
Semi-supervised Structured Prediction Models

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium

(Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II

Humboldt-Universität zu Berlin

von
Herr Dipl.-Inf. Ulf Brefeld

geboren am 29.10.1973 in Gronau/Westf.

Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Dr. h.c. Christoph Markschies
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II:
Prof. Dr. Wolfgang Coy
Gutachter:

1. Prof. Dr. Tobias Scheffer
2. Prof. Dr. Hans-Dieter Burkhard
3. Prof. Dr. Thorsten Joachims

eingereicht am: 27. Juli 2007
Tag der mündlichen Prüfung: 15. Januar 2008

Abstract

Learning mappings between arbitrary structured input and output variables
is a fundamental problem in machine learning. It covers many natural learn-
ing tasks and challenges the standard model of learning a mapping from
independently drawn instances to a small set of labels. Potential applica-
tions include classification with a class taxonomy, named entity recognition,
and natural language parsing. In these structured domains, labeled training
instances are generally expensive to obtain while unlabeled inputs are readily
available and inexpensive.

This thesis deals with semi-supervised learning of discriminative models
for structured output variables. The analytical techniques and algorithms of
classical semi-supervised learning are lifted to the structured setting. Several
approaches based on different assumptions of the data are presented. Co-
learning, for instance, maximizes the agreement among multiple hypotheses
while transductive approaches rely on an implicit cluster assumption. Fur-
thermore, in the framework of this dissertation, a case study on email batch
detection in message streams is presented. The involved tasks exhibit an
inherent cluster structure and the presented solution exploits the streaming
nature of the data.

The different approaches are developed into semi-supervised structured
prediction models and efficient optimization strategies thereof are presented.
The novel algorithms generalize state-of-the-art approaches in structural learn-
ing such as structural support vector machines. Empirical results show
that the semi-supervised algorithms lead to significantly lower error rates
than their fully supervised counterparts in many application areas, includ-
ing multi-class classification, named entity recognition, and natural language
parsing.

Keywords:
Learning with structured data, Semi-supervised learning, Kernel machines,
Natural language processing

Zusammenfassung

Das Lernen aus strukturierten Eingabe- und Ausgabebeispielen ist die Grund-
lage für die automatisierte Verarbeitung natürlich auftretender Problemstell-
ungen und eine Herausforderung für das Maschinelle Lernen. Die Einordnung
von Objekten in eine Klassentaxonomie, die Eigennamenerkennung und das
Parsen natürlicher Sprache sind mögliche Anwendungen. Klassische Verfah-
ren scheitern an der komplexen Natur der Daten, da sie die multiplen Ab-
hängigkeiten und Strukturen nicht erfassen können. Zudem ist die Erhebung
von klassifizierten Beispielen in strukturierten Anwendungsgebieten aufwän-
dig und ressourcenintensiv, während unklassifizierte Beispiele günstig und
frei verfügbar sind.

Diese Arbeit thematisiert halbüberwachte, diskriminative Vorhersagemo-
delle für strukturierte Daten. Ausgehend von klassischen halbüberwachten
Verfahren werden die zugrundeliegenden analytischen Techniken und Algo-
rithmen auf das Lernen mit strukturierten Variablen übertragen. Die unter-
suchten Verfahren basieren auf unterschiedlichen Prinzipien und Annahmen,
wie zum Beispiel der Konsensmaximierung mehrerer Hypothesen im Lernen
aus mehreren Sichten, oder der räumlichen Struktur der Daten im transduk-
tiven Lernen. Desweiteren wird in einer Fallstudie zur Email-Batcherkennung
die räumliche Struktur der Daten ausgenutzt und eine Lösung präsentiert,
die der sequenziellen Natur der Daten gerecht wird.

Aus den theoretischen Überlegungen werden halbüberwachte, strukturier-
te Vorhersagemodelle und effiziente Optimierungsstrategien abgeleitet. Die
empirische Evaluierung umfasst Klassifikationsprobleme, Eigennamenerken-
nung und das Parsen natürlicher Sprache. Es zeigt sich, dass die halbüber-
wachten Methoden in vielen Anwendungen zu signifikant kleineren Fehlerra-
ten führen als vollständig überwachte Baselineverfahren.

Schlagwörter:
Lernen mit strukturierten Daten, Halbüberwachtes Lernen, Kernverfahren,
Natürliche Sprachverarbeitung

iv

Contents

1 Introduction 1
1.1 Structured Learning . 2
1.2 Semi-supervised Prediction Models for Structured Data 4
1.3 Contributions . 5
1.4 Outline . 6
1.5 Previously Published Work . 7

2 Problem Setting 9
2.1 Supervised Machine Learning 10
2.2 Semi-supervised Multi-view Learning 14

3 Learning in Joint Input-Output Spaces 19
3.1 Graphical Models . 19

3.1.1 Markov Random Fields 20
3.1.2 Conditional Random Fields 23
3.1.3 Generalized Linear Models in Multiple Views 26

3.2 Joint Feature Representation 29
3.2.1 Multi-class Classification 29
3.2.2 Label Sequence Learning 32
3.2.3 Natural Language Parsing 36
3.2.4 Supervised Clustering 39

4 Co-regularized Least Squares Regression 43
4.1 Related Work . 44
4.2 Efficient Co-Regression . 45

4.2.1 Non-Parametric Least Squares Regression 46
4.2.2 Semi-parametric Approximation 48
4.2.3 Relation to RLSR . 50

4.3 Distributed CoRLSR . 50
4.3.1 Block Coordinate Descent CoRLSR 51
4.3.2 Analysis of Distributed CoRLSR 52

v

4.4 Empirical Evaluation . 53
4.4.1 UCI Experiments . 53
4.4.2 Results for KDD Cup 2004 data set 55

4.5 Conclusions . 57

5 Co-perceptrons 59
5.1 Related Work . 60
5.2 Generalized Perceptrons . 61
5.3 Co-perceptrons . 62
5.4 Empirical Results . 65

5.4.1 Biocreative Data Set 65
5.4.2 Spanish News Wire . 67
5.4.3 Execution Time . 68
5.4.4 Feature splits . 68

5.5 Conclusions . 68

6 Co-support Vector Learning 71
6.1 Related Work . 71
6.2 SVMs for Structured Output Variables 72
6.3 Co-support Vector Machines 76
6.4 Optimization Strategy . 81
6.5 Empirical Results . 82

6.5.1 Multi-Class Classification 83
6.5.2 Named Entity Recognition 84
6.5.3 Natural Language Parsing 85
6.5.4 Execution Time . 87

6.6 Conclusions . 87

7 Transductive Support Vector Machines 89
7.1 Unconstraint Optimization . 90
7.2 Unconstrained Transductive SVMs 93
7.3 Unconstraint CoSVM Optimization 98
7.4 Experiments . 100

7.4.1 Execution Time . 100
7.4.2 Multi-class Classification 101
7.4.3 Artificial Sequential Data 102
7.4.4 Named Entity Recognition 104

7.5 Discussion . 104
7.6 Comparison with CoSVMs . 105
7.7 Conclusions . 106

vi

8 Supervised Clustering of Streaming Data 109
8.1 Related Work . 111
8.2 Learning to Cluster . 112
8.3 Clustering of Streaming Data 115
8.4 Experimental Results . 116

8.4.1 Email Batch Data . 117
8.4.2 Batch Identification . 118
8.4.3 Classification Using Batch Information 120
8.4.4 Clustering Runtime . 121

8.5 Conclusions . 121

9 Conclusions 123

A Univariate Learning Algorithms 143
A.1 Regularized Least Squares Regression 144
A.2 Perceptrons . 147
A.3 Support Vector Machines . 148

B Viterbi Decoding 153

C Cocke-Kasami-Younger Parsing 159

vii

viii

List of Figures

1.1 An exemplary parse tree. 2
1.2 The left figure shows the primary (top rows) and secondary

structure (bottom rows) of an exemplary protein. The red
color indicates α-helices and the green color stands for β-
sheets. Spaces within the latter indicate the absence of regular
secondary structure. The figure on the right shows the corre-
sponding tertiary structure. 3

2.1 Exemplary loss functions upper bounding the 0/1 loss with
t = f(x , y)−maxȳ 6=y f(x , ȳ). Log-loss is shifted to pass through
the (0, 1) coordinate. 12

2.2 Visualization of the consensus maximization principle for two-
view learning with hv(x) = argmaxȳ f

v(x , ȳ). Regions A and
D correspond to consensual predictions while areas C and D
indicate a disagreement that upper bounds the error rate of
either hypothesis. 15

