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Abstract Trajectory data of simultaneously moving objects is being recorded
in many different domains and applications. However, existing techniques that
utilise such data often fail to capture characteristic traits or lack theoretical
guarantees. We propose a novel class of spatio-temporal convolution kernels
(STCKs) to capture similarities in multi-object scenarios. The abstract kernel
is a composition of a temporal and a spatial kernel and its actual instantia-
tions depend on the application at hand. Empirically, we compare our kernels
and efficient approximations thereof to baseline techniques for clustering tasks
using artificial and real world data from team sports.
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1 Introduction

Trajectory data of simultaneously moving objects is the key to analyse ani-
mal migration [38], transportation [3,14], tactics in team sports [20,33,43,61],
players and avatars in (serious) computer games [31,48], customer behaviour
[35] as well as spread patterns of fires [57]. A characteristic trait of many such
applications is that trajectories of several objects are more informative than
the trajectory of a single object. For instance, a single trajectory of a bird is
not indicative for bird migration as individuals may join or leave the flock [38]
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and a single trajectory of a soccer player does not reveal insights on the actual
situation on the pitch [15,61].

Therefore, trajectories of multiple objects need to be processed together.
Although this insight sounds trivial, processing multiple trajectories simul-
taneously challenges the standard model of computation as trajectories may
interdepend in time and space in multiple ways. To exploit these dependencies,
it is necessary to establish a notion of similarity for spatio-temporal paths of
multiple objects to identify frequent patterns. By definition, frequent patterns
are formed by an a priori unknown subset of objects at unknown locations
in time and space. Analysing multi-trajectory data is therefore inherently a
combinatorial problem that involves processing data at large scales.

A second problem arises from existing methods for analysing spatio-temp-
oral data. Traditional approaches often cannot deal with continuous spatial
domains but rely on an appropriate discretisation of the data at-hand [30,
44,45]. However, finding an a priori optimal discretisation is often difficult
in many domains where only the final result allows conclusions on whether
an initial set of atomic events is plausible or not [30]. Furthermore, many
approaches cannot deal with permutations of the objects and differences in
speed, while still being sensitive to differences in the direction of the motion
[20,28,61].

We devise a novel class of convolution kernels for multi-trajectory data.
It is specially tailored to multi-object scenarios, i.e. trajectories of multiple
simultaneously moving objects. The kernel properties as well as the modular
nature of the proposed class of kernels renders it highly adaptive to different
applications. Since it is a kernel, it can also naturally be deployed with any
kernel machine. The three characteristics, multi-object scenario, modularity
and kernel property, distinguish our approach from existing methods. Due to
its distinct characteristics, our approach is more suitable for a large variety
of applications, it is flexible with respect to the notion of similarity, and it
is theoretically better grounded than most of the existing methods. Since the
complexity of a kernel evaluation is quadratic in the number and the lengths
of the involved objects, we also propose an efficient percental approximation.
Empirically, the method is evaluated on artificial datasets and real-world track-
ing data from ten Bundesliga soccer matches. We generally observe that our
convolution kernels lead to better clusterings compared to baseline methods.

The remainder of this article is structured as follows. Section 2 reviews
existing work. Section 3 introduces our spatio-temporal convolution kernel
methods and Section 4 reports on empirical results. Section 5 concludes.

2 Related Work

2.1 Trajectory Clustering

Trajectory clustering, or clustering of spatio-temporal data respectively, has
been an active field of research in the past years. Existing approaches mainly



Spatio-Temporal Convolution Kernels 3

focus on the application of video surveillance with the goal to detect anomalies
in the data stream [2,13,21,26,28,53]. Other applications include automatic
sports analysis, weather evolution modelling, animal migration and traffic
analysis. Existing approaches rely mostly on processing of single trajectories.
Recent contributions in this area can be roughly grouped into similarity-based
approaches [9,27,13,20,21,28,50] and motion-based approaches [2,59,26,39,
42,53].

Similarity-based approaches define pairwise similarities between trajecto-
ries which are then processed by some clustering algorithm. Junejo et al. [28]
represent trajectories as a set of two-dimensional coordinates together with
the Hausdorff distance. Subsequently, graph-cuts are deployed to recursively
partition the trajectories. Hausdorff distances are also used to cluster trajec-
tories by Chen at al. [27] where not only the position but also the direction of
the trajectories is taken into account by using 4-tuples (x, y, dx, dy) instead of
coordinates only. Fu et al. [13] first resample trajectories to obtain constant
between-point distances. Then the corresponding points of two trajectories are
compared using an RBF kernel where the longer trajectory is cut to the length
of the shorter one. Spectral clustering is then used together with a symmetric
normalised Laplacian.

Buzan et al. [9] extend the longest common subsequence algorithm to three-
dimensional coordinates and use a modified version of agglomerative hierar-
chical clustering. Hirano et al. [20] deploy multi-scale matchings to compare
trajectories. The basic idea is to generate trajectories at different scales as
convolutions of the trajectory and Gaussian kernels with different standard
deviations. Their similarity measure is then based on the hierarchical structure
of the trajectory segments at different scales. Subsequently, a rough clustering
is employed. Piciarelli et al. [50] define a trajectory-to-cluster similarity by
the average Euclidean distance of trajectory coordinates to the nearest cluster
coordinate where offsets in time induce negative weights.

Our approach also belongs to these similarity-based methods. In general,
similarity-based approaches suffer from two major drawbacks. First, their com-
putational complexity is at least in quadratic in the number of trajectories.
Second, they rely on clustering full trajectories and are hence sensitive to
tracking errors and sub-trajectories. While the first drawback is inherent to
all similarity-based methods, our distribution-based approach and gradual
weighting mitigates the effects of noise and tracking errors and is able to
identify partial matchings between trajectories.

In contrast to similarity-based approaches, motion-based approaches focus
on local movements of objects to derive models for the overall (group) motion
in a scene. Grimson et al. [59] and Jeong et al. [26] represent a trajectory by
bags of positions as well as directions based on the bag-of-words representation
of documents in natural language processing. To this end, the spatial domain
is discretised and the number of occurrences of each position in a trajectory is
counted. Grimson et al. also take into account temporal information by count-
ing the occurrences of each (discretised) direction in a trajectory. The topic
model Dual-HDP [59] is used to find semantic regions, which are combined
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to form the different trajectories. Jeong et al. use latent dirichlet allocation
[8] to obtain semantic regions. To incorporate temporal information, a hidden
Markov model is trained for each topic based on the sequences which are close
to the topic. Saleemi et al. [53] propose kernel density estimation to learn a
five dimensional distribution of transitions from (x1, y1) to (x2, y2) in time t.
Markov chain monte carlo [1] is then deployed to sample the most likely paths
given the learned transition probabilities.

