
Learning to Rank User Intent

Giorgos Giannopoulos∗

NTU Athens -
IMIS, “Athena” R.C.

Greece
giann@dblab.ece.ntua.gr

Ulf Brefeld
Yahoo! Research
Barcelona, Spain

brefeld@yahoo-inc.com

Theodore Dalamagas
IMIS, “Athena” R.C.

Greece
dalamag@imis.athena-

innovation.gr

Timos Sellis
NTU Athens -

IMIS, “Athena” R.C.
Greece

timos@imis.athena-
innovation.gr

ABSTRACT
Personalized retrieval models aim at capturing user inter-
ests to provide personalized results that are tailored to the
respective information needs. User interests are however
widely spread, subject to change, and cannot always be cap-
tured well, thus rendering the deployment of personalized
models challenging. We take a different approach and study
ranking models for user intent. We exploit user feedback
in terms of click data to cluster ranking models for historic
queries according to user behavior and intent. Each cluster
is finally represented by a single ranking model that captures
the contained search interests expressed by users. Once new
queries are issued, these are mapped to the clustering and
the retrieval process diversifies possible intents by combining
relevant ranking functions. Empirical evidence shows that
our approach significantly outperforms baseline approaches
on a large corporate query log.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval – Relevance feedback, Search process,
Clustering

General Terms
Algorithms, Experimentation, Measurement

Keywords
Search engine, ranking, training, clickthrough data, rele-
vance judgement, clustering, search behavior

∗This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Heracleitus II. In-
vesting in knowledge society through the European Social
Fund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
Modern data collections and recordings of historic user

interaction pave the way for personalized information re-
trieval which exploits user profiles and historic usage data
to re-rank and filter retrieved documents to serve individual
information needs.

Personalized retrieval aims at computing a ranking model
for every user or groups of similar users. Different approaches
including the impact of short- and long-term search histories
[21, 22], context [14, 21], query categories [8, 24], and search
behavior and feedback [1, 9, 12, 16] have been studied. Ad-
ditionally, collaborative filtering techniques for personalized
search [22] and learning to rank-based approaches [1, 6, 12,
17, 19, 26] also proved effective in many scenarios. Many of
the above techniques are also applicable to registered users
of search engines, however, to have all users benefit from the
re-ranking they need to be perfectly disambiguated. This is,
particularly on shared computers, an issue and renders per-
sonalized web search difficult in practice.

In this paper, we study an orthogonal approach to re-
ranking for web search which does not share these limita-
tions, so that all users benefit equally from re-ranking the
results. Our approach is based on the observation that ex-
isting approaches mainly focus on the retrieved content and
on users search histories, thus leaving an important aspect
unaddressed: The analysis of user search behavior. The user
behavior is directly observable by user feedback in form of
clicks on the result page and allows to reason about the
intent of the users. The intent therefore acts like an unob-
served, latent variable and is (partially) captured by user
behavior.

Consider a user who issues a query for a new mobile phone.
Her search history so far contains only unrelated queries. A
personalized model would have to resort to the average user
model for processing the query and possibly return text doc-
uments about phones. By contrast, our approach does not
rely on user-specific models but aims at capturing the user
intent by grouping queries entailing similar behavior. The
results proposed to the user thus consist of different media
types (e.g. reviews, videos, etc) that have been associated
with mobile phones in the past. In other words, our sys-
tem re-ranks the retrieved results, so that they represent
the broad spectrum of user behavior for a given query.

To build models for user intent, we propose to cluster
queries with respect to the user intent and learn a rank-
ing function for every cluster. Optimally, the clustering and
the ranking models are optimized jointly to capture inter-
dependencies between the tasks. The corresponding opti-



mization problem however turns out to be a mixed-integer
problem with cubic constraints in the number of queries and
and renders large-scale deployment infeasible. We there-
fore present an approximation that consists of three stages:
Firstly, a ranking function is learned for every query to cap-
ture the user behavior by adaptation to user feedback given
by click data. Secondly, the ranking models are grouped so
that the resulting clusters correspond to similar user intents.
Thirdly, a ranking function is learned for each cluster to rep-
resent the contained intent. At deployment time, queries are
mapped to the clustering to compute scores expressing how
likely the intent of the query is captured by the respective
cluster. The final ranking is then induced by a weighted
linear combination of ranking functions that are likely to
cover the intent of the user, given the query. Combining the
ranking functions of several clusters diversifies the results in
terms of the captured intents.