3.1 A Markov random field over V = {Z1, Z2, Z3, Z4}. 20
3.2 A simple Markov random field for multi-class classification. . . 30
3.3 A Markov random field for label sequence learning. The Xi de-

note observations and the Yi their corresponding hidden class
variables. 32

3.4 Left: Parse tree for the sentence "Curiosity kills the cat".
Right: corresponding joint feature map Φ(x,y). 37

3.5 Example detailing correlation clustering. The similarity ma-
trix gives rise to the solution C = {{x1, x2}, {x3}, {x4, x5, x6}}.
Displayed are only edges with positive weights. 40

4.1 Pairwise rmse for non-parametric coRLSR, semi-parametric
coRLSR, and regular RLSR over 32 UCI data sets. 54

ix

4.2 Left: Results on the KDD Cup 98 data set with 100 labeled
instances and varying numbers of unlabeled ones. Right: Ex-
ecution times. 56

5.1 Perceptron learning curves for Biocreative. Displayed are HMM
(dotted), single-view perceptron (dashed), and co-perceptron
(solid). 66

5.2 Perceptron learning curves for Spanish news wire. Displayed
are HMM (dotted), single-view perceptron (dashed), and co-
perceptron (solid). 67

5.3 Left: Execution time for single-view perceptron (dashed) and
co-perceptron (solid). Right: Error for different splits of fea-
tures into views for Spanish news wire. 69

6.1 Error rates for the Cora data set for 200 (left) and 400 (right)
labeled examples and varying numbers of unlabeled examples.
Displayed are structured SVM (dashed), transductive SVM
(dotted), and coSVM (solid). 83

6.2 Token error for the Biocreative data set. Displayed are per-
ceptron (dashed-dotted), co-perceptron (dotted), structured
SVM (dashed) and coSVM (solid). 84

6.3 Token error for the Spanish news wire data set. Left: training
curves for perceptron (dashed-dotted), co-perceptron (dotted),
structured SVM (dashed) and coSVM (solid). Right: error
depending on the unlabeled sample size. 85

6.4 F1 scores for the Wall Street Journal (WSJ) corpus (top) and
the Negra corpus (bottom). Displayed are results for 4 la-
beled (left column) and 40 labeled (right column) examples
and varying numbers of unlabeled examples. 86

6.5 Execution time. 87

7.1 The differentiable Huber loss `∆=1,ε=0.5. 92
7.2 Loss u∆=1,τ=0.6(t) (solid) and first derivative (dashed). 94
7.3 Execution time. 102
7.4 Error rates for the Cora data set. 102
7.5 The galaxy data set (top left) and error rates for ∇SVM and

∇TSVM using RBF (top right) and graph kernels (bottom). . 103
7.6 Token error for the Spanish news wire data set with 10 labeled

instances. 104

x

7.7 Comparison of ∇TSVM and coSVM. Left: Results for the
Cora data set. Right: Results for the Spanish news wire data
set. 106

8.1 Average loss for window size T = 100. 118
8.2 Fraction of the loss induced by the learning algorithm (simi-

larity matrix) and the decoding. 118
8.3 Classification accuracy with batch information. 119
8.4 Computation time for adding one email depending on window

size. 120

B.1 Visualization of a trellis over the alphabet Σ = {σ1, . . . , σk}. . 157

C.1 Illustration of the notation used in Proposition C.1 161
C.2 Chart displaying the solution of the CKY algorithm. 163

xi

xii

List of Tables

4.1 Distributed CoRLSR Algorithm 51
4.2 Large-scale results on the KDD Cup 98 data set with 100 la-

beled instances and 10000, 50000, and 90000 unlabeled examples. 56

5.1 Dual Perceptron Algorithm 63
5.2 Dual Co-perceptron Algorithm 64
5.3 Feature Classes used in the Biocreative Experiments 66
5.4 Feature classes used in the Spanish news wire experiments . . 67

6.1 SVM Optimization Algorithm with Slack-rescaling 75
6.2 CoSVM Optimization Algorithm with Slack-rescaling 77

7.1 The ∇TSVM Algorithm . 97
7.2 The ∇coSVM Algorithm . 101

8.1 Two spam mails from the same batch 110
8.2 Sequential Clustering Algorithm 115

A.1 Dual Perceptron Algorithm 148

xiii

Chapter 1

Introduction

Inferring mappings between pairs of input and output variables is one of the
oldest problems in machine learning. Numerous instantiations of this general
task have been investigated, the most prominent of which are classification,
where the output variables are discrete, and univariate regression problems,
where the output variables are real numbers.

The classical approach to modeling the underlying target concept is based
on features that are extracted from the input variables. Features are sup-
posed to capture characteristics of real-world objects and need to be sufficient
for inferring the target concept. In a probabilistic framework, the feature
vector is also known as the sufficient statistics. However, the minimal set
of features is in general unknown for a given task. In the absence of prior
knowledge, as many features as possible are usually extracted and fed into a
learning algorithm that assesses their respective discriminatory power. State-
of-the-art approaches in machine learning, such as support vector machines,
utilize kernel functions to efficiently deal with these rich feature sets.

Supervised machine learning approaches aim to find hypotheses that gen-
eralize well on new and unseen input data. However, the problem classes that
can be addressed by traditional approaches are limited since the output vari-
ables need to be univariate. By contrast, natural learning tasks are rarely
univariate but rather complex, and thus render classical machine learning
approaches as an inappropriate choice.

In recent years, lifting the algorithmic and analytical techniques of stan-
dard supervised learning to the structured setting has been a focus of several
strands of research in multiple fields. Probabilistic models such as Markov
random fields and stochastic grammars are commonly used to capture se-
quential, spatial, recursive or relational structure of the output variables.
This thesis continues prior research in the field of structured prediction mod-
els. We contribute to the field of semi-supervised structural learning by

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: An exemplary parse tree.

studying settings in which unclassified inputs are given in addition to the
labeled sample.

1.1 Structured Learning
Naturally arising learning tasks are complex, highly correlated, and fre-
quently preserve multiple-way dependencies within and between recurrent
structures. Exemplary applications of learning with structured input and
output variables include named entity recognition and information extrac-
tion (sequential output), natural language parsing (tree-structured output,
see Figure 1.1), classification with a class taxonomy (here, the output is a
node in a tree), and collective classification where the output is a set of
interdependent class variables. Learning mappings between those arbitrary
structured and interdependent input and output variables challenges the clas-
sical model of learning a mapping from independently drawn instances to a
small set of labels.

As an introductory example, consider the prediction of protein secondary
structures. Proteins are sequences of amino acids and naturally assembled
to transcript genetic code to a functional level. Their secondary structure is
regarded as the key to their specific three-dimensional shape and thus highly
relevant for many fields of computational biology such as artificial protein
synthesis. Figure 1.2 shows an example.

For simplicity, we focus in this example only on the two most common
secondary structures, α-helices and β-sheets, and a placeholder, often called
coil, indicating the absence of the former two. For a protein build of 150
amino acids1 the cardinality of the set of all possible secondary structures is

1The largest known proteins are the titins with more than 26,000 amino acids. Yeast

1.1. STRUCTURED LEARNING 3

Figure 1.2: The left figure shows the primary (top rows) and secondary
structure (bottom rows) of an exemplary protein. The red color indicates
α-helices and the green color stands for β-sheets. Spaces within the latter
indicate the absence of regular secondary structure. The figure on the right
shows the corresponding tertiary structure.

precisely 3150 which is considerably larger than the number of atoms in our
galaxy, dark and exotic matter already included. Explicitly enumerating all
possible outputs is therefore prohibitive, let alone treating them as learnable
class labels.

However, only a small subset of all possible outputs is also likely. Struc-
tured prediction models translate this complex learning task into a ranking
problem where unlikely sequences are represented only if their incorporation
improves the model. Joint feature representations of the input and output
variables not only allow for capturing multiple-way dependencies, but have
also paved the way to leveraging discriminative learners such as support vec-
tor machines to structural problems (Taskar et al., 2004a; Tsochantaridis
et al., 2005). Inference in structured models rely on appropriate decoding
strategies for the task at hand. Decoding algorithms – such as the Viterbi
algorithm for sequential outputs or the CKY algorithm for recursive struc-
tures – frequently rely on dynamic programming to compute the top scoring
output for a given input.