Basharat et al. [2] also learn a model for transition probabilities. Instead of
kernel density estimation, a Gaussian mixture model is fitted to the observed
transitions. Lin et al. [42] exploit the Lie algebraic structure of affine trans-
formations to learn a flow model consisting of overlapping two-dimensional
Gaussian distributions, each of which corresponds to an affine transform dom-
inant in this spatial area. The approach is applied to pedestrians in a train
station and optical flows obtained from satellite images. Li et al. [39] also use
a similar Lie algebraic representation called spatial hybrid driving force model,
which, opposed to [42], evolves over time. This model is used to solve the
so-called group motion segmentation problem, i.e. to answer the question of
which objects take part in an organised group motion and which do not.

Motion-based approaches also inhere some limitations. First, they often
neglect temporal information at least of second order (curvature). Second,
they do not provide a mapping of the input trajectories to groups of similar
trajectories but rather describe the combined motion of all objects in all trajec-
tories over time. Our approach differs methodologically from the summarised
techniques in several ways: First, it provides a general framework that covers
many applications and properties as opposed to being a very specific similarity
measure tailored to a single application domain. Second, our approach is spe-
cialised on multiple simultaneously moving objects instead of focussing on only
trajectories of single objects. Third, being a kernel the similarity measure is
straightforwardly applicable to a broad range of algorithms and is theoretically
well grounded in contrast to heuristic approaches.

2.2 Sports Analytics

Current approaches in the area of sports game trajectory analysis either aim
to define objective performance measures for players [29], classify [5,19,24,15,
49,55] or cluster [20,61] plays/trajectories, or learn a motion model for team
behaviour [6,11,34,40,39,43,63].

In [29], Kang et al. define performance metrics for soccer players based
on the definition of owned and competitive regions of the field, which are
derived from ball and player trajectories. Siddiquie et al. [55] represent videos
of football plays by a bag-of-features from histograms of optical flows as well
as histograms of oriented gradients. Spatio-temporal pyramid matching [36] is
used to generate a kernel for each visual word. Football plays are then classified
into seven categories using multiple kernel learning. Hervieu et al. [19] use a
hierarchical parallel semi-Markov model to classify different activity states in
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squash and handball, such as rallies, free throws and defence. The first layer
describes the activity states, while the second layer consists of a parallel hidden
Markov model for each feature representing the trajectories.

Perše et al. [49] represent team activity in basketball using team centroids
to hierarchically classify situations with Gaussian Mixture Models. Thereafter,
each situation is converted into a string, which is compared to templates for
classification. Bialkowski et al. [5] use team centroids and occupancy maps
to classify game situations in field hockey (corners, goals), emphasising the
robustness of this representation to tracking noise. Grunz et al. [15] employ
self-organising maps to identify long and short game initiations in soccer and
Hirano et al. [20] use multi-scale comparison and rough clustering to cluster
ball trajectories that lead to goals.

Direkoglu et al. [11] solve a special Poisson equation, in which the player
positions determine the location of source terms. The derived distribution
and its development over time defines a so-called region of interest used to
describe the team behaviour. Wei et al. [61] use role models [43] and a Bilin-
ear spatio-temporal basis model to represent team movement to cluster goal
scoring opportunities in soccer. Bialkowski et al. [6] also use role models to au-
tomatically detect and compare the formations of soccer teams. Li et al. [39]
learn a spatio-temporal driving force model to identify offence and defence
players in football. Kim et al. [34] interpolate a dense motion field from player
trajectories using thin-plate splines. This motion field is further investigated
for points of convergence to predict where the game will evolve in short term.

From an application point of view, our approach is most comparable to Wei
et al. [61] and Grunz et al. [15]. While Wei et al. focus on scoring opportunities
and Grunz et al. study game initiations, we consider both situations in this
study. Similar to Bialkowski et al. [5], our method proves robust to tracking
noise.

3 Spatio-Temporal Convolution Kernels

3.1 Representation

Multi-object trajectory analysis is concerned with a possibly varying number of
moving objects Ot in a set X, e.g. X = R2, over a finite period of time T ⇢ N.
A multi-object trajectory is composed of snapshots of the object positions at
different times. Depending on the context and application at hand, one of the
following two formalisations of a snapshot is more appropriate.
Definition 1 (Object-oriented Snapshot) Assume the number of objects
to be constant over time, i.e. Ot = O = {o1, ..., oN} for N 2 N. Then the
object-oriented snapshot of all objects at time t 2 T is denoted by xt 2
XN

=: X . We call X the snapshot space. The position of a particular object
o 2 O is denoted by xt(o) 2 X.

Definition 2 (Group-oriented Snapshot) Assume there is a constant num-
ber of groups K 2 N. Moreover, at every point in time each object can be
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associated with exactly one of the groups G = {g1, ..., gK}.1 Then the group-
oriented snapshot of all objects at time t 2 T is denoted by

xt 2 P(X)

K
=: X .

We call X the snapshot space. The positions of all objects of a particular
group g 2 G are denoted by xt(g) 2 P(X). The group members of group g in
snapshot xt are denoted by Ox

t

(g) ⇢ Ot.

The implications of the two definitions are as follows. First, the object-oriented
snapshot representation only allows a fixed number of objects, whereas the
group-oriented representation is not limited in that respect. Second, in the
group-oriented snapshot, objects inside a group are indistinguishable. On one
hand, the property allows for permutations of objects but on the other hand
it naturally also entails ambiguities.

Instead of an ordered sequence of positions or snapshots we use a set of
time/position-pairs to represent trajectories. Thereby, time and order is ex-
plicitly represented as opposed to the more implicit sequence representation.

Definition 3 (Trajectory) A trajectory is defined as a finite subset

˜P = {(˜t1, xt̃1
), ..., (˜tn, xt̃

n

)} ⇢ T ⇥ X ,

such that ˜ti 6= ˜tj for i 6= j, i.e. the trajectory set ˜P contains only one snapshot
per point in time.

The set ⇡T ( ˜P )) = {t 2 T : 9(s̃, xs̃) 2 ˜P s. t. t = s̃} contains all timestamps
of the trajectory and is usually of the form {K,K + 1, ...,K + L} for some
natural numbers K and L. When comparing trajectories it is insignificant
at what absolute time the trajectories start. This gives rise to the following
definition.

Definition 4 (Time-Normalised Trajectory) The time-normalised tra-
jectory P ⇢ [0, 1]⇥ X corresponding to trajectory ˜P is defined by normalising
its time-scale to [0, 1]. This corresponds to the trajectory P , given by

P = {(t, xt) : 9(˜t, xt̃) 2 ˜P s.t. ˜t = µ+ t(max(⇡T ( ˜P ))� µ) ^ xt̃ = xt},

where µ = min(⇡T ( ˜P )).

In the remaining part of this study we refer to time-normalised trajectories
simply by trajectories.