Empirically, we observe our approach to capture user in-
tent better than baseline methods on a large sample from
the Yahoo! query log. Our method achieves higher preci-
sion values on top-ranks compared to content-based base-
lines. Additionally, the underlying clustering is observed to
effectively group queries with similar intents together while
content-based baselines do not exhibit interpretable cluster-
ings.

The remainder is organized as follows. Section 2 reviews
related work. We present our main contribution, the joint
optimization problem and its approximation, in Section 3.
Section 4 reports on the empirical evaluation and Section 5
concludes.

2. RELATED WORK
In [10] the author proposes a topic-based refinement of the

PageRank algorithm that allows the offline computation of a
fixed number of PageRank vectors corresponding to certain
topic categories. The final result is a weighted combination
of these vectors, where weights are proportional to the sim-
ilarity of the query and the respective topic. In [20] the
authors utilize concept hierarchies, like ODP1, to categorize
queries and to generate user profiles. Query results are re-
ranked based on those profiles using collaborative filtering
techniques. By contrast, our method does not rely on user
profiles and is independent of static topic hierarchies.

Another prominent strand of research is based on exploit-
ing historic user feedback. The impact of short-term versus
long-term histories has been studied by [22, 23] while [5, 21]
aim at capturing the context of the users, for instance by
taking documents on the virtual desktop into account. The
resulting models are essentially user profiles that are used
to expand future queries and to refine the retrieved results.
Compared to our method, these approaches focus on content
similarity and do not exploit collaborative user data.

Many approaches incorporate state-of-the-art machine le-
arning techniques to improve ranking results. [4] study mod-
ifications of ranking support vector machines to reduce the
error on top-ranks and to increase the importance of queries
with only a few relevant documents in the training sample.
In [17], the authors propose to learn multiple ranking func-
tions for different ranks which are aggregated to induce the
final ranking. By contrast, we propose to learn different
ranking functions for different behavior and intents. Fur-

1http://www.dmoz.org/

thermore, the above approaches do not take the inherent
relations between queries and their clickthrough data into
account.

The closest work to ours is [3] who propose to learn mul-
tiple ranking models by clustering queries based on the top-
ical information extracted by their results. They represent
queries by aggregating feature vectors which are then clus-
tered to obtain specific ranking models. The final ranking for
new queries is being made by combining the models. Their
work differs in several aspects, the two main differences be-
ing as follows: Firstly, the method in [3] relies on pseudo
feedback to extract the top results of each query and does
not distinguish between positive and negative judgements.
Secondly, the proposed approach computes the mean fea-
ture representation of the results for a given query and uses
these averages to group queries. By contrast, we propose to
cluster the ranking functions themselves.

Finally, clustering methods are studied in combination
with learning to rank strategies. [15] propose to cluster re-
sults to discard probably redundant examples from a large
training sample to render the resulting optimization feasi-
ble, while [7] cluster personalized ranking functions to group
users for recommendation purposes.

3. RANKING MODELS FOR USER INTENT
In this section we present our main contribution, rank-

ing models for user intent. The following section introduces
the problem setting and notation. Section 3.2 presents a
joint optimization problem that directly solves the problem
in theory but is infeasible in practice. In Section 3.3 we de-
vise an efficient approximation that can be solved on large
scales. Section 3.4 details the application of the model for
new queries at execution time.

