DECOMPOSING NEURAL NETWORKS

An applicant's guide to artificial learning 15.11.2022

LEUPHANA UNIVERSITÄT LÜNEBURG

ightarrow JENNIFER MATTHIESEN & TINO PAULSEN | WINTERSEMESTER 2022 |

RECAP

- A biological neuron
- The artificial imitation: Perceptron
- ---- Non-linear- decisions
- Cognitive psychology:
 - Geons
 - Bigram detectors
- Feature detection in images

ABOUT DATA, CATS & DOGS

- Vectors, Matrix, Tensor
- Classification & bias
- BIAS from data
- How NN's understand images
 Convolutions & pooling
- Train your own network in a supervised manner

BUT FIRST: LET'S TALK ABOUT DATA

Vector

Tensor

Tensor

Tensor

Tensor of dimension [4,4,2]

TIME FOR AN EXPERIMENT

Ex01small, brownEx02small, white

Ex01	small, brown	KURI
Ex02	small, white	PUSI

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI
Ex05 Ex06	small, white big, white	

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI
Ex05 Ex06	small, white big, white	PUSI KURI

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07 Ex08	big, brown small, red	

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07 Ex08	big, brown small, red	KURI PUSI

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03 Ex04	small, brown small, brown	KURI PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07 Ex08	big, brown small, red	KURI PUSI
Ex09 Ex10	small, brown small, black	

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03	small, brown	KURI
Ex04	small, brown	PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07	big, brown	KURI
Ex08	small, red	PUSI
Ex09	small, brown	KURI
Ex10	small, black	PUSI

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03	small, brown	KURI
Ex04	small, brown	PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07	big, brown	KURI
Ex08	small, red	PUSI
Ex09	small, brown	KURI
Ex10	small, black	PUSI
Ex11 Ex12	small, black brown-white	

Ex01 Ex02	small, brown small, white	KURI PUSI
Ex03	small, brown	KURI
Ex04	small, brown	PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07	big, brown	KURI
Ex08	small, red	PUSI
Ex09	small, brown	KURI
Ex10	small, black	PUSI
Ex11	small, black	PUSI
Ex12	brown-white	PUSI

Ex01	small, brown	KURI
Ex02	small, white	PUSI
Ex03	small, brown	KURI
Ex04	small, brown	PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07	big, brown	KURI
Ex08	small, red	PUSI
Ex09	small, brown	KURI
Ex10	small, black	PUSI
Ex11	small, black	PUSI
Ex12	brown-white	PUSI
Ex13 Ex14	big black small, red-white	

Ex01	small, brown	KURI
Ex02	small, white	PUSI
Ex03	small, brown	KURI
Ex04	small, brown	PUSI
Ex05 Ex06	small, white big, white	PUSI KURI
Ex07	big, brown	KURI
Ex08	small, red	PUSI
Ex09	small, brown	KURI
Ex10	small, black	PUSI
Ex11	small, black	PUSI
Ex12	brown-white	PUSI
Ex13	big black	KURI
Ex14	small, red-white	PUSI

CLASS 1	CLASS 2
KURI small, brown	PUSI small, white
KURI small, brown	PUSI small, brown
KURI big, white	PUSI small, white
KURI big, brown	PUSI small, red
KURI small, brown	PUSI small, black
KURI big black	PUSI small, brown-white
	PUSI small, black
	PUSI small, red-white

EXPERIMENT DOGS & CATS

CLASS 1	CLASS 2
DOG small, brown	CAT small, white
DOG small, brown	CAT small, brown
DOG big, white	CAT small, white
DOG big, brown	CAT small, red
DOG small, brown	CAT small, black
DOG big, black	CAT small, brown-white
	CAT small, black
	CAT small, red-white

EXPERIMENT DOGS & CATS

— So, what did the network learn? And What did it not learn?

- Dogs can be big and small
- Cats are always small
- -Both are black, brown or white
- ---- Cats can be multi-colored
- Dogs are one-colored (!)
- Dogs are never small and white (!)