1 Note that the group membership of an object can change over time.
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3.2 Problem Setting

One of the main advantages of kernel methods is the separation of algo-
rithm and data. Following this paradigm, we focus on defining a kernel on
the set of multi-object trajectories. Once a kernel has been defined, off-the-
shelf kernel machines can be applied to generate models, such as support vec-
tor machines [58], kernelised k-medoids [32], or spectral clustering [46]. The
formal problem setting of this article is defined as follows. On the set of multi-
object trajectories M ⇢ P([0, 1]⇥ X ) we aim to develop a similarity measure
k : P([0, 1]⇥ X )⇥ P([0, 1]⇥ X ), such that

(I) the absolute position as well as the shape of the trajectories is incorpo-
rated,

(II) the measure is invariant to permutations of certain objects, i.e. for two
trajectories P1, P2 with

P2 = {(t, xt) : 9 permutation � 8(s, ys) 2 P1 s. t. t = s ^ xt = �(ys)}

it holds that k(P1, P2) = 1. In case of the group-oriented snapshot this
already holds by definition if the permuted objects are members of the
same group,

(III) the measure is invariant with respect to the speed of the movement.
Since all trajectories have already been normalised to the same time
scale, differences in speed are mainly reflected in the cardinality of the
trajectory sets. So, for example, given two trajectories P1 and P2 with
|P1| = 2|P2| and

P2 = {(t, xt) : 9(s, ys) 2 P1 s. t. t = 2s ^ xt = y2s}

it holds that k(P1, P2) ⇡ k(P1, P1),2

(IV) the similar movements of two sets of objects is recognised as such in the
presence of deviations of single objects and outliers.

Moreover, the measure should have the following properties:
(V) Kernel Property, i.e.

k(P1, P2) = h�(P1),�(P2)iF

for some, usually unknown, feature map � and inner product space F
(VI) Broad applicability, i.e. few application specific parameters and no re-

strictions on the space X
(VII) Computational efficiency

2 Note that the Definition of P2 is such that it corresponds to an object moving with
twice the speed of the first object.
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Note that properties (I) to (IV) formalise an intuitive notion of similarity.
(I) says that shape and positions matters. (II) requires that if two similar
object swap roles, it does not matter. (III) formalises that we do not care
about differences in speed that much.3

Property (IV) demands robustness with respect to outlier trajectories. Fur-
ther note that, for example, Dynamic Time Warping [4] meets condition (III)
very well, but does not comply with (V), (VI) and (VII), since it is not a
kernel and only applicable if the underlying set is a metric space. Moreover, it
is computationally expensive. On the other hand, the Hausdorff distance [17]
satisfies (I), (III) and (VII), but it does not satisfy (II), (V) and (VI), since it
is only applicable to metric spaces and sensitive to permutations. In addition,
it is not a kernel. A Gaussian RBF kernel on the full vector of positions meets
conditions (I) (restricted), (V) and (VII), but is not applicable to sequences
of different lengths. Also, it does not comply with (II),(III) and (VI), since it
is highly sensitive to variations in speed and permutations and is restricted to
metric spaces.

3.3 Spatio-temporal Convolution Kernels for Multi-trajectories

In this section we develop a kernel on the space of (time-normalised) multi-
trajectories P([0, 1]⇥ X ). Each of those trajectories consists of a set of snap-
shots associated with a relative time. The general idea is to perform a pair-
wise comparison of the snapshots in the two sets. Therefore, we first need a
way to compare snapshots and, second, we need to know which snapshots of
the two trajectory sets to compare with each other. For the latter dynamic
time warping (DTW) [4] seems to be a good choice, since it aligns the snap-
shots optimally in terms of similarity. Unfortunately, the obtained kernel is
not positive definite, i.e. it does not correspond to an inner product in some
Hilbert Space. Although there is anecdotal evidence that learning with indef-
inite kernels can lead to good results in some applications (e.g. [47]), theory
only supports the use of positive definite kernels. For many kernel machines
there are error bounds and convergence criteria that can be straightforwardly
applied to positive definite kernels but that do not hold for indefinite kernels
[7,41,56].

Therefore, we propose a weighted comparison between every snapshot of
the first trajectory and every snapshot of the second one where the weights
depend on the offset in relative time. Formally, this is done using an R-
convolution kernel [18] on the two sets representing the trajectories. Con-
volution kernels are a general class of kernels on structured objects x, y 2
X.4 The idea is to compare instances x and y by comparing their parts

3 Note that the property can be easily adapted to explicitly include speed by adding an
extra coordinate. The position of each object is replaced by a position-speed-pair

⇣
x,

dx
dt

⌘

t

,
see [27] for details.

4 Originally, convolution kernels are defined on arbitrary sets X.
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(x1, ..., xD), (y1, ..., yD) 2 X1 ⇥ ...⇥XD. Thus, a relation function R is needed
to express that something is a part of some structure.

Definition 5 (Relation) Let X,X1, ..., XD be arbitrary sets. Then a relation

R : X ⇥X1 ⇥ ...⇥XD ! {0, 1}

is an arbitrary boolean function that returns 1 if and only if (x1, ...xd) are
parts of x. The set of parts of x 2 X under relation R is denoted by

R�1
(x) = {(x1, ..., xd) 2 X1 ⇥ ...⇥XD : R(x, x1, ..., xD) = 1}

and R is called finite if R�1
(x) is finite for every x 2 X.

Definition 6 (R-Convolution Kernel) Let X,X1, ..., XD be arbitrary sets.
Let x, y 2 X and R : X⇥X1⇥ ...⇥XD ! {0, 1} be a finite relation. Moreover,
let k1, ..., kD be kernels on X1, ..., XD. Then the R-convolution kernel on X is
defined by

k(x, y) =
X

(x1,...,xD

)2R�1(x),
(y1,...,yD

)2R�1(y)

DY

d=1

kd(xd, yd)

The following theorem shows that an R-convolution kernel is indeed a (positive-
definite) kernel.

Theorem 1 Let X,X1, ..., XD be arbitrary sets. Let R be a finite relation and
let k1, ..., kD be kernels on X1, ..., XD. Then the R-convolution kernel k given
by Definition 6 is a kernel.

Proof For the proof we refer to [18] Theorem 1 and Lemma 1, which are
essentially more involved applications of closure properties of kernels. ut

In our case the structure is a multi-object trajectory and its parts are the
snapshots, the times of the snapshots and the length of the trajectory. The
relation between the structure and its elementary components is given by

R : N|{z}
Length of Traj.

⇥ [0, 1]|{z}
Time of Snapshot

⇥ X|{z}
Snapshot

⇥P([0, 1]⇥ X )| {z }
Trajectory

! {0, 1}.

