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— Files and Slides on mystudy
— Consultation hours on request

— 7 Sessions, a 3,5 hours

ABOUT
THE COURSE



GOALS OF
TH E CO U RS E — Get a solid understanding of neural

networks
—  Why are they so powerful?

— Understand their inner mechanisms
— How do they learn?

— Critically discuss their abilities and
limitations

— What can they learn?
- \Where are the limits?

— Code ;)
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HOW TO PASS
THE COURSE

— Take active part in the course, participate in
discussions

— SL:
Participate at the code-camp on the
weekend block (with PIZZA)

— PL:
Training an own neural network (based on
the code developed together in the seminar)
and critically reflecting it in written form
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ABOUT

US

JENNIFER MATTHIESEN TINO PAULSEN

— Doctoral candidate — Doctoral candidate
in ML in ML

— B.A. in Digital Media — B.A. in Psychology

— M.Sc. in Mediology — M.Sc. In Management

and Data Science
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EXAM
COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay.
You can work in groups or alone (1-3 persons).

—Code:

—Train your own neural network (any) using data from a topic
you and your group are interested in

— Essay:
—Shortly describe what you did, how you trained, which data
was used and why. Reflect critically your results and the
limitations. '
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EXAM
COBINATION OF CODE AND ESSAY

The exam is a combination of code and essay.
You can work in groups or alone (1-3 persons).

Example:
—The German language comprises three articles
(“der”, “die”, “dasﬂ).
—Research question: Can a neural network learn the according
article to a subjective?
—Testing its limitations: Where does it work, where not?

—How does it decide on made-up words? How do humans
decide here (questionnaire)
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NOW
ABOUT
YOU!

What is your name/pronounce?

What are your interest in...

— ... digital media?

— ... machine learning / Al?

— ... the life outside university?

What do you expect to learn in this course?
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ABOUT
THE CO NTENT — INTRO & OVERVIEW

— INTO NEURAL NETWORKS

— ABOUT DATA, CATS AND DOGS
— OPTIMISATION

— ARCHITECTURES: KNOT BY KNOT

— CRITICAL NN STUDIES/ DECOMPOSING
INFORMATION

— BRAINSTORMING/ PROJECTS
— CODE CAMP &
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TIME FOR

BUZZWORDS
IMAGE REGOCNITION DEEP LEARN|NG O
DATA NEURAL &

= NETWORKS e
MACHINE LEARNING 2 C INTELLIGENT GENERATING
PREDICTIONS = ALGORITHMS

https://www.menti.com/alph53bgwv4u
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WHAT IS
ARTIFICIAL INTELLIGENCE

FOR YOU?
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“[The automation of]” activities that we
associate with human thinking,
activies, such as decision-making,
problem-solving, learning...”(Bellmann,

1987)

“The art of creating machines that
perform functions that require
intelligence when performed by people”

(Kurzweil, 1990)

“The exciting new effort to make
computers think [...] machines with
minds, in the full and literal sense.”
(Haugeland, 1985)

“The study of the computations that
make it possible to perceive, reason,
and act” (Winston, 1992)

“The study of how to make computers
do things at which , at the moment,

people are better” (Rich and Knight,
1991)

“The study of mental faculties through
the use of computational models”
(Charniak and McDermott, 1985)

“Computational Intelligence is the
study of the design of intelligent
agents” (Poole at al. 1998)
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“Al [...] is concerned with intelligent
behavior of artifacts” (Nilsson, 1998)




“[The automation of]” activities that we
associate with human thinking,
activies, such as decision-making,
problem-solving, learning...”(Bellmann,

1987)

“The art of cr
perform func
intelligence v
(Kurzweil, 1€

WITH WHICH QUOTES
DO YOU AGREE THE MOST ?

https://www.menti.com/alph53bgwv4u

“The study of the computations that
make it possible to perceive, reason,
and act” (Winston, 1992)

“The study of how to make computers
do things at which , at the moment,
people are better” (Rich and Knight,
1991)
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“Al [...] is concerned with intelligent
behavior of artifacts” (Nilsson, 1998)




SYSTEMS THAT...