For instance, the problem of labeling observation sequences has applica-
tions that range from language processing tasks such as named entity recog-
nition, part-of-speech tagging, or to biological tasks as already indicated in
Figure 1.2. Traditionally, sequence models such as the hidden Markov model
for sequential learning and variants thereof have been applied to the label

proteins are on average about 460 amino acids long. Focusing on proteins of a length of
150 is therefore somewhat conservative and serves for exemplary purposes only.

4 CHAPTER 1. INTRODUCTION

sequence learning problem. Learning procedures for generative models ad-
just the parameters such that the joint likelihood of training observations
and label sequences is maximized. By contrast, from the application point of
view, the true benefit of a label sequence predictor corresponds to its ability
to find the correct label sequence given an observation sequence.

Empirically, it turns out that discriminative structured prediction models
significantly outperform generatively trained models in all application areas.
Their success is not only based on discriminative training procedures but also
on incorporating arbitrary, possibly rich, feature mappings. Although feature
mappings can often be included in generative models, the joint probability
highly depends on an accurate estimation of the input distribution; finding
an appropriate parameterization is often difficult.

1.2 Semi-supervised Prediction Models for
Structured Data

In general, the success of any discriminative model depends on the size of the
training sample. Large sample sizes represent the underlying but unknown
distribution of examples well and thus allow us to infer models with good gen-
eralization properties. However, in structured learning tasks, labeled training
pairs are frequently scarce and hard to obtain.

Consider for instance natural language parsing where the task is to predict
the most probable parse tree that generates a given input sentence. Parse
trees are of fundamental value for further semantic processing of sentences
(see also Figure 1.1). To compile an appropriate training set, linguists need
to determine the parse trees for all input sentences. While this is absolutely
feasible for a few sentences, it becomes quickly tedious when facing thou-
sands of sentences. On the contrary, unlabeled input sentences are abundant
and readily available. For instance, sentences in almost any language are
electronically accessable, e.g., via the world wide web, at no costs whatso-
ever. Thus, there is a real need for semi-supervised techniques in structural
learning. Emerging questions that will be answered in this thesis include
how to integrate the inexpensive, unlabeled instances in the training pro-
cess of structured models and whether this inclusion is beneficial in terms of
predictive performance.

Successful semi-supervised approaches frequently rely on a cluster struc-
ture in the data. However, data that does not meet this criteria renders these
models inappropriate. In such cases co-learning approaches might be an al-
ternative. Co-learning relies on the existence of multiple views of training

1.3. CONTRIBUTIONS 5

instances and is based on the principle of maximizing the consensus among
independent hypotheses trained on these multiple views. We develop these
principles into semi-supervised structured prediction models and study their
performance empirically. Since the inclusion of unlabeled data is often ex-
pensive we devise efficient optimization strategies.

We also study a slightly different variant of semi-supervised learning in
a case study on email batch detection. Although, batch detection is an
unsupervised task, a ground-truth in form of a labeled training sample exists.
Effectively this leads to supervised learning of an unsupervised task and, in
essence, makes it an instance of semi-supervised learning. We present a
solution based on supervised clustering that exploits the inherent manifold
structure in the data and that accounts for the streaming nature of the data.

1.3 Contributions
The central question in this thesis is if unlabeled examples can be used effec-
tively in the training process of discriminative structured prediction models.
We therefore continue prior work done in semi-supervised as well as in dis-
criminative structural learning. We leverage semi-supervised techniques to
structured domains and obtain novel algorithms that generalize state-of-the-
art structured prediction models. The main contributions are as follows.

Co-regularized Least Squares
We introduce the co-learning setting with univariate function approxima-
tion. Since the exact solution is cubic in the number of unlabeled instances
we propose an approximate variant that scales only linearly with the number
of unlabeled instances. We devise appealing closed form solutions for both
optimization problems. Moreover, we study a decentralized scenario, where
participants keep their labeled data private and agree on a set of unlabeled
instances. For the distributed scenario, we devise decentralized optimization
strategies for the exact and the approximate regression, where only predic-
tions on unlabeled data need to be shared among the participants. The
distributed optimization is also proofed to converge to the global optimum.
Empirical results consistently show that the semi-supervised approaches lead
to smaller root mean squared errors than fully-supervised baseline methods.

Co-perceptrons and co-support Vector Machines
We lift the consensus maximization principle to the structured domain and
derive semi-supervised structured perceptrons for named entity recognition
problems. Taking a large margin approach in joint input output space en-

6 CHAPTER 1. INTRODUCTION

forces confident predictions and we devise co-structural support vector ma-
chines (coSVMs) that allow for the direct optimization of arbitrary loss func-
tions. We derive corresponding 1- and 2-norm primal and dual formulations
and propose an iterative optimization algorithm that leads to sparse models.
Empirically, we show that both semi-supervised approaches outperform their
fully-supervised counterpart significantly in multi-class classification, named
entity recognition, and natural language parsing tasks.

Transductive Support Vector Machines
We lift the classical inclusion of unlabeled examples by the principle of trans-
duction to the structured domain and devise transductive support vector
machines (TSVM) for joint input output spaces. The combinatorial opti-
mization criterion is intractable for arbitrary structured output. We remove
the discrete variables by transforming the optimization problem into an un-
constrained, and differentiable objective that can be solved efficiently by
gradient-based techniques. For the special case of no unlabeled examples,
the TSVM resolves to an unconstrained variant of structural support vector
machines. Moreover, we derive an unconstrained formulation of coSVMs.
Empirically, we observe a significant speed-up in execution time for the un-
constrained approaches. We further show that the TSVM can effectively
utilize unlabeled data when the implicit cluster assumption on the data is
appropriate.

Supervised Clustering of Data Streams
In this case study, we exploit the manifold structure of email batch detection
in data streams and translate the problem into a supervised clustering task.
We derive a quadratic program whose solution is equivalent to a poly-cut in a
fully connected graph and that can be solved in cubic time in the number of
email messages. Since cubic time is not tractable for real world applications,
we devise a linear time approximation by exploiting the streaming nature
of the data. Compared to state-of-the-art methods in supervised clustering,
our sequential approach achieves a substantial speed-up in execution time
without losing performance. Additional experiments document a reduction
of the spam/non-spam misclassification risk by about 40% by using features
extracted from the batch information.

1.4 Outline
The outline of this thesis is as follows. We begin with a formal definition
of the problem setting in Chapter 2. Chapter 3 then introduces necessary

1.5. PREVIOUSLY PUBLISHED WORK 7

concepts for semi-supervised learning in structured output spaces. The co-
learning setting is introduced with function approximation in Chapter 4 and
leveraged to structured output spaces in Chapter 5 with co-perceptrons. We
take a large margin approach and present the semi-supervised support vector
machine for structured output spaces in Chapter 6. The benefits of contin-
uous optimization are investigated in Chapter 7 where we also derive the
transductive support vector machine for structured output variables. We
study supervised clustering of data streams with email batch detection in
Chapter 8. Chapter 9 provides a conclusion and discusses future work.

1.5 Previously Published Work
Some parts of this thesis have already been published in articles and some
of them emerged from collaborations with colleagues. The following list
enumerates already published articles and a brief summary of the respective
contributions to the papers.

[1] U. Brefeld, C. Büscher and T. Scheffer. Multi-view hidden Markov per-
ceptrons. Proceedings of the German Workshop on Machine Learning,
2005.

[2] U. Brefeld, C. Büscher and T. Scheffer. Multi-view discriminative se-
quential learning, Proceedings of the European Conference on Machine
Learning, 2005. Best Paper Award.

[3] U. Brefeld and T. Scheffer. Semi-supervised learning for structured
output variables. Proceedings of the International Conference on Ma-
chine Learning, 2006.
Papers [1,2] originate from my ideas of lifting co-learning to the struc-
tural domain. I developed the theoretical underpinning and the formal-
ism, and planned the experiments that were conducted by Christoph
Büscher who also helped with the implementation. I extended the the-
ory of the sequential approach to arbitrary structured output variables
on my own in [3]. I also did all the implementing and carried out the
experiments.

[4] U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient co-regu-
larized least squares regression. Proceedings of the International Con-
ference on Machine Learning, 2006.
Thomas Gärtner had already started work on co-regression when I
joined in. Together, we revised his initial approach and developed the

8 CHAPTER 1. INTRODUCTION

final formalism and the math together. I implemented the algorithms
and conducted the experiments.

[5] P. Haider, U. Brefeld, and T. Scheffer. Discriminative identification of
duplicates. Proceedings of the ECML Workshop on Mining and Learn-
ing in Graphs, 2006.

