
DMPII | DECOM. NEURAL NETWORKS 1

DECOMPOSING 
NEURAL NETWORKS

An applicant's guide to artificial learning

18.10.2022

JENNIFER MATTHIESEN & TINO PAULSEN | WINTERSEMESTER 2022



DMPII | DECOM. NEURAL NETWORKS 2

ABOUT 
THE COURSE

⎯ 7 Sessions, á 3,5 hours

+ weekend session in Januar

⎯ Files and Slides on mystudy

⎯ Consultation hours on request
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GOALS OF 
THE COURSE ⎯ Get a solid understanding of neural 

networks

Why are they so powerful? 

⎯ Understand their inner mechanisms

How do they learn?

⎯ Critically discuss their abilities and 

limitations

What can they learn?

Where are the limits?

⎯ Code :)
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HOW TO PASS 
THE COURSE

⎯ Take active part in the course, participate in 

discussions

⎯ SL:

Participate at the code-camp on the 

weekend block (with PIZZA)

⎯ PL:

Training an own neural network (based on 

the code developed together in the seminar) 

and critically reflecting it in written form
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ABOUT 
THE COURSE
US

JENNIFER MATTHIESEN

⎯ Doctoral candidate
in ML

⎯ B.A. in Digital Media

⎯ M.Sc. in Mediology

Let us exploit and explore
and to find out when it does not work

TINO PAULSEN

⎯ Doctoral candidate
in ML

⎯ B.A. in Psychology

⎯ M.Sc. In Management 
and Data Science
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EXAM
COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay.
You can work in groups or alone (1-3 persons).

⎯ Code:
⎯Train your own neural network (any) using data from a topic 

you and your group are interested in 

⎯ Essay:
⎯Shortly describe what you did, how you trained, which data 

was used and why. Reflect critically your results and the 
limitations.

TRIED TO EXPLORE 
WHAT A NETWORK 
CAN LEARN AND 
WHERE ITS 
LIMITATIONS ARE.
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EXAM
COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay.
You can work in groups or alone (1-3 persons).

Example:
⎯The German language comprises three articles 

(“der”, “die”, “das”).

⎯Research question: Can a neural network learn the according 
article to a subjective?

⎯Testing its limitations: Where does it work, where not?

⎯How does it decide on made-up words? How do humans 
decide here (questionnaire)

TRIED TO EXPLORE 
WHAT A NETWORK 
CAN LEARN AND 
WHERE ITS 
LIMITATIONS ARE.
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NOW
ABOUT 
YOU!

What is your name/pronounce?

What are your interest in… 

⎯ … digital media?

⎯ … machine learning / AI?

⎯ … the life outside university?

What do you expect to learn in this course?
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ABOUT 
THE CONTENT ⎯ INTRO & OVERVIEW

⎯ INTO NEURAL NETWORKS

⎯ ABOUT DATA, CATS AND DOGS

⎯ OPTIMISATION

⎯ ARCHITECTURES: KNOT BY KNOT

⎯ CRITICAL NN STUDIES/ DECOMPOSING 

INFORMATION

⎯ BRAINSTORMING/ PROJECTS

⎯ CODE CAMP &
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TODAY:
INTRODUCTION & 
OVERVIEW
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TIME FOR 
BUZZWORDS

ARTIFICIAL
INTELLIGENCE

MACHINE LEARNING

DEEP LEARNING
NEURAL

NETWORKS

B
IG

 D
AT

A

D
AT

A
 S

C
IE

N
C

E

DATA

INTELLIGENT
ALGORITHMSPREDICTIONS

IMAGE REGOCNITION

GENERATING

GENERALI-
SATION

WEIGHTS 
AND BIASES

https://www.menti.com/alph53bgwv4u
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WHAT IS 
ARTIFICIAL INTELLIGENCE
FOR YOU?
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“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)
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“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)

https://www.menti.com/alph53bgwv4u

WITH WHICH QUOTES 
DO YOU AGREE THE MOST ?
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“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)

