DECOMPOSING NEURAL NETWORKS

An applicant's guide to artificial learning 18.10.2022

ightarrow JENNIFER MATTHIESEN & TINO PAULSEN | WINTERSEMESTER 2022

ABOUT THE COURSE

7 Sessions, á 3,5 hours
+ weekend session in Januar

— Files and Slides on mystudy

--- Consultation hours on request

GOALS OF THE COURSE

- Get a solid understanding of neural networks
 - \rightarrow Why are they so powerful?
- Understand their inner mechanisms
 - \rightarrow How do they learn?
- Critically discuss their abilities and limitations
 - \rightarrow What can they learn?
 - \rightarrow Where are the limits?

— Code :)

HOW TO PASS THE COURSE

- Take active part in the course, participate in discussions
- SL:

Participate at the code-camp on the weekend block (with PIZZA)

— PL:

Training an own neural network (based on the code developed together in the seminar) and critically reflecting it in written form

ABOUT THE COURSE US

Let us exploit and explore and to find out when it does not work

JENNIFER MATTHIESEN

- Doctoral candidate in ML
- B.A. in Digital Media
- M.Sc. in Mediology

TINO PAULSEN

- Doctoral candidate in ML
- B.A. in Psychology
- M.Sc. In Management and Data Science

EXAM COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay. You can work in groups or alone (**1-3 persons**).

--- Code:

— Train your own neural network (any) using data from a topic you and your group are interested in

— Essay:

—Shortly describe what you did, how you trained, which data was used and why. Reflect critically your results and the limitations.

TRIED TO EXPLORE WHAT A NETWORK CAN LEARN AND WHERE ITS LIMITATIONS ARE.

EXAM COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay. You can work in groups or alone (**1-3 persons**).

Example:

- The German language comprises three articles ("der", "die", "das").
- ---Research question: Can a neural network learn the according article to a subjective?
- ----Testing its limitations: Where does it work, where not?
- —How does it decide on made-up words? How do humans decide here (questionnaire)

TRIED TO EXPLORE WHAT A NETWORK CAN LEARN AND WHERE ITS LIMITATIONS ARE.

NOW ABOUT YOU!

What is your name/pronounce? What are your interest in...

- ... digital media?
- ----- machine learning / Al?

What do you expect to learn in this course?

ABOUT THE CONTENT

- INTRO & OVERVIEW
- INTO NEURAL NETWORKS
- ABOUT DATA, CATS AND DOGS
- OPTIMISATION
- ARCHITECTURES: KNOT BY KNOT
- CRITICAL NN STUDIES/ DECOMPOSING INFORMATION
- BRAINSTORMING/ PROJECTS

TODAY: INTRODUCTION & OVERVIEW

TIME FOR BUZZWORDS

EEP LEARNING DATA NEURAL **IMAGE REGOCNITION** 7 VENE NE INTEL ALGO NETWORKS WEIGHTS AND BIASES INI MACHINE VING NTELLIGENT GENERATING PREDICTIONS THMS

https://www.menti.com/alph53bgwv4u

WHAT IS **ARTIFICIAL INTELLIGENCE** FOR YOU?

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

> "The exciting new effort to make computers think [...] machines with minds, in the full and literal sense." (Haugeland, 1985)

"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)

> "The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

> "The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)

"Computational Intelligence is the study of the design of intelligent agents" (Poole at al. 1998)

"AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

"The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)

WITH WHICH QUOTES DO YOU AGREE THE MOST ?

"The art of cr perform functions that require intelligence v (Kurzweil, 19

https://www.menti.com/alph53bgwv4u

"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)

"The exciting new effort to make

"AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

THINK LIKE HUMANS

"The exciting new effort to make computers think [...] machines with minds, in the full and literal sense." (Haugeland, 1985) "The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992)

> "The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

> "The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)

"Computational Intelligence is the study of the design of intelligent agents" (Poole at al. 1998)

> "AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

THINK LIKE HUMANS

"The exciting new effort to make computers think [...] machines with minds, in the full and literal sense." (Haugeland, 1985) "The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992) THINK RATION-ALLY

"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)

> "The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991)

"Computational Intelligence is the study of the design of intelligent agents" (Poole at al. 1998)

> "AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

THINK LIKE HUMANS

"The exciting new effort to make computers think [...] machines with minds, in the full and literal sense." (Haugeland, 1985) "The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992) THINK RATION-ALLY