To extract the snapshots with their associated times and the length of the
trajectory from the trajectory, R needs to be defined as follows:

R(n, t, x, P ) =

(
1 if |P | = n ^ 9(s, ys) 2 P : (t, x) = (s, ys)

0 otherwise.
(1)

The first condition in Equation 1 ensures that the given trajectory has the
given length, while the second condition guarantees the occurrence of the given
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snapshot at the given time in the given trajectory. With this relation and the
kernels to compare the parts the resulting convolution kernel is given by

k(P,Q) =

X

(n,t,x)2R�1(P ),
(m,s,y)2R�1(Q)

kN(n,m) · k[0,1](t, s) · kX (x, y) (2)

with R�1
(P ) = {(n, t, x) : R(n, t, x, P ) = 1}. The term kN accounts for differ-

ences in length of the trajectories by normalisation, i.e. kN =

1
nm . Note that

kN is a kernel on N, since it corresponds to the standard inner product under
the feature map � : N ! N given by � : n 7! 1

n . Finally, the R-convolution
kernel simplifies to

k(P,Q) =

1

|P ||Q|
X

(t,x
t

)2P,(s,y
s

)2Q

k[0,1](t, s) · kX (xt, ys). (3)

Theorem 2 The spatio-temporal convolution kernel (Equation 3) is a kernel
if the temporal kernel k[0,1] and the spatial kernel kX are kernels in that sense.

Proof By Theorem 1 we need to show that R is finite and the component
kernels kN and k[0,1], kX are indeed kernels. First, for all P 2 P([0, 1]⇥ X ) it
holds that |R�1

(P )| = |P | < 1 by Definition 3, so R is finite. Second, k[0,1]
and kX are kernels by assumption and we have just shown that kN is also a
kernel. Hence, the spatio-temporal convolution kernel is a kernel. ut
As indicated, Equation 3 can be interpreted such that all snapshots of the
two trajectories are compared with each other, but weighted by their offset
in time. Thereby snapshots which occur at different relative times have a low
contribution to the overall similarity, while snapshots at the same relative
time have a high contribution. This is why k[0,1] is sometimes also referred
to as weight function. The definition of k in Equation 3 leaves two degrees of
freedom:

– Spatial kernel kX : The choice of the snapshot kernel determines which
snapshots are similar.

– Temporal kernel k[0,1]: The choice of the temporal kernel determines the
way in which the snapshots of two sequences are combined, and thus the
importance of ordering and speed.

In the following subsections we develop and compare different spatial and
temporal kernels.

3.4 Spatial Kernels

A spatial kernel compares two snapshots in X. Corresponding to the two
definitions of the snapshot in Definition 1 (object-oriented) and Definition 2
(group-oriented), two types of kernels are introduced here as well.



Spatio-Temporal Convolution Kernels 11

Table 1 Elementary Spatial Kernels

Name X Kernel Para.

Uniform Rn

k

X

(x, y) = I{z2Rn:kz�xk2<w}(y) w

Triangular Rn

k

X

(x, y) =

⇣
1� kx�yk2

w

⌘
I{z2Rn:kz�xk2<w}(y) w

Polynomial Rn

k

X

(x, y) = (hx, yi+R)

d

R,d

Gaussian Rn

k

X

(x, y) = exp

⇣
� 1

2�2 kx� yk22
⌘

�

2

Matching Kernel finite X k

X

(x, y) = I{x}(y) -

Object-Wise Comparison These kernels correspond to the object-oriented snap-
shot by simply comparing the positions of the objects O and summing up their
similarity:

kX (xt, yt) =
1

|O|
X

o2O
kX(xt(o), yt(o)). (4)

Note that Equation 4 is a kernel, since kernels are closed under direct sum and
multiplication by a positive constant (see [54] Proposition 3.22).5 Since kernels
are also closed under direct product, technically a product could have been
used instead of the sum in Equation 4. However, a product of kernels leads to
vanishing similarities if only one object is dissimilar to its counterpart. This
is counterintuitive as two snapshots are the more similar the more objects
match well. It is thus an inherently additive relationship. For the same reason
a product of kernels is more vulnerable to noise and outliers and generally less
robust than a sum of kernels. The elementary kernel kX can be any kernel
comparing two positions in X. Table 1 lists common kernels for finite as well
as continuous snapshot spaces.

Kernels as in Equation 4 have two major shortcomings. First, they pe-
nalise permutations of objects. For example, two snapshots of two objects with
swapped positions will have low similarity, although in terms of the group mo-
tion they are alike. One way to address permutations is to explicitly maximise
the similarity of the two snapshots with respect to all possible permutations
of objects. Due to the high computational costs of considering all possible
permutations6, this is infeasible. In addition, the bandwidth parameter � that
controls the interval of high sensitivity, i.e. large values of |dk/d(kx� yk)|,
of the kernel has to be known beforehand. This is critical since one usually
does not know on which scale significant deviations appear. Both issues are
addressed by the group-wise comparison of objects.

Group-Wise Comparison In case of the group-oriented snapshot there is a
partition of Ot into K sets Ox

t

(g1), Ox
t

(g2), .., Ox
t

(gK). Instead of comparing

5 However, if the number of objects was not constant, kX would not be a kernel.
6 For example, 10 objects lead to about 3.6 · 106 permutations.
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N objects, K groups of objects are compared, which leads to the following
definition of a spatial kernel

kX (xt, yt) =
1

K

X

g2G
kG(xt(g), yt(g)) (5)

with kernel kG applied on sets of positions. For the same reasons as in the
previous paragraph, a sum of kernels is preferable to a product of kernels.
Definition 2 allows for zero group members in a snapshot, i.e. xt(g) = ;. For
all kernels defined below this special case is dealt with as follows:

kG(x, y) =

(
1 if x = y = ;
0 otherwise.

The definition of kG is very much dependent on the underlying set of positions
X. There are two main classes of sets X. First, if X is a metric space, i.e.
there exists a distance measure between all positions. Second, X is a finite
set, in which no meaningful distance between positions can be defined.7 In
the case of a metric space we will subsequently only consider X = R2 with
standard Euclidean distance as it is the most common in applications and can
be directly extended to X = RN .

Euclidean Space: X = R2 In the case of X = R2 a straightforward approach
is to use one of the kernels from Table 1 to compare the group centroids

µx
t

(g) =
1

|Ox
t

(g)|
X

o2O
x

t

(g)

xt(o) and µy
t

(g) =
1

|Oy
t

(g)|
X

o2O
y

t

(g)

yt(o),

which leads to

kG(xt(g), yt(g)) = kX(µx
t

(g), µy
t

(g)).

Besides the need of defining the width parameter �, disregarding the distri-
bution of the objects around their centroids constitutes a disadvantage. To
remedy both deficiencies, two Gaussian distributions are fitted to xt(g), and
yt(g) respectively that we will denote as fx

t

(g) and fy
t

(g). These distribu-
tions are defined by their means µx

t

(g) and µy
t

(g) as defined above and their
covariance matrices defined by

⌃x
t

(g) =
1

|Ox
t

(g)|� 1

X

o2O
x

t

(g)

(xt(o)� µx
t

(g))(xt(o)� µx
t

(g))T

and ⌃y
t

(g) =
1

|Oy
t

(g)|� 1

X

o2O
y

t

(g)

(yt(o)� µy
t

(g))(yt(o)� µy
t

(g))T .

