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How to Use Part I
Part I provides background material, summarizing a set of concepts
established for the formal study of neurons and neural networks by
1986. As such, it is designed to hold few, if any, surprises for
readers with a fair background in computational neuroscience or
theoretical approaches to neural networks considered as dynamic,
adaptive systems. Rather, Part I is designed for the many readers—
be they neuroscience experimentalists, psychologists, philosophers,
or technologists—who are sufficiently new to brain theory and
neural networks that they can benefit from a compact overview of
basic concepts prior to reading the road maps of Part II and the
articles in Part III. Of course, much of what is covered in Part I is
also covered at some length in the articles in Part III, and cross-
references will steer the reader to these articles for alternative ex-
positions and reviews of current research. In this exposition, as
throughout the Handbook, we will move back and forth between
computational neuroscience, where the emphasis is on modeling
biological neurons, and neural computing, where the emphasis
shifts back and forth between biological models and artificial neural
networks based loosely on abstractions from biology, but driven
more by technological utility than by biological considerations.

Section I.1, “Introducing the Neuron,” conveys the basic prop-
erties of neurons, receptors, and effectors, and then introduces sev-
eral simple neural models, including the discrete-time McCulloch-
Pitts model and the continuous-time leaky integrator model.
References to Part III alert the reader to more detailed properties
of neurons which are essential for the neuroscientist and provide
interesting hints about future design features for the technologist.

Section I.2, “Levels and Styles of Analysis,” is designed to give
the reader a feel for the interdisciplinary nexus in which the present
study of brain theory and neural networks is located. The selection
begins with a historical fragment which traces our federation of
disciplines back to their roots in cybernetics, the study of control
and communication in animals and machines. We look at the way
in which the research addresses brains, machines, and minds, going

back and forth between brain theory, artificial intelligence, and cog-
nitive psychology. We then review the different levels of analysis
involved, whether we study brains or intelligent machines, and the
use of schemas to provide intermediate functional units that bridge
the gap between an overall task and the neural networks which
implement it.

Section I.3, “Dynamics and Adaptation in Neural Networks,”
provides a tutorial on the concepts essential for understanding neu-
ral networks as dynamic, adaptive systems. It introduces the basic
dynamic systems concepts of stability, limit cycles, and chaos, and
relates Hopfield nets to attractors and optimization. It then intro-
duces a number of basic concepts concerning adaptation in neural
nets, with discussions of pattern recognition, associative memory,
Hebbian plasticity and network self-organization, perceptrons, net-
work complexity, gradient descent and credit assignment, and
backpropagation. This section, and with it Part I, closes with a
cautionary note. The basic learning rules and adaptive architectures
of neural networks have already illuminated a number of biological
issues and led to useful technological applications. However, these
networks must have their initial structure well constrained (whether
by evolution or technological design) to yield approximate solu-
tions to the system’s tasks—solutions that can then be efficiently
and efficaciously shaped by experience. Moreover, the full under-
standing of the brain and the improved design of intelligent ma-
chines will require not only improvements in these learning meth-
ods and their initialization, but also a fuller understanding of
architectures based on networks of networks. Cross-references to
articles in Part III will set the reader on the path to this fuller
understanding. Because Part I focuses on the basic concepts estab-
lished for the formal study of neurons and neural networks by 1986,
it differs hardly at all from Part I of the first edition of the Hand-
book. By contrast, Part II, which provides the road maps that guide
readers through the radically updated Part III, has been completely
rewritten for the present edition to reflect the latest research results.

I.1. Introducing the Neuron
We introduce the neuron. The dangerous word in the preceding
sentence is the. In biology, there are radically different types of
neurons in the human brain, and endless variations in neuron types
of other species. In brain theory, the complexities of real neurons
are abstracted in many ways to aid in understanding different as-
pects of neural network development, learning, or function. In neu-
ral computing (technology based on networks of “neuron-like”
units), the artificial neurons are designed as variations on the ab-
stractions of brain theory and are implemented in software, or VLSI
or other media. There is no such thing as a “typical” neuron, yet
this section will nonetheless present examples and models which
provide a starting point, an essential set of key concepts, for the
appreciation of the many variations on the theme of neurons and
neural networks presented in Part III.