3.1 Preliminaries
We are given n historic queries q1, . . . , qn and their top-m

retrieved documents (x
(q)
1 , y

(q)
1 ), . . . , (x

(q)
m , y

(q)
m ) where y

(q)
j =

1 if x
(q)
j was clicked and 0 otherwise. The click feedback

induces a partial ranking on the documents such that

x
(q)
i is preferred over x

(q)
j ⇔ y

(q)
i > y

(q)
j

holds. We collect the preference relations for query q in the

index set Pq = {(i, j) : y
(q)
i > y

(q)
j }, see also [12, 18]. A

ranking function f : (q, x) �→ R can now be adapted to the
pairwise preferences P =

⋃
q Pq. In this paper we focus

on linear models of the form f(q, x) = 〈�w, φ(q, x)〉, where
φ(q, x) denotes a joint embedding of query and document
in some feature space. To avoid overloading the notation,
we’ll use φ(q, x) = x in the remainder and note that gener-
alizations are straight forward, see for instance Table 2 for
the features we used in the experiments. Following a large-
margin approach leads to the optimization problem [13]

min
�w,ξij≥0

〈�w, �w〉+ λ
∑
ij

ξij

s.t. ∀(i, j) ∈ P : 〈�w, xi〉 ≥ 〈�w, xj〉+ 1− ξij ,

where λ > 0 determines the trade-off between margin max-
imization and error minimization. The latter is the sum of
individual losses ξij and constitutes an upper bound on the
0/1-loss of mistaken preference relations. The constraints
enforce 〈�w, xi〉 > 〈�w, xj〉 whenever possible and penalize vi-
olations thereof. Once optimal parameters �w∗ have been



x1 (pdf result)

x2 (video result)

w1

w2

rank = 1 (clicked)
rank = 0 (unclicked)

"new cellphone videos"

"racing cars videos"

 "samsung h55 review"

"formula 1 calendar"

"web search"

"ranking"

Figure 1: Visualization of the problem setting.

found, these are used as plug-in estimates to induce rank-
ings of the documents for new queries.

3.2 Joint Optimization
In a nutshell, we aim at learning ranking functions for

similar queries, where similar refers to the latent user intent.
Figure 1 shows a simple two-dimensional visualization of the
problem setting, focusing on pdf (dimension x1) and video
(dimension x2) results. Different queries (e.g., racing cars
videos, web search) are visualized by relevant clicked (red
squares) and not clicked results (green circles) documents.
The task is to group the queries so that similar intents are
close with respect to some distance measure in the feature
space so that they are clustered together.

Since there is no ground-truth for the intrinsic cluster-
ing, the respective error of the ranking functions serves as a
makeshift for the missing performance measure at the clus-
tering stage. That is, if the error-rate of a ranking function
is high, the queries in the respective cluster are too diverse
to allow for a good fit; the goal is therefore to find a grouping
of the queries such that the ranking models are well adapted.
Thus, a natural approach is to jointly optimize the clustering
and the ranking models.

Let K be the number of desired clusters. We intend to
find (i) K ranking models �w1, . . . , �wK , one for each cluster,
and (ii) find a clustering �c1, . . . ,�cK with ckj = 1 if query
qj belongs to cluster k and ckj = 0 otherwise, that gives
rise to an optimal fit of the ranking models. The following
optimization problem realizes this task straight forwardly,

min
�wk,�ck,ξij

K∑
k=1

⎡
⎣‖�wk‖2 + λk

n∑
�=1

ck�

∑
(i,j)∈Pq�

ξk
ij

⎤
⎦

s.t. ∀k,∀(i, j) ∈ P(k) : 〈�wk, xi〉 ≥ 〈�wk, xj〉+ 1− ξk
ij

∀k,∀(i, j) ∈ P(k) : ξk
ij ≥ 0

∀i, j, � : ckickj + ckick� ≤ ckjck� + 1 (1)

∀k,∀j : ckj ∈ {0, 1}
where we defined P(k) =

⋃
j:ckj=1 Pqj as the union of all

members of cluster k, and trade-off parameters λk > 0.
The above optimization problem suffers from major draw-

backs. Firstly, the optimization interweaves real and integer
variables; that is, directly solving the mixed-integer program
is expensive and one usually resorts to relaxing the binary

Table 1: Ranking Models for User Intent

Require: n queries qj with preference relations Pqj

1: for 1 ≤ j ≤ n do
2: learn ranking function �wj for qj using Pqj

3: end for
4: cluster w1, . . . , wn

5: for 1 ≤ k ≤ K do
6: learn ranking function �wk using

⋃
j:cj=kPqj

7: end for

Ensure: ranking models �w1, . . . , �wK

variables to the interval [0, 1] to obtain an approximate so-
lution. Secondly and more severely, the number of triangle
inequalities guaranteeing a proper clustering in Eq. (1) is
cubic in the number of queries and renders the optimization
infeasible at larger scales. We present an efficient approxi-
mation and propose a pipelined approach in the next section.