7 The case of an infinite set X without a metric can be reduced to the finite case by only
considering the positions that are attained by some objects at some time. These are only
finitely many.
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If the covariance matrix is ill-conditioned or singular8, a simple shrinking
scheme with shrinkage parameter ↵ can be applied to achieve non-singularity:

⌃ = (1� ↵) ·⌃ + ↵ · Tr(⌃)

2

I2,

where I2 is the two-dimensional identity matrix. There exist different strategies
[37,10] to choose an optimal value for ↵, but for our purposes it suffices to
deploy a constant 0.1. In the case of Tr(⌃) = 0 the following scheme is used

⌃ = (1� ↵) ·⌃ + ↵ · �2
MIN

· I2 = ↵ · �2
MIN

· I2,

where �2
MIN

is an application specific parameter. Strategies for choosing �2
MIN

are discussed in Section 4. Reasons for the matrix to be singular are Ot(g)  2

or strong collinearity of the samples. The two Gaussian distributions fx
t

(g)
and fy

t

(g) are then compared using a probability product kernel [25], i.e.

kG(xt(g), yt(g)) = kprod

(fx
t

(g), fy
t

(g)).

A probability product kernel compares two probability distributions, i.e. their
density functions p and p0, defined on a common probability space (⌦,A, µ).
It is defined as follows.

Definition 7 (Probability Product Kernel) Let p and p0 be probability
density functions defined on the same probability space (⌦,A, µ). Assume
that p⇢, p0⇢ 2 L2

(⌦) for ⇢ 2 R+. Then the probability product kernel (PPK)
kprod

: L2
(⌦)⇥ L2

(⌦) ! R is given by

kprod

(p, p0) =
Z

⌦

p(!)⇢p0(!)⇢ dµ(!).

Lemma 1 kprod is a (positive-definite) kernel.

Proof Consider the feature map � : L2
(⌦) ! L2

(⌦) given by

�(p) = p⇢,

which is well-defined because of above L2 property. Then

kprod

(p, p0) = h�(p),�(p0)iL2(⌦)

and kprod is a kernel corresponding to the scalar product in L2
(⌦)

Z

⌦

f(!) · g(!) dµ(!).

ut
8 In this study a threshold on the covariance matrix’s condition number of 30 is used.
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In this study we will use ⇢ = 1/2, which has the important property that
Im (kProd) = [0, 1] and kprod

(p, p) = 1. For two two-dimensional Gaussian
distributions and ⇢ = 1/2 the product probability kernel permits the following
closed form:

kG(xt, yt) =

Z

R2

(fx
t

(z)fy
t

(z))
1/2

dz = 2 · |⌃⇤| 12 |⌃x
t

|� 1
4 |⌃y

t

|� 1
4

· exp
✓
�1

4

�
µT
x
t

⌃�1
x
t

µx
t

+ µT
y
t

⌃�1
y
t

µy
t

� µ⇤T⌃⇤µ⇤�
◆ (6)

with ⌃⇤
= (⌃�1

x
t

+⌃�1
y
t

)

�1 and µ⇤
= ⌃�1

x
t

µx
t

+⌃�1
y
t

µy
t

.9 Besides its sensibility
to the distribution of the objects inside the group kprod has the advantage of
not having to choose a width parameter. The kernel essentially adapts to the
scale of the group.

Finite Case: |X| = L < 1 For finite X = {z1, ..., zL}, we can generalise to
the group-oriented snapshot by comparison of the number of objects of each
group at each possible location in X:

kG(xt(g), yt(g)) =
1

L

X

z2X

I{n
z

(x
t

(g))}(nz(yt(g))) (7)

with the indicator function IA(x) = 1 if x 2 A and 0 otherwise and nz(xt(g)) =
|{xt(o) = z o 2 Ox

t

(g)}| denotes the number of objects of group g 2 G in
position z 2 X at time t 2 [0, 1].

Lemma 2 kG as defined in Equation 7 is a kernel.

Proof Let l2(0, 1) be the Hilbert space of 0/1-sequences equipped with the
standard scalar product. Consider � : X ! l2(0, 1)L with

�(xt(g))m,l =

(
1 if m objects in position l
0 otherwise

for l = 1, . . . , L and m = 0, 1, 2, . . . Using this feature mapping, kG can be
rewritten to

kG(xt(g), yt(g)) = h�(xt(g)),�(yt(g))i,
showing that it is indeed a kernel. Note that that the inner product of a product
space is defined by the sum of the inner products of its components. ut
If the number of possible locations is much higher than the number of objects,
the above kernel (Equation 7) is inappropriate, as it will return similarities
close to one for every pair of snapshots because in both snapshots there are
no objects at almost all locations. Alternatively, the idea of a product proba-
bility kernel can also be applied to the finite setting by fitting a multinomial

9 In order to simplify the notation, group index g has been omitted.



Spatio-Temporal Convolution Kernels 15

distribution to the positions of the group and comparing the two resulting
distributions px

t

(g) and py
t

(g) that are identified by their outcome probabil-
ities (px

t

,1(g), ..., px
t

,L(g)). For ⇢ = 1/2 the probability product kernel on the
multinomial distributions is derived as follows10,

kprod

(xt, yt) =

Z

NL

q
px

t

(n1, ..., nL)py
t

(n1, ..., nL) d(n1, ..., nL)

=

X

n12N

...
X

n
L

2N

q
px

t

(n1, ..., nL)py
t

(n1, ..., nL)

=

X

n12N

...
X

n
L

2N

✓
n1 + ...+ nL

n1, ..., nL

◆
((px

t

,1 · py
t

,1)
n1 · ... · (px

t

,L · py
t

,L)
n
L

)

1
2

with the maximum-likelihood estimation for the outcome probabilities of the
multinomial distributions given by

px
t

,l(g) =
nz

l

(xt(g))

|Ox
t

(g)| .

3.5 Temporal Kernels

The temporal kernel k[0,1] is the simpler component of spatio-temporal con-
volution kernel because the underlying set is fixed to the one-dimensional
interval [0, 1]. We briefly discuss possible options for the temporal kernel and
their implications.

The simplest temporal kernel is a constant kernel k[0,1](t, s) = 1 with the
consequence that the spatio-temporal convolution kernel (Equation 3) col-
lapses to a set kernel on the two sets of snapshots, thus ignoring order. A
uniform or interval kernel given by

k[0,1](t, s) = I{u2R:|t�u|<w}(s)

could be used to compare every snapshot of the first trajectory to just those
snapshots of the second trajectory which are close in (relative) time. The choice
of w determines how close snapshots have to be to be taken into consideration.
Finally, Gaussian kernels of the form

k[0,1](t, s) = exp

✓
� 1

2�2
kt� sk22

◆

compare every snapshot of the first trajectory to every snapshot of the sec-
ond trajectory and gives more importance to closer events (in relative time).
Depending on the application at-hand, there may be many more options to
define temporal kernels.