An analogy to the problem we face here might be to define ve-
hicle for a handbook of transportation. A vehicle could be a car, a
train, a plane, a rowboat, or a forklift truck. It might or might not
carry people. The people could be crew or passengers, and so on.
The problem would be to give a few key examples of form (such
as car versus plane) and function (to carry people or goods, by
land, air, or sea, etc.). Moreover, we would find interesting exam-
ples of co-evolution: for example, modern highway systems would

not have been created without the pressure of increasing car traffic;
most features of cars are adapted to the existence of sealed roads,
and some features (e.g., cruise control) are specifically adapted to
good freeway conditions. Following a similar procedure, Part III
offers diverse examples of neural form and function in both biology
and technology.

Here, we start with the observation that a brain is made up of a
network of cells called neurons, coupled to receptors and effectors.
Neurons are intimately connected with glial cells, which provide
support functions for neural networks. New empirical data show
the importance of glia in regeneration of neural networks after dam-
age and in maintaining the neurochemical milieu during normal
operation. However, such data have had very little impact on neural
modeling and so will not be considered further here. The input to
the network of neurons is provided by receptors, which continually
monitor changes in the external and internal environment. Cells
called motor neurons (or motoneurons), governed by the activity
of the neural network, control the movement of muscles and the
secretion of glands. In between, an intricate network of neurons (a
few hundred neurons in some simple creatures, hundreds of billions
in a human brain) continually combines the signals from the re-
ceptors with signals encoding past experience to barrage the motor
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neurons with signals that will yield adaptive interactions with the
environment. In animals with backbones (vertebrates, including
mammals in general and humans in particular), this network is
called the central nervous system (CNS), and the brain constitutes
the most headward part of this system, linked to the receptors and
effectors of the body via the spinal cord. Invertebrate nervous sys-
tems (neural networks) provide astounding variations on the ver-
tebrate theme, thanks to eons of divergent evolution. Thus, while
the human brain may be the source of rich analogies for technol-
ogists in search of “artificial intelligence,” both invertebrates and
vertebrates provide endless ideas for technologists designing neural
networks for sensory processing, robot control, and a host of other
applications. (A few of the relevant examples may be found in the
Part II road maps, Vision, Robotics and Control Theory, Motor
Pattern Generators, and Neuroethology and Evolution.)

The brain provides far more than a simple stimulus-response
chain from receptors to effectors (although there are such reflex
paths). Rather, the vast network of neurons is interconnected in
loops and tangled skeins so that signals entering the net from the
receptors interact there with the billions of signals already travers-
ing the system, not only to yield the signals that control the effec-
tors but also to modify the very properties of the network itself, so
that future behavior will reflect prior experience.

The Diversity of Receptors

Rod and cone receptors in the eyes respond to light, hair cells in
the ears respond to pressure, and other cells in the tongue and the
mouth respond to subtle traces of chemicals. In addition to touch
receptors, there are receptors in the skin that are responsive to
movement or to temperature, or that signal painful stimuli. These
external senses may be divided into two classes: (1) the proximity
senses, such as touch and taste, which sense objects in contact with
the body surface, and (2) the distance senses, such as vision and
hearing, which let us sense objects distant from the body. Olfaction
is somewhere in between, using chemical signals “right under our
noses” to sense nonproximate objects. Moreover, even the proxi-
mate senses can yield information about nonproximate objects, as
when we feel the wind or the heat of a fire. More generally, much
of our appreciation of the world around us rests on the unconscious
fusion of data from diverse sensory systems.

The appropriate activity of the effectors must depend on com-
paring where the system should be—the current target of an on-
going movement—with where it is now. Thus, in addition to the

external receptors, there are receptors that monitor the activity of
muscles, tendons, and joints to provide a continual source of feed-
back about the tensions and lengths of muscles and the angles of
the joints, as well as their velocities. The vestibular system in the
head monitors gravity and accelerations. Here, the receptors are
hair cells monitoring fluid motion. There are also receptors to moni-
tor the chemical level of the bloodstream and the state of the heart
and the intestines. Cells in the liver monitor glucose, while others
in the kidney check water balance. Receptors in the hypothalamus,
itself a part of the brain, also check the balance of water and sugar.
The hypothalamus then integrates these diverse messages to direct
behavior or other organs to restore the balance. If we stimulate the
hypothalamus, an animal may drink copious quantities of water or
eat enormous quantities of food, even though it is already well
supplied; the brain has received a signal that water or food is lack-
ing, and so it instructs the animal accordingly, irrespective of what-
ever contradictory signals may be coming from a distended
stomach.