3.3 Learning to Rank User Intent
We now present a sequential model that approximates the

infeasible optimization problem and that can be solved effi-
ciently on large scales. The novel approach consists of three
stages and generates the desired ranking models for each
cluster of queries: Firstly, we learn a ranking function for
every query. Secondly, these ranking functions are clustered,
and thirdly, we learn a ranking function for each cluster us-
ing the original queries and documents. The algorithm in
pseudo-code is depicted in Table 1.

3.3.1 Ranking Models for Queries
The initial step of the approximation consists in learning a

ranking model for every query. To this end we solve the stan-
dard ranking SVM for every query and the respective pref-
erence relations assembled from the click data. Analogously
to Section 3.1, the �-th optimization problem can either be
solved by quadratic programming or online gradient-based
approaches [12, 18, 13] and is given by

min
�w�,ξ�ij≥0

〈�w�, �w�〉+ λ
∑
ij

ξ�ij

s.t. ∀(i, j) ∈ Pq� : 〈�w�, xi〉 ≥ 〈�w�, xj〉+ 1− ξ�ij .

In general, the trade-off parameter λ needs to be set appro-
priately to obtain optimally adapted models. In our large-
scale experiments, tuning the parameters manually or de-
ploying model selection techniques like cross-validation is
not feasible due to the large amount of data. Anecdotal
evidence however shows that for binary representations and
features in the interval [0, 1], values around λ ≈ 1 are often
a reasonable choice. We thus use λ = 1 for the initial rank-
ing SVM models and note that there is potentially room for
improvement. The result of this step is n ranking functions
�w1, . . . , �wn, one for each query.

3.3.2 Clustering Ranking Functions
The goal of the second step of our approach is to group

similar ranking models together as they capture similar in-
tents. As the absolute locations of the �wi are negligible and
only the direction of the vectors is of interest, the ranking
functions are �2-normalized by �w ← �w/‖�w‖ so that they
lie on the unit hyperball. The similarity of two ranking



 "samsung h55 review"

"new cellphone videos"

"web search"

"ranking"

"racing cars videos"

"formula 1 calendar"

Search intent 1: video, review results
Search intent 2: research, papers

Figure 2: Query-specific models on the unit sphere.

functions �w and �w′ can now be measured by their cosine
which reduces to the inner product for normalized vectors,
cos(�w, �w′) = 〈�w, �w′〉. Unit vectors are usually modeled by
a von Mises-Fisher distribution [2], given by p(�x|�μ, κ) =
Zd(κ) exp{κ〈�μ, �x〉} where ‖�μ = 1‖ and κ ≥ 0 and d ≥ 2 and

partition function Zd(κ) = κd/2−1/(2π)d/2Id/2−1(κ) where
Ir(·) denotes the modified Bessel function of the first kind
and order r. Applied to the n ranking functions �w1, . . . , �wn,
a mixture model of von Mises-Fisher distributions with K
components (clusters) has the density

f(�wi|�μ1, . . . , �μK , �κ) =
n∑

i=1

αcip(�wi|�μci , κci)

with mixing parameters αi with 0 ≤ αi ≤ 1 and
∑

αi = 1.
The latent variables ci ∈ {1, . . . , K} indicate the generating
components for the �wi; that is, ci = k indicates that the
ranking function �wi is sampled (generated) from the k-th
component p(·|�μk, κk).2 If the latent variables were known,
finding maximum likelihood estimates for the parameters
�μ1, . . . , �μk and κ1, . . . , κk would be trivial. Since this is not
the case, we resort to a constrained Expectation Maximiza-
tion approach to jointly optimize the log-likelihood.