THINK
LIKE
HUMANS

SYSTEMS THAT…

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)



DMPII | DECOM. NEURAL NETWORKS 16

“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)

THINK
LIKE
HUMANS

THINK
RATION-
ALLY

SYSTEMS THAT…

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)
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“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)

THINK
LIKE
HUMANS

ACT
LIKE
HUMANS

THINK
RATION-
ALLY

SYSTEMS THAT…

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)
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“The study of the computations that 
make it possible to perceive, reason, 
and act” (Winston, 1992)

“The art of creating machines that 
perform functions that require 
intelligence when performed by people” 
(Kurzweil, 1990)

“The exciting new effort to make 
computers think […] machines with 
minds, in the full and literal sense.” 
(Haugeland, 1985)

“The study of mental faculties through 
the use of computational models” 
(Charniak and McDermott, 1985)

“The study of how to make computers 
do things at which , at the moment, 
people are better” (Rich and Knight, 
1991)

“AI […] is concerned with intelligent 
behavior of artifacts” (Nilsson, 1998)

“Computational Intelligence is the 
study of the design of intelligent 
agents” (Poole at al. 1998)

THINK
LIKE
HUMANS

ACT
LIKE
HUMANS

ACT
RATION-
ALLY

THINK
RATION-
ALLY

“[The automation of]” activities that we 
associate with human thinking, 
activies, such as decision-making, 
problem-solving, learning…”(Bellmann, 
1987)

SYSTEMS THAT…
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WHAT IS 
MACHINE LEARNING
FOR YOU?
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WHAT IS 
MACHINE LEARNING
FOR YOU?
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“MACHINE LEARNING: FIELD OF 

STUDY THAT GIVES COMPUTERS THE 

ABILITY TO LEARN WITHOUT BEING 

EXPLICITLY PROGRAMMED.”

ARTHUR SAMUEL(1959)

SAMUEL’S 
CHECKERS-PLAYER
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ABOUT
MACHINE LEARNING

BLACKBOX
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ABOUT
MACHINE LEARNING

INPUT BLACKBOX
DATA
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ABOUT
MACHINE LEARNING

OUTPUTINPUT BLACKBOX
DATA
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ABOUT
MACHINE LEARNING

OUTPUTINPUT BLACKBOX
DATA f(x)

Data generating function
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ABOUT
MACHINE LEARNING

OUTPUTBLACKBOX
DATA f(x)

Data generating function
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ABOUT
MACHINE LEARNING

BLACKBOX
DATA f(x)

Data generating function
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WHAT DO WE NEED FOR
MACHINE LEARNING?
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WHAT DO WE NEED FOR
MACHINE LEARNING?

SAMPLES/ 
DATA
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WHAT DO WE NEED FOR
MACHINE LEARNING?

SAMPLES/ 
DATA
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised 
Learning

Reinforcement 
Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised 
Learning

Unsupervised 
Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Semi-
supervised  
Learning
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SUPERVISED
LEARNING
Labels is what we need
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SUPERVISED LEARNING
USING LABELS
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SUPERVISED LEARNING
USING LABELS

h
ei

gh
t
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SUPERVISED LEARNING
USING LABELS

h
ei

gh
t

length
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

h
ei

gh
t

length
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana
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Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

2.5 2.9 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana

SUPERVISED LEARNING
USING LABELS
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Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

2.5 2.9 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana

SUPERVISED LEARNING
USING LABELS
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana

4 3.1 Banana
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana

4 3.1 Banana
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Length Height Fruit

6 7 Apple

13 2 Banana

5 4 Apple

7 8 Apple

6.5 5.5 Apple

4.1 3.1 Apple

11 1.5 Banana

12 2 Banana

11.5 2.5 Banana

4 3.1 Banana

SUPERVISED LEARNING
USING LABELS
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Length Height Weight Soft Fruit