Basic Properties of Neurons

To understand the processes that intervene between receptors and
effectors, we must have a closer look at “the” neuron. As already
emphasized, there is no such thing as a typical neuron. However,
we will summarize properties shared by many neurons. The “basic
neuron” shown in Figure 1 is abstracted from a motor neuron of
mammalian spinal cord. From the soma (cell body) protrudes a
number of ramifying branches called dendrites; the soma and den-
drites constitute the input surface of the neuron. There also extrudes
from the cell body, at a point called the axon hillock (abutting the
initial segment), a long fiber called the axon, whose branches form
the axonal arborization. The tips of the branches of the axon, called
nerve terminals or boutons, impinge on other neurons or on effec-
tors. The locus of interaction between a bouton and the cell on
which it impinges is called a synapse, and we say that the cell with
the bouton synapses upon the cell with which the connection is
made. In fact, axonal branches of some neurons can have many
varicosities, corresponding to synapses, along their length, not just
at the end of the branch.

We can imagine the flow of information as shown by the arrows
in Figure 1. Although “conduction” can go in either direction on
the axon, most synapses tend to “communicate” activity to the den-
drites or soma of the cell they synapse upon, whence activity passes
to the axon hillock and then down the axon to the terminal arbo-

Figure 1. A “basic neuron” abstracted from a
motor neuron of mammalian spinal cord. The
dendrites and soma (cell body) constitute the ma-
jor part of the input surface of the neuron. The
axon is the “output line.” The tips of the branches
of the axon form synapses upon other neurons or
upon effectors (although synapses may occur
along the branches of an axon as well as at the
ends). (From Arbib, M. A., 1989, The Meta-
phorical Brain 2: Neural Networks and Beyond,
New York: Wiley-Interscience, p. 52. Repro-
duced with permissions. Copyright � 1989 by
John Wiley & Sons, Inc.)
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rization. The axon can be very long indeed. For instance, the cell
body of a neuron that controls the big toe lies in the spinal cord
and thus has an axon that runs the complete length of the leg. We
may contrast the immense length of the axon of such a neuron with
the very small size of many of the neurons in our heads. For ex-
ample, amacrine cells in the retina have branchings that cannot
appropriately be labeled dendrites or axons, for they are short and
may well communicate activity in either direction to serve as local
modulators of the surrounding network. In fact, the propagation of
signals in the “counter-direction” on dendrites away from the soma
has in recent years been seen to play an important role in neuronal
function, but this feature is not included in the account of the “basic
neuron” given here (see DENDRITIC PROCESSING—titles in SMALL

CAPS refer to articles in Part III).
To understand more about neuronal “communication,” we em-

phasize that the cell is enclosed by a membrane, across which there
is a difference in electrical charge. If we change this potential dif-
ference between the inside and outside, the change can propagate
in much the same passive way that heat is conducted down a rod
of metal: a normal change in potential difference across the cell
membrane can propagate in a passive way so that the change occurs
later, and becomes smaller, the farther away we move from the site
of the original change. This passive propagation is governed by the
cable equation

2�V � V
� 2�t �x

If the starting voltage at a point on the axon is V0, and no further
conditions are imposed, the potential will decay exponentially, hav-
ing value V(x) � V0e

�x at distance x from the starting point, where
the length unit, the length constant, is the distance in which the
potential changes by a factor of 1/e. This length unit will differ
from axon to axon. For “short” cells (such as the rods, cones, and
bipolar cells of the retina), passive propagation suffices to signal a
potential change from one end to the other; but if the axon is long,
this mechanism is completely inadequate, since changes at one end
will decay almost completely before reaching the other end. For-
tunately, most nerve cells have the further property that if the
change in potential difference is large enough (we say it exceeds a
threshold), then in a cylindrical configuration such as the axon, a
pulse can be generated that will actively propagate at full amplitude
instead of fading passively.

If propagation of various potential differences on the dendrites
and soma of a neuron yields a potential difference across the mem-
brane at the axon hillock which exceeds a certain threshold, then
a regenerative process is started: the electrical change at one place
is enough to trigger this process at the next place, yielding a spike
or action potential, an undiminishing pulse of potential difference
propagating down the axon. After an impulse has propagated along
the length of the axon, there is a short refractory period during
which a new impulse cannot be propagated along the axon.