“[The automation of]” activities that we THINK
associate with human thinking,

activies, such as decision-making,

problem-solving, learning...”(Bellmann, HUMANS
1987)

“The exciting new effort to make
computers think [...] machines with
minds, in the full and literal sense.”
(Haugeland, 1985)
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SYSTEMS THAT...

“[The automation of]” activities that we THINK THINK
associate with human thinking, “The study of the computations that
activies, such as decision-making, make it possible o perceive, reason, RATION-
%%b?I;am-solvmg, learning..”(Bellmann, HUMANS and act” (Winston, 1992) ALLY
“The exaiting new efiort to make “The study of mental faculties through
com dput.er?hthlfnlﬁ [ .Lrptach;nes W'tt' the use of computational models”
minds, in the full and literal sense. :
(Haugeland, 1985) (Charniak and McDermott, 1985)
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SYSTEMS THAT...

“[The automation of]” activities that we THINK
associate with human thinking,

activies, such as decision-making,
problem-solving, learning...”(Bellmann, HUMANS

“The study of th tations that THINK

e study of the computations tha

make it possible to perceive, reason, RATION-
and act” (Winston, 1992) ALLY

1987)
“The exciting new effort to make
computers think [...] machines with
minds, in the full and literal sense.”
(Haugeland, 1985)
“The art of creating machines that ACT

perform functions that require
intelligence when performed by people”

(Kurzweil, 1990) HUMANS

“The study of how to make computers
do things at which , at the moment,

people are better” (Rich and Knight,
1991)

DMPII | DECOM. NEURAL NETWORKS

“The study of mental faculties through
the use of computational models”
(Charniak and McDermott, 1985)




SYSTEMS THAT...

“[The automation of]” activities that we THINK
associate with human thinking,

, THINK
) . . “The study of the computations that
activies, such as decision-making,

make it possible to perceive, reason, RATION-

%%b?l;am-solving, learning..”(Bellmann, HUMANS and act’ (Winston, 1992) ALLY
czrr]r?pi)t(glrgnt%lgﬁvfl er%r;é%irr?::(\jvi o “The study of mental faculties through
minds, in the full and literal sense.” the U5 of computational models
(Haugeland. 1985) (Charniak and McDermott, 1985)

“The art of creating machines that ACT ) . . . ACT
perform functions that require Computational !ntelllgencg s the

intelligance when performied by people” study of the design of intelligent RATION-
(Kurzweil, 1990) HUMANS agents” (Poole at al. 1998) ALLY

“The study of how to make computers
do things at which , at the moment,

people are better” (Rich and Knight,
1991)

“Al [...] is concerned with intelligent
behavior of artifacts” (Nilsson, 1998)
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WHAT IS
MACHINE LEARNING

FOR YOU?
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SAMUEL'S
CHECKERS-PLAYER

"MACHINE LEARNING

”

ARTHUR SAMUEL(1959)
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ABOUT
MACHINE LEARNING

BLACKBOX
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ABOUT
MACHINE LEARNING

BLACKBOX OUTPUT
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ABOUT
MACHINE LEARNING

OUTPUT




ABOUT
MACHINE LEARNING

OUTPUT




ABOUT
MACHINE LEARNING
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WHAT DO WE NEED FOR
LEARNING?
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WHAT DO WE NEED FOR
LEARNING?
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WHAT DO WE NEED FOR
LEARNING?
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TYPES OF
MACHINE LEARNING

Machine Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised
Learning
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TYPES OF
MACHINE LEARNING

Machine Learning

Supervised Unsupervised
Learning Learning
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TYPES OF
MACHINE LEARNING

Machine Learning
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TYPES OF
MACHINE LEARNING

Machine Learning
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SUPERVISED LEARNING
USING LABELS
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SUPERVISED LEARNING
USING LABELS

height
|
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SUPERVISED LEARNING
USING LABELS

height
]

— length
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SUPERVISED LEARNING
USING LABELS

R
2
i L
— length
Length Height Fruit
6 7 Apple
13 2 Banana
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SUPERVISED LEARNING
USING LABELS