10 The group index g has again been omitted for reasons of readability.
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Algorithm 1 ASTCK: Percental Approximation
1: function ASTCKII(P,Q,L) . Input: Two Trajectories P and Q and the max. length

of any trajectory L, Output: Vector of step-by-step approximation of k(P,Q)
2: tempMatrix = getTemporalKernelMatrix(P,Q);
3: orderedEntries = sort(tempMatrix)
4: k(0) = 0;
5: for i=1 to L do

6: k(i) = k(i-1)·round((i-1)/L·|P|·|Q|);
7: for j = round((i-1)/L·|P|·|Q|)+1 to round(i/L·|P|·|Q|) do

8: k(i) += spatialKernel(P(orderedEntries(j,1)) Q(orderedEntries(j,2)));
9: end for

10: k(i) = k(i)/round(i/L·|P|·|Q|)
11: end for

12: return k;
13: end function

3.6 Approximation Techniques

To compute the Gram matrix of a dataset of N trajectories, O(N2L2
) spatial

as well as temporal kernels need to be evaluated with L being the maximal
length of a sequence. Naturally, the evaluation of the spatial kernels will domi-
nate the evaluation of the temporal kernel mainly for reasons of dimensionality
as well as complexity of the kernel itself.

Generally, there exist two ways to speed up the algorithm. First, the num-
ber of similarities which have to be computed is reduced to shrink the factor
O(N2

). Afterwards the missing entries in the Gram matrix are reconstructed.
Second, the computation of each similarity is accelerated to reduce the term
O(L2

). Regarding the first approach, there exist methods to reconstruct incom-
plete Gram matrices, most notably the Nyström method (see [12,62]). These
methods have the disadvantage of usually needing a constant fraction of all
entries to perform well [60]. It follows that they do not improve the asymptotic
complexity of the computation. We focus on the second approach, since it is
specific to spatio-temporal convolution kernels and potentially improves the
asymptotic complexity.

As stated before, the computation of the temporal kernel is significantly
faster than the one of the spatial kernel. Thus, a natural way to approximate
these kernels is to first evaluate all temporal kernels and then to only evaluate
those spatial kernels which have the highest contribution. Depending on the
lengths of the two trajectories at-hand the number of overall kernel evaluations
varies between pairs of trajectories. Therefore, when approximating the kernel
one has to take care that all entries of the Gram matrix are approximated in
similar speed to avoid distortions. To this end, we propose a percental approx-
imation algorithm (Algorithm 1, Approximated STCK (ASTCK)), which in
addition to the two trajectories takes the maximal length of all trajectories L
as an input. The algorithm first evaluates all temporal kernels. Subsequently,
in each step 1

L spatial kernels are computed starting with the most relevant
based on the evaluation of the temporal kernels. The order of evaluation is
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Table 2 Evaluation Order of ASTCK with L = 12 and |P | = |Q| = 6

Timesteps P

Step 0 .2 .4 .6 .8 1

T
im

es
te

ps
Q

0 1 3 6 9 11 12
.2 4 1 3 6 9 11
.4 7 5 1 3 7 9
.6 10 8 5 2 4 7
.8 11 10 8 5 2 4
1 12 12 10 8 6 2

illustrated in Table 2. This algorithm leads to a complexity of

O(N2 · L2 · CT +N2 · L · I · CS),

where CT is the complexity of evaluating the temporal kernel, CS is the com-
plexity of evaluating the spatial kernel and I is the number of iterations of the
approximation algorithm. The parameter 1  I  L needs to be chosen by the
user. In practice, small values of I often lead to highly accurate results.

3.7 Online Application

STCKs are particularly well-suited for online analyses such as real-time com-
putations where the objects of interest are still in motion. When a new mea-
surement is added to a trajectory, Equation 3 can be efficiently updated, since
all previous spatial kernel evaluations remain constant in the sum. That is,
only the value of the temporal kernel needs to be computed which is however
usually inexpensive.

4 Empirical Evaluation

In this section we empirically compare our spatio-temporal convolution kernels
to baseline approaches using artificial and real data sets. We focus on clustering
tasks and k-medoids [32] as the underlying learning algorithm. The temporal
kernel is always a Gaussian kernel that we combine with three different spatial
kernels: an object-wise Gaussian RBF kernel as spatial kernel (STCK

1-1

), a
Gaussian RBF kernel on the group means (STCK

Mean

), and a probability
product kernel on the fitted Gaussian distributions (STCK

Dist

).
For the latter, the group and application specific parameter �2

MIN

which
is sometimes needed to restore non-singularities of the covariance matrix (see
Section 3.4), is set to the average distance between two objects of the group.
If the group only consists of one object, it is equal to the average distance
between two objects of the group, that is most similar. The width parameter
�T of the temporal Gaussian kernel is set to 0.5 to balance invariance to speed
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differences and sensitivity to direction. The width parameter �S of the spatial
Gaussian RBF kernel is set to 0.2.

We deploy three baselines. First, Junejo et al. [28] is straightforwardly
extended to the multi-object scenario, i.e. the use of Hausdorff distance on
the set of positions of the trajectories. Instead of the hierarchical clustering
employed in [13], kernelised k-medoids is used. The second baseline is inspired
by Grimson et al. [59]. We use a bag-of-positions as well as a bag-of-directions
representation for the trajectories of each group. To keep the setup simple,
we use a multinomial mixture model (MNMM ) and expectation maximisation
for clustering instead of a semantic topic model like dual-HDP [59]. Third, we
also compare our method to dynamic time warping with a product probability
kernel (DTW

dist

) serving as local distance measure. This method applies the
product probability kernel to the fitted Gaussian distributions. The number of
clusters is determined using the silhouette measure [52], Hartigan index [16]
as well as next-neighbour consistency for all methods.

In the next section, we measure the alignment between predicted and
ground-truth clusterings using artificially generated data. The alignment be-
tween two groupings is captured by the Rand Index [51]; however, as two
random clusterings may return a non-zero Rand Index by chance, we resort to
the Adjusted Rand Index [22], given by

AR(S, T ) =
R(S, T )� E[R(S, T )]

1� E[R(S, T )
,

where R denotes the Rand Index and S and T are clusterings to compare.

4.1 Artificial Data

Recall that our spatio-temporal convolution kernels possess basic properties11
that are not shared with the baseline methods. Most notably these are in-
variance to permutations of the objects and to differences in speed as well as
sensitivity to the spatial distribution of the objects and the direction of the
movement.

In this section these properties are experimentally confirmed using two toy
data sets consisting of artificially generated multi-object trajectories. The data
is generated to cover a broad range of trajectories present in real-world appli-
cations. The first setting covers linear movements and each trajectory consists
of five objects performing a linear movement as shown in Figure 1 (top). To
find the correct clusters, the respective kernels need to distinguish trajectories
based on the direction of the movement or based on the distribution of the
objects, while the objects’ centroid is the same in both trajectories.