The propagation of action potentials is now very well under-
stood. Briefly, the change in membrane potential is mediated by
the flow of ions, especially sodium and potassium, across the mem-
brane. Hodgkin and Huxley (1952) showed that the conductance
of the membrane to sodium and potassium ions—the ease with
which they flow across the membrane—depends on the transmem-
brane voltage. They developed elegant equations describing the
voltage and time dependence of the sodium and potassium con-
ductances. These equations (see the article AXONAL MODELING in
Part III) have given us great insight into cellular function. Much
mathematical research has gone into studying Hodgkin-Huxley-
like equations, showing, for example, that neurons can support
rhythmic pulse generation even without input (see OSCILLATORY

AND BURSTING PROPERTIES OF NEURONS), and explicating trig-

gered long-distance propagation. Hodgkin and Huxley used curve
fitting from experimental data to determine the terms for conduc-
tance change in their model. Subsequently, much research has
probed the structure of complex molecules that form channels
which selectively allow the passage of specific ions through the
membrane (see ION CHANNELS: KEYS TO NEURONAL SPECIALI-
ZATION). This research has demonstrated how channel properties
not only account for the terms in the Hodgkin-Huxley equation,
but also underlie more complex dynamics which may allow even
small patches of neural membrane to act like complex computing
elements. At present, most artificial neurons used in applications
are very simple indeed, and much future technology will exploit
these “subneural subtleties.”

An impulse traveling along the axon from the axon hillock trig-
gers new impulses in each of its branches (or collaterals), which
in turn trigger impulses in their even finer branches. Vertebrate
axons come in two varieties, myelinated and unmyelinated. The
myelinated fibers are wrapped in a sheath of myelin (Schwann cells
in the periphery, oligodendrocytes in the CNS—these are glial
cells, and their role in axonal conduction is the primary role of glia
considered in neural modeling to date). The small gaps between
successive segments of the myelin sheath are called nodes of Ran-
vier. Instead of the somewhat slow active propagation down an
unmyelinated fiber, the nerve impulse in a myelinated fiber jumps
from node to node, thus speeding passage and reducing energy
requirements (see AXONAL MODELING).

Surprisingly, at most synapses, the direct cause of the change in
potential of the postsynaptic membrane is not electrical but chem-
ical. When an impulse arrives at the presynaptic terminal, it causes
the release of transmitter molecules (which have been stored in the
bouton in little packets called vesicles) through the presynaptic
membrane. The transmitter then diffuses across the very small syn-
aptic cleft to the other side, where it binds to receptors on the
postsynaptic membrane to change the conductance of the postsyn-
aptic cell. The effect of the “classical” transmitters (later we shall
talk of other kinds, the neuromodulators) is of two basic kinds:
either excitatory, tending to move the potential difference across
the postsynaptic membrane in the direction of the threshold (de-
polarizing the membrane), or inhibitory, tending to move the po-
larity away from the threshold (hyperpolarizing the membrane).
There are some exceptional cell appositions that are so large or
have such tight coupling (the so-called gap junctions) that the im-
pulse affects the postsynaptic membrane without chemical media-
tion (see NEOCORTEX: CHEMICAL AND ELECTRICAL SYNAPSES).

Most neural modeling to date focuses on the excitatory and in-
hibitory interactions that occur on a fast time scale (a millisecond,
more or less), and most biological (as distinct from technological)
models assume that all synapses from a neuron have the same
“sign.” However, neurons may also secrete transmitters that mod-
ulate the function of a circuit on some quite extended time scale.
Modeling that takes account of this neuromodulation (see SYN-
APTIC INTERACTIONS and NEUROMODULATION IN INVERTEBRATE

NERVOUS SYSTEMS) will become increasingly important in the fu-
ture, since it allows cells to change their function, enabling a neural
network to switch dramatically its overall mode of activity.

The excitatory or inhibitory effect of the transmitter released
when an impulse arrives at a bouton generally causes a subthresh-
old change in the postsynaptic membrane. Nonetheless, the coop-
erative effect of many such subthreshold changes may yield a po-
tential change at the axon hillock that exceeds threshold, and if this
occurs at a time when the axon has passed the refractory period of
its previous firing, then a new impulse will be fired down the axon.