[6] P. Haider, U. Brefeld, and T. Scheffer. Supervised clustering of stream-
ing data for email batch detection. Proceedings of the International
Conference on Machine Learning, 2007. Best Student Paper Award.
Together with Peter Haider, I realized my ideas on structural batch
detection in the papers [5,6]. The theoretical part of either paper was
jointly developed by Peter and myself. He implemented the algorithms
and carried out the experiments.

[7] A. Zien, U. Brefeld, and T. Scheffer. Transductive support vector ma-
chines for structured variables. Proceedings of the International Con-
ference on Machine Learning, 2007.
Alex Zien came up with the idea of unconstrained transductive learn-
ing for structured ouptut variables. We developed the theory, derived
the optimization criterions, implemented the learning algorithms, and
conducted the experiments for paper [7] together in equal shares.

Chapter 2

Problem Setting

This thesis deals with semi-supervised learning of structured output vari-
ables. Therefore, to establish a sound foundation, we need to introduce gen-
eralized concepts of supervised and semi-supervised learning when dealing
with structured output spaces.

When the input x and the desired output y are structures, it is not gener-
ally feasible to model each possible value of y as an individual class. In addi-
tion, not only may there be dependencies between the components of x (e.g.,
words of a sentence), but also between the components of y (for instance, the
class labels of hyperlinked web pages), and between the components of x and
y (the semantic annotation of a word may depend on that word, as well as its
neighbors). In order to capture these dependencies it is helpful to represent
input and output pairs in a joint feature representation. Such joint features
of input and output cannot appropriately be modeled when the hypothesis
is a function from input to output space; i.e., f : X → Y . The learning task
is therefore rephrased as finding a function f : X × Y → R such that

ŷ = argmax
y∈Y

f(x , y)

is the desired output for any input x . Thus, f can be a linear discriminator
in a joint space Φ(x , y) of input and output variables and may depend on
arbitrarily defined joint features. Max-margin Markov models (Taskar et al.,
2004a), support vector machines for structured output spaces (Tsochantaridis
et al., 2005) and other discriminative learners exploit this principle.

We begin with an introduction to supervised machine learning in Section
2.1. The notation of the formal learning task is introduced with respect to
later chapters to provide a consistent notation throughout the thesis. The
problem setting is then extended to semi-supervised learning in Section 2.2
where we discuss the inclusion of unlabeled examples in the training process.

9

10 CHAPTER 2. PROBLEM SETTING

2.1 Supervised Machine Learning
In this section we will embed classical supervised machine learning into the
generalized framework of structured prediction models. This unified view
allows us to address structured predictions as well as univariate classification,
regression, and ranking tasks at the same time.

In supervised machine learning we are seeking a deterministic mapping
from (structured) objects contained in the set X to an element of the (struc-
tured) output or target set Y . The relation between these two sets is assumed
by a (in general unknown) joint probability distribution P over domain X×Y .
Of course, having the joint probability one could use the ratio

p(y |x) =
p(x , y)

p(x)
(2.1)

for estimating the probability of output y ∈ Y for any given input x ∈ X .
The denominator p(x) is determined by marginalizing the joint probability
over all possible target values y ∈ Y ; that is p(x) =

∫
Y p(x , y)dy .1 Frequently,

the structure of input x also determines the structure of potential outputs y
given that input. For instance, in part-of-speech tagging, an input sentence
of n tokens gives rise to an output sequence of part-of-speech tags of the same
length. Thus, once an input is fixed, Y(x) denotes the restricted output space
induced by input x . For every x ∈ X it holds Y(x) ∈ Y and Y =

⋃
x∈X Y(x).

Having the conditional model 2.1 and returning the most likely output y?

for a given input x suffices for identifying the relation of interest,

y? = argmax
y∈Y(x)

p(y |x). (2.2)

Equation 2.2 is also known as the maximum a posteriori (MAP) hypothesis.
However, in general, the joint probability is unknown and we are given instead
a finite sample of n input-output pairs (x1, y1), . . . , (xn, yn) ∈ X × Y , drawn
independently and identically distributed (iid) according to P .

A suitable model for the unknown relation p(y |x) has to account for mul-
tiple interactions between inputs and outputs; thus, input examples x ∈ X
and output examples y ∈ Y are represented jointly by a (possibly rich) fea-
ture map Φ(x , y) that allows us to capture these multiple-way dependencies
between them. The choice of the joint feature mapping is highly problem
dependent and for now we consider it as fixed and appropriately chosen.

The task of finding an appropriate model for p(y |x) can be rephrased in
terms of the joint feature representation as choosing a linear discriminant

1The integral reduces to a sum over all y ∈ Y if Y is a finite set.

2.1. SUPERVISED MACHINE LEARNING 11

function f(x , y) = 〈w,Φ(x , y)〉 out of a space of candidate functions, the
so-called hypothesis space,

F ⊆ {(x , y) 7→ 〈w,Φ(x , y)〉 : w ∈ W}, (2.3)

defined on domain W , such that

yi = argmax
ȳ∈Y

f(xi, ȳ) (2.4)

holds for all training pairs 1 ≤ i ≤ n. Equation 2.4 says that given an input
xi from the training sample, the highest scoring element of the output space
is precisely the corresponding output yi. We thus call f a decision or ranking
function that returns a real value for every argument pair (xi, yi) indicating
how likely ȳ is the correct output for input xi.

At this point, focusing on generalized linear models may be seen as too
restrictive to explain complex relations between inputs and outputs. How-
ever, we will see in later chapters that linear models are a natural choice
when taking a large margin approach in joint input-output space. Notice
that, besides ranking, Equation 2.4 generalizes classical supervised learning
tasks. For instance, setting Y = R, Equation 2.4 leads to a regression setting
where the most probable function value at input x is returned; similarly,
Y = {c1, . . . , ck} gives rise to classification scenarios, where every instance is
assigned one out of k class labels.

We measure the quality of a hypothesis f by a loss function ` : Y ×X ×
F → R. A simple choice is the 0/1 loss

`0/1(y , x , f) = [[y 6= argmaxȳ∈Y(x) f(x , ȳ)]]

that equals 1 if the prediction differs from the true output and is 0 otherwise.
From a computational perspective, minimizing the 0/1 loss directly is NP-
complete, whereas upper bounds on the 0/1 loss are applied instead. A
common choice for classification and ranking tasks is the hinge-loss ` that is
given by

`(y , x , f) = max{0, 1 + max
ȳ∈Y(x)

ȳ 6=y

f(x , ȳ)− f(x , y)}.

The hinge loss equals 0 if the true output scores are higher than the top-
ranked erroneous prediction plus an additive constant realizing a confidence
threshold. Figure 2.1 displays hinge loss and other loss functions upper
bounding the 0/1 loss.

Joachims (2005) indicated that the 0/1 loss (or an upper bound) might
not be the best choice for a given task since it is independent of the number

12 CHAPTER 2. PROBLEM SETTING

Figure 2.1: Exemplary loss functions upper bounding the 0/1 loss with
t = f(x , y) − maxȳ 6=y f(x , ȳ). Log-loss is shifted to pass through the (0, 1)
coordinate.

of mistaken subparts in the output structure. Intuitively, the loss should be
small for good guesses, for example predictions that are close to the true tar-
get yi and take large values when the prediction is bogus. We thus introduce
an additional task dependent, nonnegative loss function ∆ : Y × Y → R

+
0

that details the distance between the true output y and the prediction ŷ =
argmaxȳ f(xi, ȳ), for instance,

∆(yi, ŷ) =

{
0 : yi = argmaxȳ∈Y f(xi, ȳ)

> 0 : otherwise.

We refer to ∆ as structured or task dependent loss. When ∆ equals the 0/1
loss we may utilize hinge loss ` directly as an upper bound, see Figure 2.1.
For arbitrary choices of ∆, different ways of augmenting the loss functions
have been discussed in the literature. The most prominent possibilities are
rescaling the confidence threshold of the hinge-loss, (Taskar et al., 2004a)

`m∆(y , x , f) = max{0, max
ȳ∈Y(x)

ȳ 6=y

{∆(y , ȳ) + f(x , ȳ)− f(x , y)}}, (2.5)

and rescaling the actual value of the hinge loss (Tsochantaridis et al., 2005),

`s∆(y , x , f) = max{0, max
ȳ∈Y(x)

ȳ 6=y

{∆(y , ȳ)(1 + f(x , ȳ)− f(x , y))}}. (2.6)

We will address appropriate choices of structured loss functions ∆ for ex-
emplary tasks in later chapters. Notice, that for the augmented losses in

2.1. SUPERVISED MACHINE LEARNING 13

Equations 2.5 and 2.6 the relation

`
m/s
∆ (y , x , f) ≥ ∆(y , argmaxȳ 6=y f(x , ȳ)) (2.7)

holds for all x , y , and independently of the choice of ∆. That is, `m∆ and `s∆
realize upper bounds on the structural loss.

