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† TU Berlin, Franklinstr. 28/29, 10587 Berlin

‡ Fraunhofer Institute FIRST, Kekuléstr. 7, 12489 Berlin

Abstract

Approaches to multiple kernel learning (MKL) employℓ1-norm constraints on the
mixing coefficients to promote sparse kernel combinations.When features encode
orthogonal characterizations of a problem, sparseness maylead to discarding use-
ful information and may thus result in poor generalization performance. We study
non-sparse multiple kernel learning by imposing anℓ2-norm constraint on the
mixing coefficients. Empirically,ℓ2-MKL proves robust against noisy and redun-
dant feature sets and significantly improves the promoter detection rate compared
to ℓ1-norm and canonical MKL on large scales.

1 Introduction

A natural way to an automatic selection of optimal kernels isto learn a linear combination
K =

∑m

j=1
βj Kj with mixing coefficientsβ together with the model parameters. This frame-

work, known as multiple kernel learning (MKL), was first introduced by [2] where two kinds of
constraints onβ andK have been considered leading to either semi-definite programming or QCQP
approaches, respectively. The SDP approach was also shown to be equivalent to sparse regulariza-
tion overβ by means of a standard simplex constraint||β||1 = 1.

Intuitively, sparseness ofβ makes sense when the expected number of meaningfull kernelsis small.
Requiring that only a small number of features contributes to the final kernel implicitly assumes
that most of the features to be selected are equally informative. In other words, sparseness is good
when the kernels already contain a couple of good features that alone capture almost all of the
characteristic traits of the problem. This also implies that features are highly redundant. However,
when features inherently encode “orthogonal” characterizations of a problem, enforcing sparseness
may lead to discarding useful information and as a result, degradation of generalization performance.

We develop anon-sparseMKL, in which the ℓ1-norm in the regularization constraint onβ is re-
placed with theℓ2-norm. Although the constraint||β||2 = 1 is non-convex, a tight convex approx-
imation can be obtained whose solution is always attained atthe boundary||β||2 = 1, provided
that kernel matrices are strictly positive definite. We develop a semi-infinite programming (SIP)
formulation of non-sparse MKL. Our method proves robust against noisy and non-redundant feature
sets. Large-scale experiments on promoter detection show amoderate but significant improvement
of predictive accuracy compared toℓ1 and canonical MKL.

2 Non-sparse Learning with Multiple Kernels

We focus on binary classification problems where we are givenlabeled dataD = {(xi, yi)}i=1...,n,
wherex ∈ X for some input spaceX , and wherey ∈ {+1,−1}. When learning with multiple
kernels, we are additionally givenp different feature mappingsψ1, . . . , ψp. Every mappingψj :
X → Hj gives rise to a reproducing kernelkj of Hj given bykj(x, x̄) = 〈ψj(x), ψj(x̄)〉Hj

.
In the remainder we will useψj , kj , and matrixKj = (kj(xi,xm))i,m=1,...,n interchangeably
for convenience. We now aim at finding a linear combination

∑p

j=1
βjKj and parametersw, b
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simultaneously, such that the resulting hypothesisf has a small expected risk, wheref is given by

f(x) =

p
∑

k=1

√

βj w′
jψj(x) + b = w′ψβ(x) + b, (1)

wherew = (wj)k=1,...,p, ψβ(xi) = (
√

βjψj(xi))j=1,...,p, and mixing coefficientsβj ≥ 0.

Common approaches to multiple kernel learning imposeℓ1-norm constraints on the mixing coeffi-
cients [1, 3] thus promoting sparse solutions lying on a standard simplex. By contrast, we aim at
studying non-sparse multiple kernel learning, that is we employ anℓ2 regularization to allow for
non-sparse kernel mixtures. The primal optimization problem can be stated as Given dataD, feature
mappingsψ1, . . . , ψp, andη > 0.

min
β,w,b,ξ

1

2
w′w + η‖ξ‖1 s.t. ∀n

i=1 : yi (w′ψβ(xi) + b) ≥ 1 − ξi; ξ ≥ 0 ; β ≥ 0 ; ‖β‖2 = 1.