3.3.3 Ranking Models for Clusters
Given the clustering induced by the latent variables ci

of the previous section, we now learn a ranking function
for each cluster. The approach is similar to learning the
initial ranking models for the queries, however, this time,
all queries in the cluster have to be taken into account. The
optimization for the k-th cluster can again be solved with
the ranking SVM and is given by

min
�wk,ξij≥0

〈�wk, �wk〉+ λ
∑
ij

ξij

s.t. ∀(i, j) ∈
⋃

�:c�=k

Pq� : 〈�wk, xi〉 ≥ 〈�wk, xj〉+ 1− ξij .

3.4 Application
Once the ranking functions are adapted to the clusters,

our method can be deployed to re-rank retrieved documents
for new queries. Our approach aims at diversifying possible

2Note that the variables �ck in Section 3.2 are analogous bi-
nary encodings of the latent variables ci. That is, if the j-th
query is in the k-th cluster, we have ckj = 1 and cj = k,
respectively. We overloaded the notation to indicate that
both represent the actual clustering.

Table 2: Feature categories
Textual similarity features

4 Sum of TFs of query terms in result title|URL|text|all
4 Lucene score between query and result title|URL|text|all

Result characteristics features

1 Result initial rank
4 Number of words in result title|url|text|all
1 Result URL length in characters

72 Result URL domain (boolean values)
83 Popular sites the result might belong to (boolean)

200 Top most frequent urls in the dataset

Result special words features

10 Special words in result URL (”forum”, ”pdf”, etc.)
10 Result site category (news, search, blog etc)

200 Top most frequent words in the dataset

intents as the same query might end up in more than just
one cluster, for instance if users clicked on different media
types (e.g., videos, pdfs, etc.). Thus, the goal is to map
a new query to the clustering and combine the respective
ranking functions of the top matching clusters.

To this end, we represent historic queries together with
their positively judged results as pseudo documents which
are indexed and made searchable by a search engine. In our
implementation we used the Lucene3 IR engine, however,
other choices are straight forward. Given a new query q, the
Lucene scoring function is used to obtain historic queries
which are similar to q.

We select the top-u most similar historic queries and the
clusters they belong to. By doing so, we compute a weighted
mapping of the new query to the clustering as follows. Let
vj , 1 ≤ j ≤ u, be the scores for the top-u historic queries qj ,
these are �1-normalized and translated into cluster-scores sk,
1 ≤ k ≤ K, such that sqk =

∑
j:cj=k vj/

∑u
i=1 vi, where the

cj are the latent cluster memberships. That is, if a cluster
occurs more than once, the respective scores are aggregated.
Due to the normalization, the scores sqk act like probabil-
ities, quantifying the likelihood that cluster k contains the
intent expressed by query q.

Finally, the ranking of the documents for the query q is
assembled from the clustering by weighting the contribution
of each cluster k by its score sqk. Let rkj denote the ranking
of the j-th document by the ranking function of cluster k, the
final ranking score is given by linearly weighting the cluster
rankings rkj with the cluster importance sqk for query q,

score(q, j) =
K∑

k=1

sqkrqkj .

4. EMPIRICAL EVALUATION
For the experimental evaluation, we sample queries from

the Yahoo! query log. From the sample, we discard queries
with less than 5 results, queries without clicks, and queries
from users with less than 100 searches. This leaves us with
76,037 queries posed by 453 distinct users. We split the
obtained data, that is query and top-10 results, chronologi-
cally into 30,053 (40%) queries for training and 45,984 (60%)
queries for test set.

Ground-truth is given by user clicks in terms of relevance
judgments [12, 18] as follows: If a document xi has been
clicked, the relevance judgment equals yi = 1. Unclicked
documents that are higher ranked than clicked results re-
ceive a relevance judgment of yj = 0 which is also used for
unclicked results occuring right after a clicked result. This

3http://lucene.apache.org/



Table 3: Mean average precision.

Method MAP Increase
Single 0.709 -
User 0.806 13.7%

Content-1 0.748 5.5%
Content-2 0.734 3.5%

Intent 0.754 6.3%

process results in a total of 96, 030 relevance judgments for
the training dataset and 144, 021 for the test set. This gives
an average of about 3.2 relevance judgments per query on
the data. The query-result pairs are represented by feature
vectors. The respective features are depicted in Table 2.