Given an augmented loss function `∆, we can restate the optimization
problem as finding a function f that realizes the smallest generalization error
(the expected risk) given by

R(f) =

∫
X×Y

`∆(y , x , f)p(x , y) dx dy . (2.8)

Since the joint probability p(x , y) is unknown, Equation 2.8 is approximated
by its empirical estimate on the iid training sample,

R̂(f) =
1

n

n∑
i=1

`∆(yi, xi, f). (2.9)

Equation 2.9 is called the empirical risk that converges asymptotically to the
expected risk in the limit n→∞. Similar to directly minimizing the 0/1 loss,
minimizing the structured loss directly in Equation 2.9 is also NP-complete
for arbitrary ∆.

Initially, minimizing the Estimate 2.9 instead of the true but inaccessible
risk may seem to make sense, but this approach suffers from two essential
drawbacks. Firstly, the convergence rate of R̂(f) approaching R(f) is slow
and large sample sizes are necessary to ensure a small generalization error2.
Secondly, there is no unique minimum and therefore no distinguished solution
since in general there might be several f ∈ F realizing R̂(f) = 0.

A remedy to ill-posed optimization problems and poor generalization per-
formances is provided by regularization theory. Instead of minimizing Equa-
tion 2.9, one minimizes the regularized empirical risk, given by

Q(f) =
1

n

n∑
i=1

`∆(yi, xi, f) + η‖f‖2, (2.10)

where the additive regularization is known as Tikhonov regularization (Tik-
honov, 1963). The parameter η > 0 controls the amount of regularization;
that is for η = 0 we minimize the empirical risk as before, and for η = ∞
we are seeking smooth functions, irrespectively of the data. Applying Tik-
honov regularization is highly related to incorporating priors in a Bayesian
formalism (Section A.1).

2Actually, with high probability, one can give upper bounds on the expected risk in
terms of the empirical risk and a capacity term, (e.g., see Vapnik 1998; Herbrich 2002).

14 CHAPTER 2. PROBLEM SETTING

2.2 Semi-supervised Multi-view Learning
The previous section introduced the supervised learning setting as building
models from data that realize high predictive performance on unseen in-
stances. The amount of available data is crucial for achieving this goal since
the reliability of estimates on the expected error highly depends on the sam-
ple size. In the semi-supervised setting, we are not only given n labeled pairs
(x1, y1), . . . , (xn, yn) but also m unlabeled instances xn+1, . . . , xn+m, where ev-
ery xi ∈ X and yi ∈ Y(xi). The aim of semi-supervised learning is to utilize
these unlabeled data effectively, such that the trained semi-supervised model
has a lower generalization error than its fully-supervised counterpart.

Semi-supervised learning (Cooper and Freeman, 1970; Seeger, 2001; Zhu,
2005; Chapelle et al., 2006b) has a long tradition in statistics and machine
learning. The expectation maximization (EM) algorithm (Dempster et al.,
1977) is probably the most prominent approach to learning from labeled
and unlabeled data (McCallum and Nigam, 1998; Nigam and Ghani, 2000).
The EM algorithm is wrapped around learning algorithms that fit model
parameters to probabilistically labeled data.

Discriminative approaches such as the support vector machine (Boser
et al., 1992; Vapnik, 1998) cannot be trained directly from probabilistically
labeled data. Several approaches to discriminative semi-supervised learning
have been proposed. The transductive SVM (TSVM) (Vapnik, 1998; Bennet
and Demiriz, 1998; Joachims, 1999a) still utilizes unlabeled data by EM-like
self-labeling and a modification of the optimization criterion. The TSVM
is motivated by the idea that the test instances which are to be classified
are often available (without class labels) during training. This argues that
semi-supervised learning algorithms are applicable in many learning scenar-
ios. Besides transductive SVMs, manifold assumptions of the data (Belkin
et al., 2006) or the co-learning strategy (Blum and Mitchell, 1998; Brefeld
and Scheffer, 2004) allow the inclusion of unlabeled data in support vector
learning.

The underlying assumption in learning manifolds is the existence of high
density regions (clusters or manifolds) associated with output values. These
approaches are implicitly or explicitly biased to find decision boundaries lying
in sparse, low density regions such that two instances are likely to have
similar actual output values if they lie within the same cluster or manifold.
The postulated, inherent manifold structure of the data is often captured by
a directed or undirected graph spanned by the training instances where two
examples xi and xj are connected with an edge if they are close to each other.
However, there are many learning tasks, such as function approximation, in
which a manifold assumption is an inappropriate choice. Nevertheless, this

2.2. SEMI-SUPERVISED MULTI-VIEW LEARNING 15

Figure 2.2: Visualization of the consensus maximization principle for two-
view learning with hv(x) = argmaxȳ fv(x , ȳ). Regions A and D correspond
to consensual predictions while areas C and D indicate a disagreement that
upper bounds the error rate of either hypothesis.

is a useful approach that we will explore in greater detail in Chapter 8.
In this thesis, we follow a more general approach of including unlabeled

data by taking advantage of the consensus of several hypotheses. The rela-
tionship between the consensus of multiple hypotheses and their error rate
was first observed by de Sa (1994). She devised a semi-supervised learning
method by cascading multi-view vector quantization and linear classification.
A multi-view approach to word sense disambiguation combines a classifier
that refers to the local context of a word with a second classifier that utilizes
the document in which words co-occur (Yarowsky, 1995).

Co-classification (Blum and Mitchell, 1998; Nigam and Ghani, 2000) and
co-clustering (Bickel and Scheffer, 2004) are two frameworks for classifica-
tion and clustering in domains where independent views — i.e., distinct sets
of attributes — of labeled and unlabeled data exist. Blum and Mitchell
(1998) introduce the co-training algorithm for semi-supervised learning that
greedily augments the training sets of two classifiers. Alternatively, a variant
of the AdaBoost algorithm has been suggested (Collins and Singer, 1999)
that boosts the agreement between two views on unlabeled data. CoEM
approaches to semi-supervised learning probabilistically label all unlabeled
examples and iteratively exchange those labels between two views (Nigam
and Ghani, 2000; Brefeld and Scheffer, 2004). Recently, Meng et al. (2004)

16 CHAPTER 2. PROBLEM SETTING

and Farquhar et al. (2006) proposed a fully supervised variant of a co-support
vector machine that minimizes the training error as well as the disagreement
between two views. Szedmák and Shawe-Taylor (2006) extend this approach
to semi-supervised learning and provide generalization bounds.

The intuition behind the co-learning setting is having V independent
estimators, judging upon the unknown output of an input example. Dasgupta
et al. (2001) studied the relation between the consensus of two independent
hypotheses and their error rate. One of their results that holds if the error
rate of either hypothesis is smaller than 1/2 is the inequality

P

(
argmax

ȳ∈Y(x)

f 1(x , ȳ) 6= argmax
ȳ ′∈Y(x)

f 2(x , ȳ ′)

)
≥ max

v=1,2
P

(
y 6= argmax

ȳ∈Y(x)

f v(x , ȳ))

)
.

That is, the probability of a disagreement between two independent hypothe-
ses upper bounds the error rate of either hypothesis as indicated in Figure
2.2. Their findings provide a mechanism to minimize the error solely on the
basis of unlabeled examples. This insight leads us directly to the consensus
maximization principle that is defined as follows.

Definition 2.1 (Consensus maximization principle) The strategy of
semi-supervised multi-view learning can be stated as: minimize the error for
labeled examples and maximize the agreement for unlabeled examples.

Incorporating unlabeled instances according to the consensus maximization
principle into Equation 2.10 leads directly to the multi-view objective

QMV (f) =
1

nV

V∑
v=1

n∑
i=1

`∆
(

yi, xi, f
v
)

+
V∑

v=1

ηv‖f v‖2

+
λ

mV 2

V∑
u,v=1

n+m∑
j=n+1

`∆

(
argmaxȳ f

u(xj, ȳ), xj, f
v
)
,

that has to be minimized with respect to f = (f 1, . . . , fV). The last term
measures the pairwise disagreement between views u and v in terms of the
loss `∆. The scalar λ acts as a trade-off parameter and determines the overall
influence of the disagreement.

