 1.7×
Web spam detection 111s±17 1,487s±435 13.4×
Intrusion detection (HTTP) 123s±20 349s±80 2.8×
Intrusion detection (FTP) 125s±14 517s±129 5.8×
Testing time on 1,000 parse trees
Question classification 40s±4 70s±2 1.8×
Web spam detection 112s±18 1,542s±471 13.8×
Intrusion detection (HTTP) 81s±14 225s±71 2.8×
Intrusion detection (FTP) 107s±15 455s±112 4.1×

Table 2: Training and testing time of SVMs using the exact and the approximate tree kernel.

the learning tasks of web spam and intrusion detection (HTTP), where results for question classifi-
cation and FTP are analogous.

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Tree size (nodes)

T
im

e
pe

r
co

m
pu

ta
tio

n
(m

s)

PTK1
PTK2
ATK

(a) Average-case run-time (WS)

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Tree size (nodes)

T
im

e
pe

r
co

m
pu

ta
tio

n
(m

s)

PTK1
PTK2
ATK

(b) Worst-case run-time (WS)

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Tree size (nodes)

T
im

e
pe

r
co

m
pu

ta
tio

n
(m

s)

PTK1
PTK2
ATK

(c) Average-case run-time (ID)

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Tree size (nodes)

T
im

e
pe

r
co

m
pu

ta
tio

n
(m

s)

PTK1
PTK2
ATK

(d) Worst-case run-time (ID)

Figure 13: Run-times for web spam (WS) and intrusion detection (ID).

Figure 13 illustrates the run-time performance of the approximate and the two exact tree kernels.
The run-time is given in milliseconds (ms) per kernel computation on the y-axis and the size of the

575

RIECK, KRUEGER, BREFELD AND M ÜLLER

considered trees is shown on the x-axis. Both axes are presented in log-scale. Although the im-
proved variant by Moschitti (PTK2) is significantly faster than the standard implementation, neither
of the two show compelling run-times in both tasks. For both implementations of the regular tree
kernel, a single kernel computation can take more than 10 seconds, thus rendering large-scale ap-
plications infeasible. By contrast, the approximate tree kernel computes similarities between trees
up to three orders of magnitude faster and yields a worst-case computation timeof less than 40 ms
for the web spam detection task and less than 20 ms for the intrusion detection task. The worst-case
analysis shows that the exact tree kernel scales quadratically in the number of nodes whereas the
approximate tree kernel is computed in sub-quadratic time in the size of the trees.

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Tree size (nodes)

M
em

or
y

pe
r

co
m

pu
ta

tio
n

(k
b)

PTK1
PTK2
ATK

(a) Average-case memory (WS)

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Tree size (nodes)

M
em

or
y

pe
r

co
m

pu
ta

tio
n

(k
b)

PTK1
PTK2
ATK

(b) Worst-case memory (WS)

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Tree size (nodes)

M
em

or
y

pe
r

co
m

pu
ta

tio
n

(k
b)

PTK1
PTK2
ATK

(c) Average-case memory (ID))

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Tree size (nodes)

M
em

or
y

pe
r

co
m

pu
ta

tio
n

(k
b)

PTK1
PTK2
ATK

(d) Worst-case memory (ID)

Figure 14: Memory requirements for web spam (WS) and intrusion detection (ID).

Figure 14 reports on average and worst-case memory requirements for the web spam detection
and intrusion detection task. The memory consumption in kilobytes is depicted on the y-axis and
the size of the considered trees is shown on the x-axis. Both axes are given in logarithmic scale.
In all figures, the curves of the approximate kernel are significantly below the variants of the parse
tree kernel. The allocated memory for the regular tree kernel exceeds 1 gigabytes in both learning
tasks, which is clearly prohibitive for a single kernel computation. In contrast the approximate tree
kernel requires at most 800 kilobytes. For the worst-case estimation, the memory consumption of
the exact kernel scales quadratically in the number of tree nodes while the approximate tree kernel
scales sub-quadratically due to the sparse selection of symbols.

576

APPROXIMATE TREE KERNELS

6. Conclusions

Learning with large trees render regular parse tree kernels inapplicabledue to quadratic run-time
and memory requirements. As a remedy, we propose to approximate regular tree kernels. Our
approach splits into a selection and an application stage. In the selection stage, the computation of
tree kernels is narrowed to a sparse subset of subtrees rooted in appropriate grammar symbols. The
symbols are chosen according to their discriminative power for supervised settings and to minimize
the expected number of node comparisons for unsupervised settings, respectively. We derive linear
programming approaches to identify such symbols, where the resulting optimization problems can
be solved with standard techniques. In the subsequent application stage,learning algorithms benefit
from the initial selection because run-time and memory requirements for the kernel computation are
significantly reduced.