4.1 Baselines
We compare our method, denoted as Intent with four al-

ternative approaches for re-ranking search results: Firstly,
we deploy a single ranking SVM (Single) for all users which
is trained on all available training data and used to rank
the documents for the test queries. Secondly, we train an
SVM for every user (User) to capture state-of-the-art per-
sonalization approaches. According to [22], short- and long-
term search histories are well captured by personalized, user-
specific models and we thus expect the User baseline to
perform best while the Single baseline is expected to be too
simple to capture the diverse behavior in the data.

Furthermore, we apply Content-1 which clusters queries
in the training set based on their content similarity and
learns a ranking SVM for each cluster which are finally com-
bined to re-rank documents for the test queries. Note that –
except for the clustering – the processing pipeline is exactly
the same as in our method; at the clustering stage, queries
are grouped based on their textual similarity including text
from their positive results (the clicked documents). Finally,
we apply a variant of topical RankSVMs [3] (Content-2 ).
The document representation is extended by incorporating
means and variances as dimensions for each feature; the new
representation is computed by using the top-5 results of each
query. Note however that this baseline is not identical to [3]
in the sense that we use the standard ranking SVM for solv-
ing the optimization problems.

4.2 Ranking Performance
The first experiment aims at measuring the performance

of the algorithms in a static environment. We use the com-
plete training set for the learning processes and all available
test queries for evaluation. We report on MAP, Precision@n,
and NDCG@n.

Results for MAP are shown in Table 3. Unsurprisingly,
learning user specific models performs best, achieving about
14% precision increase compared to the a single model that
serves everyone. The setting resembles an ideal scenario and
the baselines Single and User constitute the expected lower
and upper bound on the performance, respectively. Note
that a real-world deployment of the personalized user model
would require perfect disambiguation of users which is still
an open problem.

By contrast, Content-1, Content-2, and Intent are user
independent and form groups of similar content or intent,
respectively. In that sense, they constitute realizable ap-
proaches. However, they differ significantly in terms of pre-
dictive performance. Among these three, Content-2 is the

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 3 4 5
n

P@
n

Single
User
Content-1
Content-2
Intent

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5
n

N
D
C
G
@
n

Single
User
Content-1
Content-2
Intent

Figure 3: Precision@k and NDCG@k.

weakest method although it still increases the performance
over the Single baseline by 3.5%. Content-1 allows for im-
provements about 5.5% and Intent even by 6.3%.

A similar picture is drawn by the precision at n scores that
are displayed in Figure 3 (top). The methods are indifferent
for n > 1 due to the relatively small number of relevance
judgments (on average 3.2 per query). More specifically, for
the 45, 984 test queries, there are 51, 089 positive relevance
judgements (user clicks) which translate to about 1.1 clicks
per query on average. At P@1, however, we observe signif-
icant differences in performance that confirm the previous
findings. Single and User establish lower and upper bounds
and Intent performs better than Content-1/2. Figure 3 (bot-
tom) corroborates the observations for NDCG@n.

4.3 Cluster Analysis
To shed light on the nature of intent- and content-based

methods, we analyze and compare respective clusterings for
Intent, Content-1, and Content-2 in Table 4. We picked
clusters with queries for which the respective methods per-
form well.

The qualitative results are as follows. Firstly the ap-
proaches differ significantly in the amount of clusters, where
the optimal number of clusters is determined by model se-
lection for each method. While the content-based methods
generate between 20 (Content-1 ) and 32 (Content-2 ) clus-
ters, the solution of Intent consists of 75 distinct clusters.
Though clusterings of this size are generally difficult to inter-
pret, the numbers already indicate that the solution found
by Intent is more specialized than the content-based ones
due to the, on average, smaller clusters. In fact, it turns
out that the Intent performs well in many specific informa-
tion needs as Table 4 (left) shows. The first set of queries
corresponds to a cluster that contains information needs in
textual form, perhaps enriched with pictures while the sec-
ond group contains specific questions which are probably
best answered by appropriate text documents, too.