However, it should be noted that semi-supervised learning does not nec-
essarily lead to better results than supervised learning. When the target
distribution is not in the assumed model class, then the best approximation
of the unlabeled data can sometimes lie further away from the optimal clas-
sifier than the best approximation of (even few) labeled data (Cozman et al.,
2003). While additional unlabeled data have often been observed to improve

2.2. SEMI-SUPERVISED MULTI-VIEW LEARNING 17

classifier performance (Baluja, 1998; Collins and Singer, 1999; Nigam et al.,
2000; Mladenic, 2002), there are some cases in which they have been found to
deteriorate performance – often, but not always, when the labeled sample is
large (Shahshahani and Landgrebe, 1994; Baluja, 1998; Nigam et al., 2000;
Kockelkorn et al., 2003). Bickel and Scheffer (2007) study cases in which
labeled and unlabeled examples are drawn from distinct distributions.

In the co-learning setting that we discuss here, we model V distinct joint
input-output mappings of a pair (x , y) which we denote by Φ1(x , y),Φ2(x , y),
. . . ,ΦV (x , y). The mappings Φv, 1 ≤ v ≤ V , are called views, wherefore
co-learning is also called multi-view learning. A simple example for 2-view
learning is hypertext classification, where we have two natural views on a
page, either by the contained text or by the anchor text of its inbound links.
In general, there is no straightforward way to split the available attributes
into two views. Strategies range from combining hypotheses based on distinct
distance metrics (Zhou and Goldman, 2004) to creating additional features
for a second view based on distances to pre-computed clusterings (Raskutti
et al., 2002). Goldman and Zhou (2000) assume a partitioning of the input
space into equivalence classes by the learning algorithms. Surprisingly, in
many domains splitting attributes at random into different views and apply-
ing a co-classification approach suffices for outperforming single-view learning
algorithms (Nigam and Ghani, 2000; Brefeld and Scheffer, 2004). Notice that
the representation in each view has to be sufficient for the respective decoding
strategy.

In the remainder of this thesis we will frequently consider 2-view learning
that is we set V = 2, for notational convenience. Note, that all presented
approaches are easily generalized to the V -view case with V ≥ 1. In the
2-view learning scenario we will denote the feature mappings by Φv(x , y),
v = 1, 2 and write Φv̄ to indicate the peer view of Φv.

18 CHAPTER 2. PROBLEM SETTING

Chapter 3

Learning in Joint Input-Output
Spaces

In this chapter we detail the prediction of complex and interdepending ob-
jects with exemplary learning tasks. We make use of a standard approach in
machine learning and utilize graphs to represent dependency structures in un-
derlying multivariate probability models. We exploit input-output structures
that can be represented as joint probability models in the exponential family,
leading to concise descriptions of the induced joint input-output space.

This chapter is structured as follows. We introduce the exponential fam-
ily in Section 3.1.1 and identify the involved sufficient statistics as the joint
input-output feature mapping that accounts for capturing multiple way de-
pendencies between inputs and outputs. Conditioning the model on the
inputs leads directly to conditional random fields that are discussed in Sec-
tion 3.1.2. Instead of utilizing the derived probability model directly, we
take a large margin approach in input-output space and resolve sparse linear
models in input-output space in Section 3.1.3, where we also address their
co-representation. Exemplary joint feature representations are discussed in
greater detail in Section 3.2 for multi-class classification (Section 3.2.1), la-
bel sequence learning (Section 3.2.2), and natural language parsing (Section
3.2.3). Each application admits a representation in the exponential family.
We also address decoding strategies and appropriate loss functions.

3.1 Graphical Models
In this section we investigate the theoretical background for predicting com-
plex and interdepending variables. We make use of graphical models in the
inference machinery that allow us to lift predictions from binary or real values

19

20 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

Figure 3.1: A Markov random field over V = {Z1, Z2, Z3, Z4}.

to complex structures. The dependency structures in multivariate probabil-
ity models are represented by an underlying graph. Graphs used for the
representation may be directed, in which case the model is often referred to
as a Bayesian network or belief network. In case of an undirected graph,
the model is called a Markov random field. Graphical models have become a
broad field; therefore providing a complete survey is beyond the scope of this
thesis. We will thus focus on a few relevant models and techniques and di-
rect the interested reader to one of the following excellent books on graphical
models (Lauritzen, 1996; Cowell et al., 1999; Jordan and Sejnowski, 2001).

The remainder of this section is organized as follows. Section 3.1.1 intro-
duces Markov random fields that provide the theoretical background for the
well known conditional random fields in Section 3.1.2. Section 3.1.3 presents
a large margin approach that will be used in the remainder of this thesis.

3.1.1 Markov Random Fields
In Bayesian networks, the underlying directed graph is implicitly given by
the causal structure of the problem at hand. Every directed graph can be
transformed into an undirected one by connecting parents having the same
children. This step is called moralization is and a common preprocessing
when dealing with directed graphs. We focus on undirected graphs that are
frequently used in areas without such a causal structure such as spatial statis-
tics or natural language processing where dependencies may be bi-directional
or even unknown. However, the use of undirected graphs is not restricted to
these areas and hybrid models with both directed and undirected edges have
also been investigated (Lauritzen, 1996).

We already indicated that the dependency structure of a given problem
is encoded by an underlying graph in a one-to-one relation (Pearl, 1988; Lau-

3.1. GRAPHICAL MODELS 21

ritzen, 1996). To be more precise, two random variables are connected with
an edge if they directly depend on each other. The following definition of con-
ditional independence (Dawid, 1979) quantifies this concept more formally.

Definition 3.1 (Conditional independence) Given (sets of) random
variables A,B,C: We say A is conditionally independent of B given C, and
write A ⊥ B|C, if for any valid assignment B = b and C = c the relation
P (A|B = b, C = c) = P (A|C = c) holds.

As an example, consider the set of discrete random variables V = {Z1, . . . , Z4}
with Zi taking values in a finite set Zi. Let G = (V,E) be an undirected graph
over random variables Zi ∈ V where eij ∈ E draws an edge between Zi and
Zj as indicated in Figure 3.1. Implying that G encodes pairwise dependen-
cies between variables V , Definition 3.1 says, knowing the actual value of Z2,
random variable Z4 is independent of Z1 and Z3. We write Z4 ⊥ {Z1, Z3}|Z2

and note that this independence gives rise to the following decomposition of
the joint probability as

p(V) = p(Z1, Z3|Z2)p(Z4|Z2)p(Z2). (3.1)

If such a one-to-one relation between the joint probability and the underlying
graph holds, the joint probability distribution is said to obey the pairwise
Markov property with respect to G (Pearl, 1988; Lauritzen, 1996). That is,
two random variables are unconnected if they are conditionally independent
given all other variables,

∀i, j, eij /∈ E : Zi ⊥ Zj|V \{Zi, Zj}. (3.2)

More precisely, in these cases we call V a Markov random field (Kemeny
et al., 1976) that is defined as follows.

Definition 3.2 (Markov random field) A collection V of random vari-
ables over a finite domain with joint probability P and fulfilling Equation 3.2
with respect to an undirected graph G is said to be a Markov random field.

Equation 3.1 already bears one of the key benefits of using Markov ran-
dom fields. Integrating the prior p(Z2) into the previous factors shows that
the joint probability can equivalently be expressed in terms of the maximal
cliques C = {{2, 4}, {1, 2, 3}} of the underlying graph,

p(V) = p(Z2, Z4) p(Z1, Z2, Z3)/p(Z2),

22 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

where the division by p(Z2) is necessary since Z2 is contained in both cliques.
The fundamental value of this factorization property will soon become clear
when we introduce joint feature mappings for exemplary learning tasks by
defining features across these maximal cliques. Before that, we need to char-
acterize the joint probability p(V) more precisely by applying a result by
Hammersley and Clifford (1971) who link the factorization to V having a
Gibbs distribution.
Theorem 3.1 (Hammersley and Clifford) V = (Z1, . . . , Zn) is a Mar-
kov random field with respect to an undirected graph G = (V,E) if and only
if V has a Gibbs distribution (Equation 3.3) with respect to G; that is, the
joint probability density function p over V can be written as

p(z) = Z−1 exp

{∑
C∈C

φC(zC)

}
, (3.3)

where zC denotes the restriction of a valid assignment z = (z1, . . . , zn) on
the maximal cliques C ∈ C of G and φC denote real-valued functions defined
on these maximal cliques. The denominator Z =

∑
z exp{

∑
C∈C φC(zC)} is

often called the partition function.
Theorem 3.1 says, whenever a set of random variables is also a Markov
random field, their joint probability can be written as a Gibbs distribu-
tion over the maximal cliques of the dependency graph. The partition func-
tion is necessary since the numerator in Equation 3.3 will generally not sum
to one for all valid assignments since the only assumption on the poten-
tials is φC being real valued functions. For the latter reason, we can set
φC(zC) = 〈λC , φ

′
C(zC)〉 without restricting the generality; the reason for this

inner product decomposition is the interpretation of φ′C as the feature vector
of the clique C and λC as corresponding clique weights. It will be convenient
to define the sum over all maximal cliques in G by

Φ(z) =
∑
C∈C

φ′C(zC). (3.4)

Analogously, summing the λC over the cliques, λ =
∑

C λC , allows us to
rewrite Equation 3.3 as a member in the exponential family (Efron, 1978) in
its canonical form

p(z|λ) = exp{〈λ,Φ(z)〉 − g(λ)}, λ ∈ Λ. (3.5)
We call Φ(z) the sufficient statistics and λ the natural parameter. The
domain Λ consists of all λ having the log-partition function

g(λ) = log
∑
z

exp{〈λ,Φ(z)〉} <∞.