LET'S TALK ABOUT BIAS

 \bigotimes

BIAS IN DATA

- Organically created dataset are biased
- Many machine learning models can often contain unintentional bias
- It is important to analyse your training data and sometimes the source of the data to look for biases

Cartoon by xkcd.com, creative commons license (https://xkcd.com/license.html)

BIAS IN DATA REPORTING BIAS

- Also known as selective reporting
- Takes place when only a selection of results or outcomes are captured in a data set
- Types of reporting bias:
 - —Citation bias
 - —Language bias
 - —Duplicate publication bias
 - —Location bias
 - $--- Publication \ bias: \ {\rm positive \ findings \ are \ more \ likely \ to \ be \ published \ than \ studies \ with \ negative \ findings \ are \ more \ likely \ to \ be \ published \ than \ studies \ with \ negative \ findings \ are \ more \ likely \ to \ be \ published \ than \ studies \ with \ negative \ findings \ are \ more \ likely \ to \ be \ published \ than \ studies \ with \ negative \ findings \ are \ more \ likely \ to \ be \ published \ than \ studies \ with \ negative \ findings \ studies \ with \ negative \ findings \ studies \ with \ negative \ findings \ studies \ studi$
 - —Outcome reporting bias

Ţ	

BIAS IN DATA AUTOMATION BIAS

 Tendency of humans to favor results or suggestions generated by automated systems.

Ignore contradictory information made by non-automated systems, even if it is correct

<u>T</u>	

BIAS IN DATA SELECTION BIAS

 Selection bias takes place when data is chosen in a way that is not reflective of real-world data distribution.

— No proper randomization during data collection

- —Types of selection bias:

 - ----- Convergence bias: e.g., only surveying customers who purchased your product
 - Participation bias: unrepresentative due to participations gaps

BIAS IN DATA SELECTION BIAS

ON REPRESENTATIVE SAMPLES AND GUMMI BEARS

Let's say, we have a back of sweets with an infinite variety of sweets. We want to select some of them for our friend as a present, which we haven't seen in a while. Since not all the sweets will fit in the smaller bag for our friend, we must create a selection.

BUT HOW?

BIAS IN DATA OVERGENERALIZATION BIAS

 Overgeneralization occurs when you assume what you see in your dataset is what you would see if you looked in any other dataset.

— regardless of the size of the dataset.

—E.g., there are no white dogs (!)

1	
BIAS IN DATA GROUP ATTRIBUTION BIAS

— People tend to stereotype a whole group just because of the actions of a few individuals within the group

— Types of group attribution bias:

- ----In-group bias: preference to members of a group you personally belong or share common interests with
- ----Out-group bias: you stereotype individual members of a group to which you personally do not belong.

BIAS IN DATA GROUP ATTRIBUTION BIAS

BIAS IN DATA IMPLICIT BIAS

Occurs when assumptions are made based on one's own

personal experiences

E.g., A computer vision engineer from North America marks the color red as a danger.
However, the same color red is a popular color in Chinese culture that symbolizes luck, joy, and happiness.

—Type of Implicit Bias:

----Confirmation bias or experimenter's bias is the tendency to search for information in a way that confirms or supports one's prior beliefs or experiences

IMAGES AND PATTERN RECOGNITION

— How is an image like this represented on a screen?

Actually, much smaller

- Treating large-dimensional inputs as unstructured vectors leads to intractable models
- can lead to multiple GB memory footprint
- Also, this would require that the object on an images it always in the same place.

- A **representation** meaningful at a certain location can or should be used everywhere
- Meaning: we want to detect a cat despite where in the picture it is

— A convolution embodies the idea of having a meaningful representation

— We using a **kernel** to create the representation

TIME FOR MAGIC!