The second setting deals with circular movements and each trajectory con-
sists of four objects moving in circles of different radii, see Figure 1 (bottom).
The construction of the second set enables us to evaluate the ability of the

11 The following properties refer to the STCK

Dist
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Fig. 1 Exemplary artificial multi-trajectories. For both settings ten multi-trajectories for
each cluster are shown. Colours indicate cluster membership. Moreover, two levels of noise
are depicted. For instance, linear 0.025 show linear movements with added noise in the
interval [�0.025, 0.025].

kernels to identify the correct clusters when these only differ in the direction
of the movement but a spatial separation between the clusters is not possible.
Compared to linear movements, the circular task is more difficult, as the di-
rections of only some objects differ between the clusters. The data generation
is described in detail in Appendix A.

To evaluate the sensitivity of the methods to permutations, the objects’
ordering inside each multi-object trajectory is permuted randomly in both
data sets. To assess the sensitivity to changes in speed, we flip a coin for each
trajectory in both test sets. With 50% probability only every second position
is retained in the trajectory. The resulting trajectory corresponds to a move-
ment with twice the speed of the original trajectory. Finally, we add uniformly
distributed noise in the range [�✏, ✏] for ✏ 2 {0.005, 0.025, 0.05, 0.1, 0.25} with
zero mean to every position in each multi-object trajectory in both test sets.

For both data sets, we generate 200 multi-trajectories (50 per cluster) for all
five levels of noise. It is important to assess the methods’ sensitivity to noise for
two reasons. First, trajectories are generally highly variable and exact matches
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2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Iteration

A
dj

us
te

d
R

an
d

In
de

x

Linear

ASTCK

Dist

STCK

Dist

Junejo

MNMM

DTW

Dist

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Iteration

Circular

Fig. 3 Comparison of ASTCK II to the baseline methods

are very rare. Second, due to frequent tracking errors, real-life trajectories are
also subject to a significant level of noise.

In this experiment, we focus on STCK
Dist

as it leads to more accurate
clusters than STCK

1-1

and STCK
Mean

throughout all ranges of noise. Figure
2 compares STCK

Dist

to the three baselines. Our method outperforms dynamic
time warping on both test sets and gives the most accurate clusterings. The
multinomial mixture model performs reasonably well on linear movements but
leads to inappropriate clusterings for circular ones. The poor results on the
second data set are due to the absence of ordering information in the bag-of-
directions representation when the objects move in a full circle. The Hausdorff
distance-based Junejo et al. leads to generally inaccurate clusterings. We credit
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Fig. 4 Runtime: number of trajectories (top), length of trajectories (bottom, left), and
number of objects (bottom, right).

this finding to its sensitivity to permutations as well as negligence of ordering
information.

We now evaluate the proposed approximation technique on both artificial
data sets. The algorithm performs up to eleven iterations as the longest trajec-
tory consists of eleven snapshots. Note that, at the end of the last iteration, the
exact Gram matrix is obtained. The percental approximation proves accurate;
the approximation quickly leads to the correct clustering after two iterations.
Figure 3 shows that ASTCK also achieves higher consistencies with the cor-
rect clustering compared to all baseline methods from the second iteration
onwards. Moreover, starting from the second iteration onwards it is always at
least as good as the exact method. The depicted results correspond to a noise
level of 0.005 but equivalent results hold for all other noise ratios.

The runtime of multi-object trajectory clustering is governed by the num-
ber of trajectories, the length of the trajectories and the number of objects.
Depending on the application, usually one or two dimensions are dominating.
It is thus important to evaluate the runtime for each of the three dimensions.
The theoretical runtime is O(N2 ·L2

) spatial as well as temporal kernel evalu-
ations, where N is the number of trajectories and L is the maximum length of
the trajectories. To confirm these findings experimentally, we generate random
trajectory sets in [0, 1]2 and vary the number of trajectories per set, the length
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of the trajectories and the number of objects per trajectory. The results are
depicted in Figure 4.

The figure on top shows the results for varying numbers of trajectories.
Except for multinomial mixture models that perform linearly in the number
of instances, all methods exhibit a quadratic complexity, which is simply due
to the fact that all pairwise similarities are computed, i.e. N(N + 1)/2. Vary-
ing the length of the trajectories in Figure 4 (bottom, left) shows that all
STCKs as well as DTW exhibit quadratic complexities which is in line with
the theoretical runtime. However, the percental approximation algorithm (two
iterations) significantly improves the runtime of STCKs and is comparable to
that of Junejo et al. and multinomial mixture models.

Finally, Figure 4 (bottom, right) varies the number of objects. The results
are virtually constant time complexities for all methods except STCK

1-1

and
MNMM, which exhibit linear complexities. The observation is in line with
our expectations as the Gaussian RBF kernel compares each object with its
counterpart. The deviations in the case of STCK

Dist

for a small number of
objects (less or equal two objects) is due to the additional time needed by the
shrinking schemes to restore non-singularity of the covariance matrices.

4.2 Real-world Data

We now evaluate spatio-temporal convolution kernels on real world data using
positional data streams of ten soccer games of the German Bundesliga. The
goal is to identify movement patterns by analysing the tracking data.

The tracking data is captured by the VIS.TRACK [23] tracking system
during five games of Bundesliga Team A and five games of Bundesliga Team
B from the 2011/12 Bundesliga season.12 VIS.TRACK is a video based track-
ing system consisting of several cameras in the soccer stadium. It determines
the positions of the players, ball and referees at 25 frames per second, which
amounts to roughly 135, 000 positions per object and match and a total of
31, 000, 000 positions. Additionally, a marker indicates the status of the ball
(in-play, stoppage) and the possession of the ball. The range of the x- (parallel
to sidelines) and y-coordinate (parallel to endlines) is [�1, 1], whereas values
with an absolute value greater than one occur if the ball is out of bounds. The
data stream is preprocessed so that positions of the second half are mirrored to
account for the changeover at half time and the frame numbers of the second
half are changed to succeed those of the first half. Additionally, the playing
direction is determined and normalised, so that the team of interest always
plays from left to right. Subsequently, we extract two types of sequences: game
initiations and scoring opportunities.

Game initiations (GI) begin with the goal keeper passing the ball and end
with the team loosing possession, a stoppage, the ball being in the attacking
third of the field or the start of the next game initiation as defined above.

12 The team names must not be disclosed.
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Sequences shorter than length 12 are excluded. Scoring opportunities (SO)
terminate when the ball is carried into a predefined zone of danger, usually
defined as the attacking quarter. Scoring opportunities begin at the time of
the last stoppage or win of the ball and last until the ball reaches the attacking
quarter of the field [0.5, 1]⇥ [�1, 1]. Again, sequences with a length below 12

are discarded.
For every sequence there are 23 possible trajectories (ball, 22 players, no

referees) to include into the analysis. Since the opposing team changes from
game to game, we will restrict the analysis to twelve objects, namely the
ball and the players of Team A, and Team B respectively. In the following
experiments we consider the ball as one group in the sense of Definition 2. We
further include the back four (game initiations) and the four most offensive
players (scoring opportunities) as a second group (in the sense of Definition
2) into the analysis. The clusterings in the remainder are thus based on the
trajectories of five objects (ball, four players).
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In general, there is no ground-truth for real-world clustering problems.
Figure 5 therefore depicts the adjusted Rand indices between the five methods
for pair-wise comparison. Generally, the adjusted Rand index is low in the
majority of the cases indicating low consistency between the methods. On the
other hand, we have a higher consistency between STCK

dist

and DTW
dist

demonstrating that our method is capable of dealing with speed and length
differences in a similar way as dynamic time warping. This is also partially
due to the use of the same kernel in both methods, once as spatial kernel and
once as local distance measure.