We evaluate the approximate trees kernels with SVMs as underlying learning algorithms for
question classification, web spam detection and intrusion detection. In all experiments, the approx-
imate tree kernels not only replicate the predictive performances of exactkernels but also provide
concise representations by operating on only 2–10% of the available grammar symbols. The result-
ing approximate kernels lead to significant improvements in terms of run-time and memory require-
ments. For large trees, the approximation reduces a single kernel computationfrom 1 gigabyte to
less than 800 kilobytes, accompanied by run-time improvements up to three orders of magnitude.
We also observe improvements for parse trees generated for sentencesin natural language, however,
at a smaller scale. The most dramatic results are obtained for intrusion detection. Here, a kernel
PCA shows that approximate tree kernels effectively identify relevant dimensions in feature space
and discard redundant and noisy subspaces from the kernel computation. Consequently, the approx-
imate kernels perform more efficiently and more accurately than their exact counterparts achieving
AUC improvements of up to 20%.

To the best of our knowledge, we present the first efficient approach to learning with large trees
containing thousands of nodes. In view of the many large-scale applicationscomprising structured
data , the presented work provides means for efficient and accurate learning with large structures.
Although we focus on classification, approximate tree kernels are easily leveraged to other kernel-
based learning tasks, such as regression and clustering, using the introduced techniques. Moreover,
the devised approximate tree kernels build on the concept of convolution over local kernel functions.
Our future work will focus on transferring attained performance gains tothe framework of convo-
lution kernels, aiming at rendering learning with various types of complex structured data feasible
in large-scale applications.

Acknowledgments

The authors would like to thank the anonymous reviewers for helpful comments and suggestions.
Furthermore, we like to thank Patrick Düssel and Reńe Gerstenberger for providing efficient imple-
mentations of network protocol parsers. The authors gratefully acknowledge the funding from the
Bundesministerium f̈ur Bildung und Forschung under the project REMIND (FKZ 01-IS07007A)
and from the FP7-ICT Program of the European Community under the PASCAL2 Network of Ex-
cellence, ICT-216886. Most of the work was done when UB was at TU Berlin.

577

RIECK, KRUEGER, BREFELD AND M ÜLLER

References

C. Bockermann, M. Apel, and M. Meier. Learning SQL for database intrusion detection using
context-sensistive modelling. InDetection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2009. to appear.

N. Borisov, D.J. Brumley, H. Wang, J. Dunagan, P. Joshi, and C. Guo.Generic application-level pro-
tocol analyzer and its language. InProc. of Network and Distributed System Security Symposium
(NDSS), 2007.

M. L. Braun, J. Buhmann, and K.-R. M̈uller. On relevant dimensions in kernel feature spaces.
Journal of Machine Learning Research, 9:1875–1908, Aug 2008.

C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and S. Vigna. A reference
collection for web spam.SIGIR Forum, 40(2):11–24, 2006. URLhttp://portal.acm.org/
citation.cfm?id=1189703.

C.-C. Chang and C.-J. Lin. LIBSVM: Introduction and benchmarks. Technical report, Department
of Computer Science and Information Engineering, National Taiwan University, Taipei, 2000.

E. Charniak. A maximum-entropy-inspired parser. Technical Report CS-99-12, Brown University,
1999.

E. Cilia and A. Moschitti. Advanced tree-based kernels for protein classification. InArtificial
Intelligence and Human-Oriented Computing (AI*IA), 10th Congress, LNCS, pages 218–229,
2007.

M. Collins and N. Duffy. Convolution kernel for natural language. InAdvances in Neural Informa-
tion Proccessing Systems (NIPS), volume 16, pages 625–632, 2002.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On kernel target alignment. In
Advances in Neural Information Proccessing Systems (NIPS), volume 14, pages 367–737, 2001.

I. Drost and T. Scheffer. Thwarting the nigritude ultramarine: Learningto identify link spam. In
Proc. of the Eurpoean Conference on Machine Learning (ECML), 2005.

P. Düssel, C. Gehl, P. Laskov, and K. Rieck. Incorporation of application layer protocol syntax
into anomaly detection. InProc. of International Conference on Information Systems Security
(ICISS), pages 188–202, 2008.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo.Applications of Data Mining in Com-
puter Security, chapter A geometric framework for unsupervised anomaly detection: detecting
intrusions in unlabeled data. Kluwer, 2002.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, andT. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999. URLhttp://www.ietf.
org/rfc/rfc2616.txt. Updated by RFC 2817.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC
Santa Cruz, July 1999.