1 @
z 2
B 7 8 9 lengthl[) 11 12 13
Length Height Fruit
6 7 Apple
13 2 Banana
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SUPERVISED LEARNING
USING LABELS

6 7 Apple 6 -
13 2 Banana
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SUPERVISED LEARNING
USING LABELS

B -
7 &
6 7 Apple 64
13 2 Banana
5 4 Apple 'E* 37
2

7 8 Apple al
6.5 5.5 Apple
25 2.9 Apple 37
11 1.5 Banana 7] ,J
12 2 Banana
11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

2 O

7 w
6 7 Apple 64
13 2 Banana ‘
5 4 Apple 'E* 37

2

7 8 Apple a ‘
6.5 5.5 Apple

3 o
4.1 31 Apple ‘J
11 1.5 Banana 7] a . ,J
12 2 Banana ‘J
11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

g -
7

6 7 Apple 6 -

13 2 Banana

5 4 Apple 'E* 37

7 8 Apple £ 4

6.5 5.5 Apple

4.1 3.1 Apple 3 O

11 1.5 Banana 24

12 2 Banana

11.5 25 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

2 O

7 w
6 7 Apple 64
13 2 Banana ‘
5 4 Apple 'E* 37

2

7 8 Apple a ‘
6.5 5.5 Apple

3 o
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11 1.5 Banana 7] a . ,J
12 2 Banana ‘J
11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

2 O

7 w
6 7 Apple 64
13 2 Banana ‘
5 4 Apple 'E* 37

2

7 8 Apple a ‘
6.5 5.5 Apple

3 o
4.1 31 Apple ‘J
11 1.5 Banana 7] a . ,J
12 2 Banana ‘J
11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

2 O

7 w
6 7 Apple 64
13 2 Banana ‘
5 4 Apple 'E* 37

2

7 8 Apple a ‘
6.5 5.5 Apple

3 o
4.1 31 Apple ‘J
11 1.5 Banana 7] a . ,J
12 2 Banana ‘J
11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

g -
7

6 7 Apple 6 -

13 2 Banana

5 4 Apple 'E* 37

7 8 Apple £ 4

6.5 5.5 Apple

4.1 3.1 Apple 37

11 1.5 Banana 24

12 2 Banana

11.5 25 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit [ ‘
6 7 Apple 6 -
13 2 Banana ‘
5 4 Apple 'Es >
2
7 8 Apple a ‘
6.5 5.5 Apple
4.1 3.1 Apple 37 O <
11 1.5 Banana 5 a ‘ -J
12 2 Banana ‘d

11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit [ ‘
6 7 Apple 6 -
13 2 Banana ‘
5 4 Apple 'Es >
2
7 8 Apple a ‘
6.5 5.5 Apple
4.1 3.1 Apple S <
11 1.5 Banana 5 a ‘ -J
12 2 Banana ‘d

11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

Length Height Fruit [ ‘
6 7 Apple 6 -
13 2 Banana ‘
5 4 Apple 'Es >
2
7 8 Apple a ‘
6.5 5.5 Apple
4.1 3.1 Apple S <
11 1.5 Banana 5 a ‘ -J
12 2 Banana ‘d

11.5 2.5 Banana 2 4 6 8 10 12
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SUPERVISED LEARNING
USING LABELS

6 7 WHAT Apple
5 4 Apple
5 |COULD | =
6.5 5.5 Apple
13 2 WE Banana
11 1.5 Banana
12 2 POSS | BLY Banana
11.5 2.5 Banana
10.5 2.1 D O?? Banana
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SUPERVISED LEARNING
USING LABELS

6 7 82 0 Apple
5 4 61 0 Apple
7 8 99 0 Apple
6.5 5.5 73 0 Apple
13 2 146 1 Banana
11 1.5 123 1 Banana
12 2 129 1 Banana
11.5 2.5 135 1 Banana
10.5 2.1 111 1 Banana
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SUPERVISED LEARNING
USING LABELS