Synapses can differ in shape, size, form, and effectiveness. The
geometrical relationships between the different synapses impinging
on the cell determine what patterns of synaptic activation will yield
the appropriate temporal relationships to excite the cell (see
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Figure 2. An example, conceived by
Wilfrid Rall, of the subtleties that can be
revealed by neural modeling when den-
dritic properties (in this case, length-
dependent conduction time) are taken
into account. As shown in Part C, the ef-
fect of simultaneously activating all in-
puts may be subthreshold, yet the cell
may respond when inputs traverse the cell
from right to left (D). (From Arbib,
M. A., 1989, The Metaphorical Brain 2:
Neural Networks and Beyond, New York:
Wiley-Interscience, p. 60. Reproduced
with permission. Copyright � 1989 by
John Wiley & Sons, Inc.)

DENDRITIC PROCESSING). A highly simplified example (Figure 2)
shows how the properties of nervous tissue just presented would
indeed allow a simple neuron, by its very dendritic geometry, to
compute some useful function (cf. Rall, 1964, p. 90). Consider a
neuron with four dendrites, each receiving a single synapse from a
visual receptor, so arranged that synapses A, B, C, and D (from
left to right) are at increasing distances from the axon hillock. (This
is not meant to be a model of a neuron in the retina of an actual
organism; rather, it is designed to make vivid the potential richness
of single neuron computations.) We assume that each receptor re-

acts to the passage of a spot of light above its surface by yielding
a generator potential which yields, in the postsynaptic membrane,
the same time course of depolarization. This time course is prop-
agated passively, and the farther it is propagated, the later and the
lower is its peak. If four inputs reached A, B, C, and D simulta-
neously, their effect may be less than the threshold required to
trigger a spike there. However, if an input reaches D before one
reaches C, and so on, in such a way that the peaks of the four
resultant time courses at the axon hillock coincide, the total effect
could well exceed threshold. This, then, is a cell that, although very
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simple, can detect direction of motion across its input. It responds
only if the spot of light is moving from right to left, and if the
velocity of that motion falls within certain limits. Our cell will not
respond to a stationary object, or one moving from left to right,
because the asymmetry of placement of the dendrites on the cell
body yields a preference for one direction of motion over others
(for a more realistic account of biological mechanisms, see DIREC-
TIONAL SELECTIVITY). This simple example illustrates that the form
(i.e., the geometry) of the cell can have a great impact on the func-
tion of the cell, and we thus speak of form-function relations. When
we note that neurons in the human brain may have 10,000 or more
synapses upon them, we can understand that the range of functions
of single neurons is indeed immense.

Receptors and Effectors

On the “input side,” receptors share with neurons the property of
generating potentials, which are transmitted to various synapses
upon neurons. However, the input surface of a receptor does not
receive synapses from other neurons, but can transduce environ-
mental energy into changes in membrane potential, which may then
propagate either actively or passively. (Visual receptors do not gen-
erate spikes; touch receptors in the body and limbs use spike trains
to send their message to the spinal cord.) For instance, the rods and
cones of the eye contain various pigments that react chemically to
light in different frequency bands, and these chemical reactions, in
turn, lead to local potential changes, called generator potentials, in
the membrane. If the light falling on an array of rods and cones is
appropriately patterned, then their potential changes will induce
interneuron changes to, in turn, fire certain ganglion cells (retinal
output neurons whose axons course toward the brain). Properties
of the light pattern will thus be signaled farther into the nervous
system as trains of impulses (see RETINA).

At the receptors, increasing the intensity of stimulation will
increase the generator potential. If we go to the first level of neu-
rons that generate pulses, the axons “reset” each time they fire a
pulse and then have to get back to a state where the threshold and
the input potential meet. The higher the generator potential, the
shorter the time until they meet again, and thus the higher the
frequency of the pulse. Thus, at the “input” it is a useful first
approximation to say that intensity or quantity of stimulation is
coded in terms of pulse frequency (more stimulus � more spikes),
whereas the quality or type of stimulus is coded by different lines
carrying signals from different types of receptors. As we leave the
periphery and move toward more “computational” cells, we no
longer have such simple relationships, but rather interactions of
inhibitory cells and excitatory cells, with each inhibitory input
moving a cell away from, and each excitatory input moving it
toward, threshold.