6 7 82 0 Apple

5 4 61 0 Apple

7 8 99 0 Apple

6.5 5.5 73 0 Apple

13 2 146 1 Banana

11 1.5 123 1 Banana

12 2 129 1 Banana

11.5 2.5 135 1 Banana

10.5 2.1 111 1 Banana

… … … … …

SUPERVISED LEARNING
USING LABELS

WHAT 
COULD 
WE 
POSSIBLY 
DO??
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Length Height Weight Soft Fruit

6 7 82 0 Apple

5 4 61 0 Apple

7 8 99 0 Apple

6.5 5.5 73 0 Apple

13 2 146 1 Banana

11 1.5 123 1 Banana

12 2 129 1 Banana

11.5 2.5 135 1 Banana

10.5 2.1 111 1 Banana

… … … … …

SUPERVISED LEARNING
USING LABELS
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SUPERVISED LEARNING
USING LABELS

Length Soft Fruit

6 0 Apple

5 0 Apple

7 0 Apple

6.5 0 Apple

2.5 0 Apple

13 1 Banana

11 1 Banana

12 1 Banana

11.5 1 Banana

10.5 1 Banana
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SUPERVISED LEARNING
USING LABELS

Length Soft Fruit

6 0 Apple

5 0 Apple

7 0 Apple

6.5 0 Apple

2.5 0 Apple

13 1 Banana

11 1 Banana

12 1 Banana

11.5 1 Banana

10.5 1 Banana

Features and 
feature 
engineering is an 
important 
influence factor in 
machine learning
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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SUPERVISED
LEARNING
WITH NEURAL NETS
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SUPERVISED
LEARNING
WITH NEURAL NETS ⎯ Go to 

https://teachablemachine.withgoogle.com/

⎯ Train your own image model (image project)

⎯ Choose the number of classes you want 

to train.

⎯ Record images and compile your model

⎯ Test your model

⎯ What can it do? When does it break? 

When does it work? 
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UNSUPERVISED
LEARNING
Structure counts
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED UNSUPERVISED
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED UNSUPERVISED
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED UNSUPERVISED
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED UNSUPERVISED
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

SUPERVISED UNSUPERVISED

The number of 
clusters k is 

typically unknown
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SEMI-SUPERVISED 
LEARNING
Knowing a bit, but not everything
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED UNSUPERVISED
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED UNSUPERVISEDSEMI-SUPERVISED
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED UNSUPERVISEDSEMI-SUPERVISED

WE KNOW 
EVERYTHING. 
(At least about the 
class labels…)
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED UNSUPERVISEDSEMI-SUPERVISED

WE KNOW 
EVERYTHING. 
(At least about the 
class labels…)

WE KNOW 
NOTHING. 
(Just that we do not 
know)
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED UNSUPERVISEDSEMI-SUPERVISED

WE KNOW 
EVERYTHING. 
(At least about the 
class labels…)

WE KNOW 
NOTHING. 
(Just that we do not 
know)

WE KNOW “A BIT”. 
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

no label

⎯ Unsupervised 
setup:
⎯No labels are given
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

no label
class 1
class 2⎯ One example for a 

semi-supervised 
setup:
⎯Some labels from 

two classes are 
given
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

⎯ Another example 
for a semi-
supervised setup:
⎯Labels of one class 

and some labels 
from another class 
are given

no label
class 1
class 2
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

⎯ Another example 
for a semi-
supervised setup:
⎯Some labels from 

three classes are 
given

no label
class 1
class 2
class 3
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

⎯ One-class setup:
⎯Labels from one 

class are given

no label
class 1
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

⎯ One-class setup:
⎯Labels from one 

class are given

no label
class 1
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SUMMARY OF TODAY
INTRODUCTION

⎯ MACHINE LEARNING gives computers the ability to 
learn without being explicitly programmed

⎯ ML requires SAMPLES/DATA and FEATURES

⎯ NEURAL NETWORKS can find a non-linear decision 
boundary

⎯ SUPERVISED LEARNING:
⎯ Class labels given

⎯ Like e.g. “The Teachable Machine”

⎯ UNSUPERVISED LEARNING:
⎯ No class labels are given