The optimization problem is inherently non-convex since the boundary of the unit ball given by
{β : ‖β‖2 = 1} is not a convex set. As a remedy, we relax the constraint onβ to become an
inequality constraint, i.e.,‖β‖2 ≤ 1. We will later show that the resulting approximation error is
zero under reasonable assumptions. Another non-convexityis caused by the productsβjwj which,
however, can be easily removed by a variable substitutionvj := βjwj . We arrive at the following
optimization problem which is convex.

min
β,v,b,ξ

1

2

p
∑

j=1

v′
jvj

βj

+ η‖ξ‖1 s.t. ∀n
i=1 : yi

(

p
∑

j=1

v′
jψj(xi) + b

)

≥ 1 − ξi; ξ,β ≥ 0; ‖β‖2 = 1.

Fixing β ∈ Λ, whereΛ = {β ∈ R
n | β ≥ 0 , ‖β‖2 ≤ 1}, we build the partial Lagrangian with

respect tov, b, andξ. Setting the partial derivatives of the Lagrangian with respect to the primal
variables to zero yields the relations0 ≤ αi ≤ η,

∑

i αiyi = 0, andvj =
∑

i αiyiβjψj(xi) for
1 ≤ i ≤ n and1 ≤ j ≤ p. The KKT conditions trivially hold and resubstitution gives rise to the
min-max formulation

min
β≥0

max
0≤α≤1η

n
∑

i=1

αi −
1

2

n
∑

i,m=1

αiαmyiym

p
∑

j=1

βjkj(xi,xm) s.t.
n

∑

i=1

yiαi = 0; ‖β‖2 ≤ 1.

The above problem can either be solved directly by gradient-based techniques exploiting the
smoothness of the objective [1] or translated into an equivalent semi-infinite program (SIP) as fol-
lows. Supposeα∗ is optimal, then denoting the value of the target function byt(α,β), we have
t(α∗,β) ≥ t(α,β) for all α andβ. Hence we can equivalently minimize an upper boundΘ on the
optimal value. We thus arrive at Optimization Problem 1.

Optimization Problem 1 (SIP) LetQj = Y KjY for all 1 ≤ j ≤ p whereY = diag(y),

min
Θ,β

Θ s.t. Θ ≥ 1
′α −

1

2
α′

p
∑

j=1

βjQjα; ‖β‖ ≤ 1; β ≥ 0

∀α ∈ R
n with 1

′α ≤ η1′ and y′α = 0 as well as α ≥ 0.

Note, that the above SIP is only a relaxation of the primal problem. However, Theorem 1 shows that
the approximation error is zero if the employed kernel functions are positive definite.

Theorem 1 Let (Θ∗,β∗) be optimal points of Optimization Problem 1 andK1, . . . ,Kp be positive
definite. Then we always have‖β∗‖2 = 1. (Proof omitted for lack of space)

3 Discussion

The SIP in Optimization Problem 1 can be efficiently solved byinterleaving cutting plane algo-
rithms. The solution of a quadratic program (here the regular SVM) generates the most strongly
violated constraint for the actual mixtureβ. The optimal(β∗,Θ) is then computed by solving a
quadratically constrained program (QCP) with respect to set of active constraints. The described
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Figure 1: Left: Test errors for the artificial data set. Right: Results for the real-world experiment.

algorithm is a special case of SIP algorithms known asexchange methods. Exchange methods are
known to converge if the feasible region can be covered by a ball with finite radiusr > 0. How-
ever, no convergence rate for such algorithms are known. Recently, promising alternative strategies
for optimizing theℓ1-MKL, based on gradient-based [3] and level-set [7] optimization, have been
proposed.

Obviously, the regular support vector machine is containedas a special case for learning with only
one kernel (i.e.,p = 1). Moreover, our approach can be easily extended to a one-class setting when
the kernel matrices are appropriately normalized (Section4.2). Our approach is moreover contained
in [6] as a special case forp = 0, q = 1, however, their approach is not discussed or evaluated for
these parameters settings.

4 Empirical Results

4.1 Toy 1: Measuring the Impact of Redundant Kernels

The first experiment investigates the strengths and weaknesses of the canonical kernel combination,
ℓ1- andℓ2-MKL for different “levels of independence” of the kernel matrices.

The aim of the following procedure is to generate a fixed number of p Kernel matrices, where the
degree of independence is parameterized byν. To this end we generate ad−dimensional sample of
sizen from two Gaussian distributions withΣ = I. We decompose then examples intoν disjoint
feature setsX1, . . . , Xν , whereXi ∈ R

d
ν
×n, ∀i = 1 . . . ν. Then we samplep − ν copies from

these feature sets, by randomly picking one by one fromX1, . . . , Xν with replacement1. For each
of thesep sets we randomly generate a linear transformation matrixA1, . . . , An with Ai ∈ R

τ d
ν
× d

ν .
Finally the kernel matrices are computed asKi = X ′

iA
′
iAiXi. The randomization not only alters

the attribute sets that would otherwise be identical but also enriches the dimensionality of theXi by
a factorτ . Using varying values forν allows us to generate kernel matrices for different “levelsof
independence”.