3.1. GRAPHICAL MODELS 23

The log-partition function is also the moment generating function of the
exponential family, that is

∂

∂λ
g(λ) = Ep(z|λ)[Φ(z)],

∂2

∂λ∂λ
g(λ) = Covp(z|λ)[Φ(z)], . . . (3.6)

Notice that Equation 3.5 is independent of the number or size of cliques in
G due to the summation over the maximal cliques in Equation 3.4. Exact
inference in graphs having a small tree-width can be performed with message
passing algorithms, such as the sum-product algorithm (Cowell et al., 1999;
Bishop, 2006); the underlying graph is transformed into a junction tree on
which messages detailing clique potentials are propagated. However, calcu-
lating posterior marginals in arbitrary Markov random fields is known to be
NP-hard, that is, exact inference may be intractable when the graph is large
and highly connected and one has to resort to approximations such as loopy
belief propagation (Pearl, 1988; Murphy et al., 1999).

3.1.2 Conditional Random Fields

The model in Equation 3.5 describes the joint probability of interdependent
random variables V , where the dependency structure is determined by an
underlying graph G = (V,E). To derive structured prediction models we
decompose random variables contained in V into two disjoint sets X and Y .
The variables in X encode a structured input x and the remaining variables
Y encode the corresponding output structure y . The underlying graph is
required to represent an appropriate dependency structure between elements
of X ∪ Y for the problem at hand.

Following Equation 3.5, the joint density of an input-output pair (x , y)
can be written as a member in the exponential family,

p(x , y |λ) = exp
{
〈λ,Φ(x , y)〉 − g(λ)

}
. (3.7)

Recall that the joint feature mapping Φ(x , y) of input x and output y is
precisely the sufficient statistics in terms of exponential families. A discrimi-
native model predicting the most likely output y for a given x can be derived
by conditioning Equation 3.7 on the observation. We obtain a conditional
model in the exponential family, also known as a conditional random field
(CRF) (Lafferty et al., 2001, 2004),

p(y |x ;λ) = exp
{
〈λ,Φ(x , y)〉 − g(λ|x)

}
,

24 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

where the log-partition function marginalizes over all possible output values
for the given input,

g(λ|x) = log
∑

y∈Y(x)

exp{〈λ,Φ(x , y)〉}.

An alternative view on CRFs is provided by the principle of maximum en-
tropy that is frequently used in estimating probability distributions from
a training sample containing n input-output pairs (x1, y1), . . . , (xn, yn). The
maximum entropy solution is a distribution that is as uniform as possible
and at the same time ensures equality between the expectations with respect
to the empirical and the model distribution, respectively (Jaynes, 1957). In
terms of CRFs, this becomes apparent when setting the gradient of the log-
likelihood to zero to find the optimal parameters λ?. The log-likelihood is
given by

log p
(

y1, . . . , yn|x1, . . . , xn;λ
)

=
n∑

i=1

〈λ,Φ(xi, yi)〉 − g(λ|xi). (3.8)

Differentiating the log-likelihood with respect to the parameter vector λ gives
(compare also Equation 3.6)

∂

∂λ
log p

(
y1, . . . , yn|x1, . . . , xn;λ

)
= Ep̂(X,Y)[Φ(X, Y)]−

n∑
i=1

Ep(Y |xi;λ)[Φ(Y, xi)],

where p̂ denotes the empirical distribution of the training data and p is the
model distribution. In the optimum both expectations are equal and the
solution precisely implements the principle of maximum entropy. Depend-
ing on the underlying graph, a closed form solution for the gradient of the
log-likelihood is not always achievable. Moreover, maximum likelihood will
inevitably lead to bad generalization performance for high-dimensional prob-
lems. A remedy can be achieved by placing a prior on the weights, expressing
beliefs about parameters before looking at the data.

We are interested in sparse models, having zero weights for redundant and
irrelevant features and thus apply a zero mean Gaussian prior with variance
σ2 on the values of λ, i.e., λ ∼ N(0, 1σ2), to exclude degenerate solutions.
Following the maximum a posteriori approach and dropping constant terms
leads to the posterior distribution of the parameters λ,

log p(λ|D) ∝
n∑

i=1

[
〈λ,Φ(xi, yi)〉 − g(λ|xi)

]
− λ

Tλ

2σ2
(3.9)

3.1. GRAPHICAL MODELS 25

that has to be maximized with respect to λ. Williams (1999) shows that
such a normal prior on the parameters is equivalent to a Gaussian process on
〈λ,Φ(x , y)〉 with covariance function σ2k(x , y , x ′, y ′), where k(x , y , x ′, y ′) =
〈Φ(x , y),Φ(x ′, y ′)〉. From this perspective, one might think of conditional
random fields as special cases of Gaussian process classification for structured
output spaces (Altun et al., 2004a).

According to Theorem 3.1 and Equation 3.4, the joint feature map de-
composes across the cliques of G,

Φ(x , y) =
∑
C∈C

φC(xC , yC).

This decomposition devolves to kernels that can also be written in terms of
the cliques (Lafferty et al., 2004; Altun et al., 2004b),

k
(

x , y , x ′, y ′
)

=
∑
C∈C

kC(xC , yC , x ′C , y ′C).

An application of the representer theorem (Wahba, 1990; Schölkopf et al.,
2001) shows that the minimizer of the negative log-posterior in Equation 3.9
admits a representation of the form

f ?(x ′, y ′) =
n∑

i=1

αik(xi, yi, x ′, y ′) (3.10)

=
∑
c∈C

∑
yC∈Y(xC)

ᾱC(yC) kC(xC , yC , x ′C , y ′C) (3.11)

where (xC , yC) denotes the restriction of (x , y) on the maximal cliques C ∈ C
of the induced graph G and the set Y(xC) contains all valid assignments
of the clique C. The dual parameters αC(yC) detail the importance of an
assignment yC of the clique C. They can be obtained by the equation

ᾱC(yC) =
∑

i:yC∈yi

αi. (3.12)

Marginalizing dual variables over the cliques is effective when the number of
different assignments of a clique is small compared to the number of training
instances. A similar observation is also used in max-margin Markov networks
for obtaining the factored dual representation (Taskar et al., 2004a).

Whether a prior is used or not, that is, whether we maximize Equation
3.8 to derive CRFs or Equation 3.9 to derive kernel CRFs, the optimization
is expensive since λ has to be adjusted with respect to the complete train-
ing sample where the calculation of the partition function is especially time

26 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

consuming. Nevertheless, several optimization strategies have been proposed
including approaches based on linear programming (Roth and Yih, 2005), it-
erative scaling (Darroch and Ratcliff, 1972; Lafferty et al., 2001), conjugate
gradients (Hestenes and Stiefel, 1952; Sha and Pereira, 2003), Gauss-Newton
subspace optimizations (Altun et al., 2004b), gradient tree boosting (Diet-
terich et al., 2004), and stochastic meta descent (Vishwanathan et al., 2006).
Once the optimal parameter vector λ? is found, predictions for new inputs
x utilize this plug-in estimate p(y |x ;λ?).