By contrast, Table 4 (center and right) show exemplary
clusters for the two content-based methods. The former
shows two clusters for Content-1. While the top cluster



Table 4: Exemplary results of the clustering.
Intent

1968 yamaha trailmaster 100 yl2 value
spendor s3 5 system
sonic video game 2011
85 mustang ignition module harness
owner of gold 39 s gym in wichita
72 chevy fuel tank swap
artist lessons mountain painting

who makes jet skis
why does spray paint come o↑
where can i buy centrum materna in us
why is the order of operations for algebra
shooting a wedding without a 'ash

Content-1

austro diesel gmbh schwechat
skeleton reference of human muscle
double din dash facia for pt cruiser
keilwerth tenor ex90
seiko ladies watch bracelet elegant
conn 37m tenor sax

new jersey animal shelters
best food to sell for pro↓t
fbi national academy 2010 boston
passport renewal
oprah wearing philip stein watches
top scottish baby names

Content-2

mila kunis photo
marie osmond classical beauty doll margot
mickey mouse pictures
batman action ↓gure power pack
lego star wars 2
↓ghter jets

dental o¡ce for sale in california
barrio indios puerto rico house rentals
tv shows solar power
logo design
hotel dei mellini rome
gem kitchens and bath dublin

is similar to corresponding one of the Intent, the bottom
is more or less a random collection of queries expressing a
diverse set of information needs. Finally, the right column
of Table 4 shows examples for well performing clusters for
Content-2. The baseline exhibits typical content-based clus-
ters formed by common tokens. The noisy membership can
be explained by keywords which are central for the cluster
and only occur on the result documents and not in the query.

4.4 Discussion
At first sight our method seems to be outperformed by

a personalized solution. However, the latter is not always
applicable. Consider, for instance, scenarios such as web
search where only a fraction of all users are registered and
can be disambiguated only after the login. Including the
personalized user model thus mirrors an ideal but unrealistic
scenario. As an alternative for scenarios that do not allow
personalized methods, we propose to deploy ranking models
for user intent. Our method significantly increases MAP
and also outperforms traditional content-based baselines for
P@n and NDCG@n.

In our setting, the increase in P@n and NDCG@n perfor-
mance is achieved by a significant increase in P@1, that is,
Intent performs well in ranking relevant result on top. This
observation is explained by the model itself: by grouping
queries into clusters with similar intent, multiple ranking
models are established, each one based on queries with sim-
ilar user clicks in terms of the resulting types of documents.
Results for new queries are re-ranked using the clustering;
the final ranking score is computed by a linear mixture of
relevant ranking functions. In case the textual matching is
inaccurate, for instance because textual similarity does not
necessarily imply similar search intentions, the final score di-
versifies the most likely intents and counterbalances possible
errors at earlier stages.

5. CONCLUSION
In this paper, we presented a methodology for improving

the quality of ranking functions for web search by capturing
and exploiting latent search behavior. The underlying idea
grounds on the observation that search behavior is not nec-
essarily content-dependent and we show that it can be used
to train more effective ranking models.

Our method clusters ranking models trained on search
queries and their results. The produced clusters represent
implicit search behavior and are used to train ranking mod-
els for user intent. The experimental evaluation demon-
strates the effectiveness of our method compared to tra-
ditional content-based baselines, leading to significant in-
creases in MAP, P@1 and NDCG@1. An analysis of the
resulting clusterings revealed that the novel method groups
similar queries together while the content-based baselines

suffer from noise that is incorporated by additional content
from the documents. Although our approach cannot com-
pete with personalized methods, we note that it is generally
deployable and does not rely on user disambiguation. It thus
proved a valid alternative for scenarios in which personalized
models cannot be applied such as web search.

Acknowledgments
The authors wish to thank B. Barla Cambazoglu for helping us

with data extraction and experimental evaluation.

6. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by

incorporating user behavior information. In Proc. of the ACM SIGIR
Conference, 2006.

[2] A. Banerjee, I. Dhillon, j. Ghosh and S. Sra. Clustering on the Unit
Hypersphere using von Mises-Fisher Distributions. Journal of Machine
Learning, 38(6):1345–1382, 2005.