https://setosa.io/ev/image-kernels/

DMPII | DECOM. NEURAL NETWORKS

OUTPUT

CONVOLUTIONS IN NEURAL NETWORKS

CONVOLUTIONS IN NEURAL NETWORKS

CONVOLUTIONS IN NEURAL NETWORKS

0	-1	0
-1	5	-1
0	-1	0

INPUT

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

0	-1	0
-1	5	-1
0	-1	0

INPUT

10	1-1	10	0	
0 ₋₁	1 5	1 ₋₁	1	
0 0	0 ₋₁	10	1	1
0	0	1	1	
0	1	1		

0	-1	0
-1	5	-1
0	-1	0

INPUT

INPUT

1	1 <mark>0</mark>	1 ₋₁	0 0	0
0	1 ₋₁	1 5	1 ₋₁	0
0	0 0	1 ₋₁	1 5	1
0	0	1	1	0
0	1	1		

0	-1	0
-1	5	-1
0	-1	0

3	4	

INPUT

1	1	10	0 ₋₁	0 0
0	1	1-1	15	01
0	0	10	11	15
0	0	1	1	0
0	1	1		

0	-1	0
-1	5	-1
0	-1	0

3	4	3

INPUT

1	1	1		
0 0	1 ₋₁	¹ 0	1	
⁰ -1	0 5	¹ -1	1	1
0 0	0 ₋₁	¹ 5	1	
0	1	1	0	

KERNEL

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2		

DMPII | DECOM. NEURAL NETWORKS

INPUT

1	1	1	0	0
0	1 <mark>0</mark>	1-1	10	0
0	0 ₋₁	1 ₅	1 ₋₁	1
0	0 0	1-1	1 5	0
0	1	1	0	0

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2	2	

INPUT

1	1	1	0	0
0	1	1 <mark>0</mark>	1 ₋₁	0 0
0	0	1 ₋₁	1 ₅	1 ₋₁
0	0	10	1 ₋₁	0 5
0	1	1	0	0

KERNEL

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2	2	1

DMPII | DECOM. NEURAL NETWORKS

INPUT

1	1	1		
0	1	1	1	
0 0	0_ -1	1 <mark>0</mark>	1	1
0 1	0 5	1 ₋₁	1	
0 0	1 ₋₁	1 5	0	

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2	2	1
-2		

INPUT

1	1	1		
0	1	1	1	
0	0 0	1 ₋₁	1 <mark>0</mark>	1
0	0_ -1	1 ₅	1 ₋₁	0
0	1 <mark>0</mark>	1 ₋₁	0 5	0

KERNEL

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2	2	1
-2	2	

DMPII | DECOM. NEURAL NETWORKS

INPUT

1	1	1		
0	1	1	1	
0	0	10	1_1	10
0	0	1_1	15	0 1
0	1	10	0_1	0 0

0	-1	0
-1	5	-1
0	-1	0

3	4	3
-2	2	1
-2	2	3

INPUT

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

0	-1	0
-1	5	-1
0	-1	0

3	1	3
-2	2	1
-2	2	3

W Kernel W V $\mathbf{\Lambda}$ h Н \leftarrow С C

Input

W Kernel W h Н \leftarrow С \leftarrow C

W Kernel W V $\mathbf{\Lambda}$ h Н С C

Kernel

С

W Kernel W h Н С C

W Kernel W $\mathbf{\Lambda}$ h Н С C

W Kernel W h Н С C

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

...

....

....

...

....

2D CONVOLUTION HANDS-ON

2D Convolution

Set the desired settings and hover the elements to see how input, filters, and output are related.

Preview

CONVOLUTIONAL NEURAL NETWORKS: POOLING

CONVOLUTIONAL NEURAL NETWORKS: POOLING

CONVOLUTIONAL NEURAL NETWORKS: POOLING

CONVOLUTIONAL NEURAL NETWORKS (CNN's)

CONVOLUTIONAL NEURAL NETWORKS (CNN's)

TIME TO CODE!

SUMMARY OF TODAY ABOUT DATA, CATS & DOGS

- DATA can be represented as Vectors, Matrix, Tensor
- **BIAS** comes from data and can have a huge influence and the model's performance
 - There exist multiple forms of bias e.g., Group Attribute Bias, Overgeneralization Bias or Selection Bias,
- A CNN's can extract features from images using kernels
- CONVOLUTION AND POOLING are important parts of a CNN
- NN's are sensible to a lot of hyperparameters, but can be powerful