578

APPROXIMATE TREE KERNELS

J.E. Hopcroft and J.D. Motwani, R. Ullmann.Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2 edition, 2001.

H. Kashima and T. Koyanagi. Kernels for semi-structured data. InInternational Conference on
Machine Learning (ICML), pages 291–298, 2002.

D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1973.

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. InProc. of 10th ACM Conf. on
Computer and Communications Security, pages 251–261, 2003.

P. Laskov, K. Rieck, and K.-R. M̈uller. Machine learning for intrusion detection. InMining Massive
Data Sets for Security, pages 366–373. IOS press, 2008.

X. Li and D. Roth. Learning question classifiers. InInternational Conference on Computational
Linguistics (ICCL), pages 1–7, 2002. doi: http://dx.doi.org/10.3115/1072228.1072378.

R. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion
detection evaluation.Computer Networks, 34(4):579–595, 2000.

C. Manning and H. Scḧutze. Foundations of Statistical Natural Language Processing. MIT Press,
1999.

S. Mika, B. Scḧolkopf, A.J. Smola, K.-R. M̈uller, M. Scholz, and G. R̈atsch. Kernel PCA and
de–noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A. Cohn, editors,Advances in
Neural Information Processing Systems, volume 11, pages 536–542. MIT Press, 1999.

A. Moschitti. Making tree kernels practical for natural language processing. InConference of the
European Chapter of the Association for Computational Linguistics (EACL), 2006a.

A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic trees. In
European Conference on Machine Learning (ECML), 2006b.

A. Moschitti and F.M. Zanzotto. Fast and effective kernels for relation learning from texts. In
International Conference on Machine Learning (ICML), 2007.

K.-R. Müller, S. Mika, G. R̈atsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based
learning algorithms.IEEE Neural Networks, 12(2):181–201, May 2001.

R. Pang, V. Paxson, R. Sommer, and L.L. Peterson. binpac: a yacc forwriting application protocol
parsers. InProc. of ACM Internet Measurement Conference, pages 289–300, 2006.

V. Paxson and R. Pang. A high-level programming environment for packet trace anonymization
and transformation. InProc. of Applications, Technologies, Architectures, and Protocols for
Computer Communications SIGCOMM, pages 339 – 351, 2003.

J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), October 1985. URL
http://www.ietf.org/rfc/rfc959.txt. Updated by RFCs 2228, 2640, 2773, 3659.

K. Rieck and P. Laskov. Language models for detection of unknown attacks in network traffic.
Journal in Computer Virology, 2(4):243–256, 2007.

579

RIECK, KRUEGER, BREFELD AND M ÜLLER

K. Rieck, U. Brefeld, and T. Krueger. Approximate kernels for trees.Technical Report FIRST
5/2008, Fraunhofer Institute FIRST, September 2008.

B. Scḧolkopf and A.J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, A.J. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Computation, 10:1299–1319, 1998.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating thesupport
of a high-dimensional distribution. TR 87, Microsoft Research, Redmond, WA, 1999.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

J. Suzuki and H. Isozaki. Sequence and tree kernels with statistical feature mining. InAdvances in
Neural Information Proccessing Systems (NIPS), volume 17, 2005.

J. Suzuki, H. Isozaki, and E. Maeda. Convolution kernels with feature selection for natural language
processing tasks. InAnnual Meeting on Association for Computational Linguistics (ACL), 2004.

D.M.J. Tax and R.P.W. Duin. Support vector domain description.Pattern Recognition Letters, 20
(11–13):1191–1199, 1999.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

S.V.N. Vishwanathan and A.J. Smola. Fast kernels for string and tree matching. In Advances in
Neural Information Proccessing Systems (NIPS), pages 569–576, 2003.

E.M. Voorhees. Overview of the trec 2004 question answering track. InProc. of the Thirteenth Text
Retreival Conference (TREC), 2004.

G. Wondracek, P.M. Comparetti, C. Kruegel, and E. Kirda. Automatic network protocol analysis.
In Proc. of Network and Distributed System Security Symposium (NDSS), 2008.

B. Wu and B. D. Davison. Identifying link farm spam pages. InWWW ’05: Special Interest Tracks,
14th International Conference on World Wide Web, 2005.

D. Zhang and W. S. Lee. Question classification using support vector machines. InAnnual Interna-
tional ACM SIGIR Conference, pages 26–32, 2003.

580