[3] J. Bian, X. Li, F.-Li. Liu, Z. Zheng, and H. Zha. Ranking Specialization
for Web Search: A Divide-and-Conquer Approach by Using Topical
RankSVM. In Proc. of the ACM WWW Conference, 2010.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting
ranking svm to document retrieval. In Proc. of the ACM SIGIR Conference,
2006.

[5] P.-A. Chirita, C.-S. Firan, and W. Nejdl. Summarizing local context to
personalize global web search. In Proceedings of the ACM CIKM Conference,
2006.

[6] W. Chu, and S.-S. Keerthi. Support Vector Ordinal Regression. Neural
Computation, 19:792–815, 2007.

[7] J. Diez, J. J. del Coz, O. Luaces, and A. Bahamonde. Clustering people
according to their preference criteria. Expert Systems with Applications: An
International Journal, 34:1274–1284, 2008.

[8] Z. Dou, R. Song, J.-R. Wen, and X. Yuan. Evaluating the E↑ectiveness of
Personalized Web Search. IEEE TKDE, 21:1178–1190, 2008.

[9] S. Fox, K. Karnawat, M. Mydland, S. Dumais and T. White. Evaluating
implicit measures to improve web search. ACM TOIS, 23(2):147–168, 2005.

[10] T.-H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the ACM
WWW Conference, 2002.

[11] R. Herbrich, T. Graepel and K. Obermayer. Large margin rank
boundaries for ordinal regression. Advances in Large Margin Classifiers, MIT
Press, 2000.

[12] T. Joachims. Optimizing search engines using clickthrough data. In Proc.
of the ACM SIGKDD Conference, 2002.

[13] T. Joachims. Training Linear SVMs in Linear Time. In Proceedings of ACM
SIGKDD Conference, 2006.

[14] J.-W. Kim, and K.-S. Candan. Skip-and-prune: cosine-based top-k query
processing for e¡cient context-sensitive document retrieval. In Proceedings
of the ACM SIGMOD Conference, 2009.

[15] X. Li, N. Wang, and S.-Y. Li. A fast training algorithm for svm via
clustering technique and gabriel graph. In Proceedings of the International
Conference on Intelligent Computing, 2007.

[16] S. Pandey, S. Roy, C. O. J. Cho, and S. Chakrabarti. Shu¿ing a stacked
deck: the case for partially randomized ranking of search engine results.
In Proceedings of the VLDB Conference, 2005.

[17] T. Qin, X.-D. Zhang, D.-S. Wang, T.-Y. Liu, W. Lai, and H. Li. Ranking
with multiple hyperplanes. In Proceedings of the ACM SIGIR Conference, 2007.

[18] F. Radlinski and T. Joachims. Query chains: Learning to rank from
implicit feedback. In Proceedings of the ACM SIGKDD Conference, 2005.

[19] F. Radlinski and T. Joachims. Active exploration for learning rankings
from clickthrough data. In Proc. of the ACM SIGKDD Conference, 2007.

[20] U. Rohini and V. Ambati. Improving Re-ranking of Search Results Using
Collaborative Filtering. Information Retrieval Technology, AIRS, 2006.

[21] X. Shen, B. Tan, and C. Zhai. Context-sensitive information retrieval
using implicit feedback. In Proceedings of the ACM SIGIR Conference, 2005.

[22] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web search based
on user pro↓le constructed without any e↑ort from users. In Proceedings of
the ACM WWW Conference, 2004.

[23] B. Tan, X. Shen, and C. Zhai. Mining long-term search history to improve
search accuracy. In Proceedings of the ACM SIGKDD Conference, 2006.

[24] J. Teevan, S.-T. Dumais, and D.-J. Liebling. To Personalize or Not to
Personalize: Modeling Queries with Variation in User Intent. In
Proceedings of the ACM SIGIR Conference, 2008.

[25] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan.
Optimizing web search using web click-through data. In Proceedings of the
ACM CIKM Conference, 2004.

[26] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework for
learning ranking functions using relative relevance judgments. In
Proceedings of the ACM SIGIR Conference, 2007.