To discuss the “output side,” we must first note that a muscle is
made up of many thousands of muscle fibers. The motor neurons
that control the muscle fibers lie in the spinal cord or the brainstem,
whence their axons may have to travel vast distances (by neuronal
standards) before synapsing upon the muscle fibers. The smallest
functional entity on the output side is thus the motor unit, which
consists of a motor neuron cell body, its axon, and the group of
muscle fibers the axon influences.

A muscle fiber is like a neuron to the extent that it receives its
input via a synapse from a motor neuron. However, the response
of the muscle fiber to the spread of depolarization is to contract.
Thus, the motor neurons which synapse upon the muscle fibers can
determine, by the pattern of their impulses, the extent to which the
whole muscle comprised of those fibers contracts, and can thus
control movement. (Similar remarks apply to those cells that se-
crete various chemicals into the bloodstream or gut, or those that
secrete sweat or tears.)

Synaptic activation at the motor end-plate (i.e., the synapse of a
motor neuron upon a muscle fiber) yields a brief “twitch” of the
muscle fiber. A low repetition rate of action potentials arriving at
a motor end-plate causes a train of twitches, in each of which the
mechanical response lasts longer than the action potential stimulus.
As the frequency of excitation increases, a second action potential
will arrive while the mechanical effect of the prior stimulus still
persists. This causes a mechanical summation or fusion of con-
tractions. Up to a point, the degree of summation increases as the
stimulus interval becomes shorter, although the summation effect
decreases as the interval between the stimuli approaches the re-
fractory period of the muscle, and maximum tension occurs. This
limiting response is called a tetanus. To increase the tension exerted
by a muscle, it is then necessary to recruit more and more fibers to
contract. For more delicate motions, such as those involving the
fingers of primates, each motor neuron may control only a few
muscle fibers. In other locations, such as the shoulder, one motor
neuron alone may control thousands of muscle fibers. As descend-
ing signals in the spinal cord command a muscle to contract more
and more, they do this by causing motor neurons with larger and
larger thresholds to start firing. The result is that fairly small fibers
are brought in first, and then larger and larger fibers are recruited.
The result, known as Henneman’s Size Principle, is that at any
stage, the increment of activation obtained by recruiting the next
group of motor units involves about the same percentage of extra
force being applied, aiding smoothness of movement (see MOTO-
NEURON RECRUITMENT).

Since there is no command that a neuron may send to a muscle
fiber that will cause it to lengthen—all the neuron can do is stop
sending it commands to contract—the muscles of an animal are
usually arranged in pairs. The contraction of one member of the
pair will then act around a pivot to cause the expansion of the other
member of the pair. Thus, one set of muscles extends the elbow
joint, while another set flexes the elbow joint. To extend the elbow
joint, we do not signal the flexors to lengthen, we just stop signaling
them to contract, and then they will be automatically lengthened
as the extensor muscles contract. For convenience, we often label
one set of muscles as the “prime mover” or agonist, and the op-
posing set as the antagonist. However, in such joints as the shoul-
der, which are not limited to one degree of freedom, many muscles,
rather than an agonist-antagonist pair, participate. Most real move-
ments involve many joints. For example, the wrist must be fixed,
holding the hand in a position bent backward with respect to the
forearm, for the hand to grip with its maximum power. Synergists
are muscles that act together with the main muscles involved. A
large group of muscles work together when one raises something
with one’s finger. If more force is required, wrist muscles may also
be called in; if still more force is required, arm muscles may be
used. In any case, muscles all over the body are involved in main-
taining posture.

Neural Models

Before presenting more realistic models of the neuron (see PER-
SPECTIVE ON NEURON MODEL COMPLEXITY; SINGLE-CELL MOD-
ELS), we focus on the work of McCulloch and Pitts (1943), which
combined neurophysiology and mathematical logic, using the all-
or-none property of neuron firing to model the neuron as a binary
discrete-time element. They showed how excitation, inhibition, and
threshold might be used to construct a wide variety of “neurons.”
It was the first model to tie the study of neural nets squarely to the
idea of computation in its modern sense. The basic idea is to divide
time into units comparable to a refractory period so that, in each
time period, at most one spike can be generated at the axon hillock
of a given neuron. The McCulloch-Pitts neuron (Figure 3A) thus
operates on a discrete-time scale, t � 0, 1, 2, 3, . . . , where the
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