"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990) ACT LIKE HUMANS

"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991) "Computational Intelligence is the study of the design of intelligent agents" (Poole at al. 1998)

> "AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

"[The automation of]" activities that we associate with human thinking, activies, such as decision-making, problem-solving, learning..."(Bellmann, 1987)

THINK LIKE HUMANS

"The exciting new effort to make computers think [...] machines with minds, in the full and literal sense." (Haugeland, 1985) "The study of the computations that make it possible to perceive, reason, and act" (Winston, 1992) THINK RATION-ALLY

"The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)

"The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990) ACT LIKE HUMANS

"The study of how to make computers do things at which, at the moment, people are better" (Rich and Knight, 1991) "Computational Intelligence is the study of the design of intelligent agents" (Poole at al. 1998) ACT RATION-ALLY

"AI [...] is concerned with intelligent behavior of artifacts" (Nilsson, 1998)

WHAT IS MACHINE LEARNING FOR YOU?

WHAT IS **MACHINE LEARNING** FOR YOU?

SAMUEL'S CHECKERS-PLAYER

"MACHINE LEARNING: FIELD OF STUDY THAT GIVES COMPUTERS THE ABILITY TO LEARN WITHOUT BEING EXPLICITLY PROGRAMMED."

ARTHUR SAMUEL(1959)

BLACKBOX

 \bigotimes

 \bigcirc

 \bigotimes

 \bigotimes

WHAT DO WE NEED FOR MACHINE LEARNING?

WHAT DO WE NEED FOR MACHINE LEARNING?

SAMPLES/ DATA

WHAT DO WE NEED FOR MACHINE LEARNING?

SAMPLES/ DATA

Machine Learning

Supervised Learning

 \bigcirc

 \bigotimes

SUPERVISED LEARNING

Labels is what we need

DMPII | DECOM. NEURAL NETWORKS

height

Length	Height	Fruit
6	7	Apple
13	2	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
2.5	2.9	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana
4	3.1	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana
4	3.1	Banana

Length	Height	Fruit
6	7	Apple
13	2	Banana
5	4	Apple
7	8	Apple
6.5	5.5	Apple
4.1	3.1	Apple
11	1.5	Banana
12	2	Banana
11.5	2.5	Banana
4	3.1	Banana

Length	Height		Fruit
6	7	\Λ/ΗΔ Τ	Apple
5	4		Apple
7	8		Apple
6.5	5.5	UUULD	Apple
13	2		Banana
11	1.5		Banana
12	2	POSSIRI V	Banana
11.5	2.5		Banana
10.5	2.1	DO22	Banana

Length	Height	Weight	Soft	Fruit
6	7	82	0	Apple
5	4	61	0	Apple
7	8	99	0	Apple
6.5	5.5	73	0	Apple
13	2	146	1	Banana
11	1.5	123	1	Banana
12	2	129	1	Banana
11.5	2.5	135	1	Banana
10.5	2.1	111	1	Banana

SUPERVISED LEARNING WITH NEURAL NETS

Train a computer to recognize your own images, sounds, & poses.

A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required.

SUPERVISED LEARNING WITH NEURAL NETS

— Go to

https://teachablemachine.withgoogle.com/

- Train your own image model (image project)
- Choose the number of classes you want to train.
- Record images and compile your model
- Test your model
- What can it do? When does it break?When does it work?

UNSUPERVISED LEARNING

Structure counts

SEMI-SUPERVISED LEARNING

Knowing a bit, but not everything

SEMI-SUPERVISED LEARNING KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED

UNSUPERVISED
SUPERVISED SEMI-SUPERVISED UNSUPERVISED

SUPERVISED

WE KNOW EVERYTHING. (At least about the class labels...)

SEMI-SUPERVISED

UNSUPERVISED

WE KNOW NOTHING. (Just that we do not know)

DMPII | DECOM. NEURAL NETWORKS

 \bigotimes

WE KNOW EVERYTHING. (At least about the class labels...)

SEMI-SUPERVISED

UNSUPERVISED

WE KNOW NOTHING. (Just that we do not know)

 \bigotimes

2

8

6

4

10

12

no labelclass 1

class 2

— One-class setup:

—Labels from one class are given

SUMMARY OF TODAY INTRODUCTION

- MACHINE LEARNING gives computers the ability to learn without being explicitly programmed

- - Class labels given
 - Like e.g. "The Teachable Machine"
- - No class labels are given