Throughout the experiment we fixd = 60, p = 30, and τ = 4. For each value ofν ∈
{1, 2, 3, 4, 6, 8, 12, 15, 20, 30}, we generate a sample of size900 encoded in thep kernel ma-
trices using the procedure above. The matrices are then equally split into training, validation,
and test kernel matrices. We compare the performance ofℓ1-MKL and ℓ2-MKL with a base-
line SVM using the canonical mixture kernelK = 1

p

∑p

j=1
Kj . Optimal soft-margin parame-

ters η ∈ [0.001, 10] are determined using the validation set. We report on averaged test errors
of 100 repetitions of this procedure; error bars indicate standard errors. Note that for each rep-
etition the kernel matrices are generated from scratch. Allmatrices are normalized according to
k(x, x̄) 7→ k(x, x̄)/( 1

n

∑n

i=1
k(xi,xi) −

1

n2

∑n

i,j=1
k(xi,xj)).

The results are shown in Figure 1 (left). The x-axis depicts the ratio of information carrying kernels
given byν/p. Obviously,ℓ1-MKL performs best when the relevant information is contained in only
a few kernels. However, its performance deteriorates quickly with a decrease in redundancy. In the

1That is, feature sets can be picked multiple times.
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extreme, where all relevant information is spread uniformly among the kernels such that there is no
redundant information shared, the canonical mixture intuitively represents the optimal kernel.

With increasing redundancy,ℓ2-MKL outperforms the canonical mixture that now incorporates more
and more information that is either already contained in other kernels or irrelevant noise. By contrast,
ℓ2-MKL effectively determines appropriate kernel mixtures for all redundancy ratios. In the other
extreme, where all kernel matrices encode the full knowledge about the data, all methods perform
equally well and effectively counterbalance the random linear transformations by ensemble-effects.

4.2 Real World: Identifying Transcription Start Sites

This task on real-world data aims at detecting transcription start sites (TSS) of RNA Polymerase II
binding genes in genomic DNA sequences. In general, transcription start site finders exploit that
the features of promoter regions and the transcription start sites are different from features of other
genomic DNA. Many such detectors thereby rely on a combination of feature sets which makes the
learning task appealing for MKL.

For our experiments we use the dataset from [4] which contains a curated set of8508 TSS annotated
genes utilizing dbTSS version 4 [5] and refseq genes. These are translated into positive training
instances by extracting windows of size[−1000,+1000] around the TSS. From the interior of the
gene85042 negative instances are generated using the same window size. We employ five different
kernels representing the TSS signal (weighted degree with shift), the promoter (spectrum), the 1st
exon (spectrum), angles (linear), and energies (linear). Kernel parameters are specified according
to prior knowledge or intuition and are reported in [4]. Every kernel is normalized according to
k(x, x̄) 7−→ k(x, x̄)/

√

k(x,x)k(x̄, x̄).

As in [4], our training sets consist of46794 instances, and the remaining46756 examples
are split into fixed tuning (1/3) and test (2/3) sets. Model selection is performed forη ∈
{2−2.5, 2−2, . . . , 22.5}. We report on average AUC values over 10 repetitions with randomly drawn
training instances; error bars indicate standard error. The results for varying training set sizes are
shown in Figure 1 (right). The sparse mixture found byℓ1-norm MKL performs worst and is clearly
outperformed by a canonical mixture for all sample sizes. Bycontrast,ℓ2-MKL effectively learns a
non-sparse kernel mixture and leads to significantly higherdetection rates compared to the canon-
ical mixture for all but the rightmost point. Non-sparse MKLoutperforms its classicalℓ1-norm
counterpart significantly for all sample sizes.

5 Conclusions

We studied a non-sparse approach to multiple kernel learning (MKL). Our approach is motivated by
the observation that sparseness may not always be desirablefor a combination of multiple kernels.
Large scale experiments on finding transcription start sites revealed the effectiveness ofℓ2-MKL in
the case whereℓ1-MKL was even outperformed by a canonical mixture. Theℓ2-MKL achieved the
highest predictive performance in our experiments.
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