Figure 6 (left) shows average Silhouette measures of the four similarity-
based methods over the four datasets. Our STCK

dist

achieves the highest
score indicating higher cluster separation and/or compactness. The object-wise
STCK provides the poorest results on average, indicating that permutations
are relevant in this application and that the distribution-based representation
of the probability product kernel is more successful in capturing the relevant
player movements. Dynamic time warping performs second best on average
and in line with the previous results on the artificial datasets. Also note the
high consistency with our method in Figure 5. In terms of 5-nearest-neighbour
consistency, the two distribution-based methods, STCK

dist

and DTW
dist

, per-
form best, as depicted in Figure 6 (right). Cluster quality is generally higher
for game initiations compared to scoring opportunities which also results in in
more interpretable clusters for these settings as we will show in the remainder.

Figures 7 and 8 illustrate the resulting clusters for the five methods. The
medoids of the clusters for both teams are depicted along with the distribution
of the trajectory length for each cluster. For all settings cluster membership
correlates with sequence length. Generally, the cluster medoids of STCK

dist

and DTW
dist

often coincide and are easily interpretable, while the cluster
medoids of STCK

1-1

and the cluster representatives of the multinomial mixture
model are difficult to make sense of.
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In the Bundesliga 2011/2012 season, the strategy of Team A generally con-
sisted of transporting the ball with few, but rehearsed short game initiations
to the opposing half. For this purpose, many ball contacts were allowed and
different players were integrated. On the contrary, Team B showed a rather
chaotic game organisation with rather random actions and increasingly long,
straight balls. Figure 7 shows the outcomes of the k-medoids cluster for the
game initiations. Compared to all other methods, the the STCK

dist

capture
the characteristic traits of the teams well. Team A clearly acted with many
short moves (long trajectories in cluster 1) and integrated many players in the
playmaking (cluttered medians). By contrast, Team B acted with many long
moves (short trajectories in all clusters) and preferred linear actions.

Near the opposing goal, Team A aimed at quickly achieving a goal in the
opposing half during the 2011/2012 season. They operated with only a few
ball contacts and aimed to quickly transport the ball in the predefined zone
of danger. Again in contrast to this, Team B had many ball contacts and took
their time in waiting for a mistake of the opponent and only then played in the
zone of danger to achieve a goal. Figure 8 shows that all methods are capable
of retracing the different offensive strategies of both teams. Again, Team B
has more solution categories (more than 33%) than Team A, which is shown
by the versatile and multifaceted running patterns. However, solely the results
with STCK

dist

show that Team A rapidly tries to enter the zone of danger
with very few ball contacts (short sequences in all clusters compared to Team
B). To sum up, the results with STCK

dist

best reflect the game philosophies
of Team A and B from a sport-scientific perspectives and are the most easy
to interpret.

5 Conclusion

We presented spatio-temporal convolution kernels for multi-object scenarios.
Our kernels consist of a temporal and a spatial component that can be chosen
according to the characteristic traits of a problem at-hand. The computation
time is quadratic in terms of the number and lengths of trajectories. We pro-
posed an efficient percental approximation algorithm that significantly reduced
the complexity to superlinear runtime. Empirical results on artificial clustering
tasks showed that our spatio-temporal convolution kernels effectively identify
the target concepts. Results on large-scale real world data from soccer games
showed that our kernels lead to easily interpretable clusters that may be used
in further analysis by coaches.
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A Generation of Artificial Data

The four clusters of the linear movement data consist of trajectories each of which has of
five objects performing a linear movement as depicted in Figure 1. The clusters differ with
regard to the direction of the movement as follows:

– Cluster 1: Objects move downwards in parallel. In particular, the position (without
noise) of object o

i

for i = 1, ..., 5 at time t = 0, 0.1, ..., 1 is given by
✓
�0.2 +

i� 1

10

, 1� t

◆
.

– Cluster 2: Objects move upwards in parallel. In particular, the position of object o

i

for
i = 1, ..., 5 at time t = 0, 0.1, ..., 1 is given by

✓
�0.2 +

i� 1

10

, t

◆
.

– Cluster 3: Objects move downwards while drifting apart. In particular, the position of
object o

i

for i = 1, 2 at time t = 0, 0.1, ..., 1 is

(�0.6 + (i� 1) · 0.1 + 0.4 · t, 1� t),
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the position of object o3 is
(0, 1� t)

at time t = 0, 0.1, ..., 1 and the position of object o

i

for i = 4, 5 at time t = 0, 0.1, ..., 1 is

(0.5 + (i� 4) · 0.1� 0.4 · t, 1� t).

– Cluster 4: Objects move upwards while drifting apart.In particular, the position of object
o

i

for i = 1, 2 at time t = 0, 0.1, ..., 1 is

(�0.6 + (i� 1) · 0.1 + 0.4 · (1� t), t),

the position of object o3 is
(0, t)

at time t = 0, 0.1, ..., 1 and the position of object o

i

for i = 4, 5 at time t = 0, 0.1, ..., 1 is

(0.5 + (i� 4) · 0.1� 0.4 · (1� t), t).

The second artificial data set testing on circular movements contains trajectories of four
objects moving in circles of different radii. The clusters differ with regard to the orientation
of the movement as follows:

– Cluster 1: All objects move clockwise. In particular, the position of object o

i

for i =

1, ..., 4 at time t = 0, 0.1, ..., 1 is given by

(0.25i cos(2⇡t), 0.25i sin(2⇡t)).

– Cluster 2: All objects move counter-clockwise. In particular, the position of object o

i

for i = 1, ..., 4 at time t = 0, 0.1, ..., 1 is given by

(0.25i, cos(2⇡t),�0.25i sin(2⇡t)).

– Cluster 3: The inner two objects move clockwise, the outer two counter-clockwise. In
particular, the position of object o

i

for i = 1, ..., 4 at time t = 0, 0.1, ..., 1 is given by

(0.25i, cos(2⇡t), sgn(2� i)0.25i sin(2⇡t)).

– Cluster 4: The inner two objects move counter-clockwise, the outer two clockwise. In
particular, the position of object o

i

for i = 1, ..., 4 at time t = 0, 0.1, ..., 1 is given by

(0.25i, cos(2⇡t), sgn(i� 3)0.25i sin(2⇡t)).