Length Soft Fruit 1.04 @ banana L I N )
e apple
6 0 Apple
5 0 Apple 0.8 -
7 0 Apple
6.5 0 Apple 0.6
2.5 0 Apple E
13 1 Banana 0.4 -
11 1 Banana
12 1 Banana 0.2
11.5 1 Banana
10.5 1 Banana 001 @ ® ¢e e |
2 4 6 a8 10 12
length

DMPII | DECOM. NEURAL NETWORKS




SUPERVISED LEARNING

USING LABELS

Length Soft Fruit

6 0 Apple
5 0 Apple
7 0 Apple
6.5 0 Apple
2.5 0 Apple
13 1 Banana
11 1 Banana
12 1 Banana
11.5 1 Banana
10.5 1 Banana
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soft

1.0 +

0.8

0.6

0.4

0.2 A

0.0

® banana o o0 @ ]
e apple
] ] o0 @
4 6 8 10 12
length

Features and
feature
engineering is an
important
influence factor in
machine learning
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES

height
Y i
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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NOT LINEAR
DECISION BOUNDARIES
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Teachable Machine
|_ E A R N I N G | Train a computer to recognize your

SUPERVISED

own images, sounds, & poses.

WITH NEURAL NETS

) required.

A fast, easy way to create machine learning models for
your sites, apps, and more — no expertise or coding
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SUPERVISED
LEARNING
WITH NEURAL NETS — Goto

https://teachablemachine.withgoogle.com/

— Train your own image model (image project)

— Choose the number of classes you want
to train.

— Record images and compile your model
— Test your model

— What can it do? When does it break?
When does it work?
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

height
I Ln

8
length

SUPERVISED
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UNSUPERVISED LEARNING
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UNSUPERVISED LEARNING
STRUCTURE COUNTS

8 - o 817 The number of
clusters k is

7- o 77 typically unknown
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED SEMI-SUPERVISED UNSUPERVISED
WE KNOW WE KNOW
EVERYTHING. NOTHING.

(At least about the

(Just that we do not

class labels...) know)
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

SUPERVISED SEMI-SUPERVISED UNSUPERVISED
WE KNOW WE KNOW “A BIT”. WE KNOW
EVERYTHING. NOTHING.
(At least about the / (Just that we do not
class labels...) A know)
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

2l
[ [ ] @ no label |
. o
— Unsupervised N . ‘
setup: o ° o
. _ o
—No labels are given ° . 0%e0e%,
e ® ®
o . .. ° ®
(I ) o
[ ) PY ¢
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

) o
®
— One example for a N . :
semi-supervised o ° °
. 64 °
setup: . e®ee’.
—Some labels from - 0 g
two classes are *e°,* "
given
o o ]
o ) Y ®
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

]
™Y o
[ J
— Another example . o :
for a semi- o ° °
. . 64 °
supervised setup: . e%ee®,
—Labels of one class ;- 00 ,°
and some labels e "
from another class ad
are given o .
3 ® o °
2_
2 4 6 Eli 10 12
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

6
[ ]
— Another example N . :
for a semi- . °
: . 6 - °
supervised setup: L e®ee’s
—Some labels from - 0 g
three classes are *e°,* "
given
[ ] ®
o ) Y
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

® ® ° @ no label
— One-class setup: N . . o class1
—Labels from one o o

class are given 6 1 o’ e

J e 0 0 g
o ® L4

(] o .. ° [

o o ®
[ ] ) ° ®
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SEMI-SUPERVISED LEARNING
KNOWING A BIT, BUT NOT EVERYTHING

) ® ° @ no label
— One-class setup: N . . o class1
—Labels from one o °

class are given 6 o’ e

([ ] ([ ] e 0 o
e ® ®

[

(] o o o
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SUMMARY OF TODAY
INTRODUCTION

—MACHINE LEARNING gives computers the ability to
learn without being explicitly programmed

— ML requires SAMPLES/DATA and FEATURES

— NEURAL NETWORKS can find a non-linear decision
boundary

— SUPERVISED LEARNING:

— Class labels given
— Like e.g. “The Teachable Machine’

— UNSUPERVISED LEARNING:

REestt - — No class labels are given
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