3.1.3 Generalized Linear Models in Multiple Views

An appealing line of research that optimizes a similar criterion as CRFs are
large margin approaches for joint input-output spaces, proposed by (Altun
et al., 2003b; Taskar et al., 2004a; Tsochantaridis et al., 2005). Starting
from the posterior distribution of the parameters λ, these approaches make
explicit use of the argument of the maximum by setting

argmax
λ∈Λ

log p(λ|D) = argmax
λ∈Λ

n∑
i=1

[
〈λ,Φ(xi, yi)〉 − g(λ|xi)

]
− λ

Tλ

2σ2

= argmin
λ∈Λ

1

2
‖λ‖2︸ ︷︷ ︸

regularization term

+ σ2
∑n

i=1

[
g(xi;λ)− 〈λ,Φ(xi, yi)〉

]
︸ ︷︷ ︸

empirical risk

.

We derive the regularized empirical risk of Equation 2.10 with logarithmic
loss (log-loss). The variance σ2 acts as a trade-off parameter between the
regularization term and the empirical loss that adjusts the fit to the training
data. Thus, starting from graphical models allowing for a representation in
the exponential family and taking a large margin approach devolves naturally
to regularized risk minimization of generalized linear models in input-output
spaces.

For general V -view learning we are essentially looking for V functions
from different Hilbert spaces Fv (possibly defined by different instance de-
scriptions — views — and/or different kernel functions) such that the error of
each function on the training data and the disagreement between the func-
tions on the unlabeled data is small. Thus, given n labeled input-output
pairs (x1, y1), . . . , (xn, yn) and m unlabeled input examples xn+1, . . . , xn+m, we
want to find f 1 : X × Y → R, . . . , fV : X × Y → R, i.e., f = (f 1, . . . , fV) ∈

3.1. GRAPHICAL MODELS 27

F1 × · · · × FV that minimize

Q(f) =
V∑

v=1

[
‖f v‖2 + C

n∑
i=1

`∆
(

yi, xi, f
v
)]

+ η

V∑
u,v=1

m∑
j=n+1

`∆(ŷu
j , xj, f

v)

(3.13)

where the norms are in the respective Hilbert spaces and ŷu
j = argmaxȳ f

u(xj, ȳ)
denotes the prediction of view u for the j-th unlabeled instance.

A simple application of the representer theorem (Wahba, 1990; Schölkopf
et al., 2001) in this context shows that the solutions of Equation 3.13 always
have the form

f v
opt(·, ·) =

n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(xi, yi, ȳ , ·, ·), (3.14)

where

kv(x , y , ȳ , x ′, y ′) = 〈Φv(x , y),Φv(x ′, y ′)〉 − 〈Φv(x , ȳ),Φv(x ′, y ′)〉

is the reproducing kernel of the Hilbert space Fv. In each view v, parameters
αv

i (yi, ȳ) weight the relative importance of the pair (xi, ȳ) as a negative or
pseudo example for the i-th input in the model. As we will see, most of
the (exponentially many) α are zero and the model can be stored efficiently.
Difference vectors Φ(xi, yi)− Φ(xi, ȳ) associated with non-zero α’s are called
support vectors.

Equation 3.14 says that we do not have to consider all elements of the
reproducing kernel Hilbert space as potential solutions of the regularized risk
minimization problem. Instead it is sufficient — without loss of generality —
to only consider linear combinations of kernel functions centered at labeled
and unlabeled training instances. This can be shown as follows. Any function
f v ∈ Fv can be decomposed into a part that lies in the span of the inputs,

span
(
{Φv(xi, y) : y ∈ Y(xi), i = 1, . . . , n+m}

)
∈ Fv (3.15)

and a part f v
⊥ ∈ Fv perpendicular to it. That is, any f v ∈ Fv, v = 1, 2, can

be written as

f v =
n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)(Φ(xi, yi)− Φ(xi, ȳ)) + f v

⊥, (3.16)

28 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

with 〈Φv(xi, y), f v
⊥〉 = 0 for all i = 1, . . . , n + m and y ∈ Y(xi). For any

labeled or unlabeled input xj 1 ≤ j ≤ n+m, we thus have

f v(xj, y) =
n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , xj, y) + f v

⊥(xj, y)

=
n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , xj, y) +

∑
ȳ ′∈Y(xj)

〈kv(xj, y , ȳ ′, ·, ·), f v
⊥(·, ·)〉

=
n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , xj, y)

=f v
opt(xj, y)

using the reproducing property of kv and orthogonality of kv and f v
⊥. This

shows that the f v with fixed αi(x , ȳ) for all i and ȳ form an equivalence class
of functions that have the same value at all examples xi for 1 ≤ i ≤ n +m.
This can be seen as an analog of the weak representer theorem. Now, let us
consider the norm of the functions in this equivalence class,∥∥∥f v

∥∥∥2

=
∥∥∥ n+m∑

i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , ·, ·) + f v

⊥

∥∥∥2

=
∥∥∥ n+m∑

i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , ·, ·)

∥∥∥2

+
∥∥∥f v

⊥

∥∥∥2

≥
∥∥∥ n+m∑

i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)kv(x , yi, ȳ , ·, ·)

∥∥∥2

=
∥∥∥f v

opt

∥∥∥2

.

We observe that for every function f v
⊥ that is not equivalent to the function

returning always zero, it holds that ‖f v‖2 > ‖f v
opt‖2. Thus we obtain the

analog of the strong representer theorem. The significance of this result is that
it shows that objectives of the form 3.13 have an optimal solution that can be
expressed as kernel expansions in terms of training examples. Corresponding
algorithms are thus independent of the dimensionality of the induced feature
space and can be optimized efficiently by exploiting the relation

λv =
n+m∑
i=1

∑
ȳ∈Y(xi)

αv
i (yi, ȳ)(Φv(xi, yi)− Φv(xi, ȳ)).

3.2. JOINT FEATURE REPRESENTATION 29

Traditionally, the use of kernel functions avoids computing the feature map-
ping and inner products explicitly. Notice, that in the structured domain, the
joint feature mapping depends on the actual values of the output variables; a
pre-computation of the kernel is thus prohibitive since we cannot enumerate
all potential outputs. We will however see in in the following sections, that
inner products in joint feature spaces can frequently be decomposed into an
output dependent and an input dependent part. Since the inputs are known
beforehand, the latter can be represented by a kernel on the input examples.

Since we draw V hypotheses simultaneously out of V distinct hypothe-
sis spaces, minimizing Equation 3.13 over these multiple views allows us to
interpret the disagreement term as an additional data-driven regularization.
Consider the case where the hypothesis spaces Fv for 1 ≤ v ≤ V have an
empty intersection and thus do not contain the true labeling function. By
minimizing the empirical error and the disagreement we will find hypotheses
that are close to the true labeling function in each hypothesis space. Thus,
similarly to learning under manifold assumptions we have a data driven reg-
ularization term that also enforces smooth decisions, but here, smoothness
is defined with respect to decisions of multiple views. That is, multi-view
learning acts as smoothness constraints across hypothesis spaces.

3.2 Joint Feature Representation
So far, we have not yet addressed how to define the joint feature representa-
tion Φ(x , y) for the task at hand. Connected to a given task, and therefore
to the mapping Φ, is not only the decoding strategy but also potential loss
functions ∆. In this section, we detail joint feature representations, decod-
ing strategies, and loss functions for four exemplary tasks. To derive a sound
methodology, we show that these tasks can be naturally expressed as condi-
tional models in the exponential family. As a consequence, optimization can
be performed via generalized linear models by taking a large margin approach
in joint input-output space. We begin in Section 3.2.1 with multi-class classi-
fication that is extended in Section 3.2.2 to label sequence learning. Section
3.2.3 presents joint feature representations for natural language parsing and
Section 3.2.4 introduces the joint model for supervised clustering tasks.

3.2.1 Multi-class Classification
In general, multi-class classification problems can be addressed by a one-
against-one (Kressel, 1999; Fürnkranz, 2003) or a one-against-all strategy
(Bouttou et al., 1994; Schölkopf et al., 1995) along with any binary clas-

30 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

Figure 3.2: A simple Markov random field for multi-class classification.

sification algorithm. In the case of k classes, these approaches imply the
training of either k(k − 1)/2 or k different models, respectively, which may
be prohibitive in cases of large sample sizes and/or many classes. Multi-class
classification can be seen as a special case of learning in joint input-output
space where the output space is independent of the input and equals the
output alphabet; i.e., Y = Y(x) = Σ for all x ∈ X (e.g., see Weston and
Watkins 1998; Crammer and Singer 2001). In the remainder of this section,
we make use of this identity and rephrase the learning problem as follows.

A natural model for this learning task is the Markov random field from
Figure 3.2. According to Section 3.1.1, the conditional density of label y
given x and w can be expressed as a log-linear combination of the weights
w and the joint feature mapping

p(y|x ;w) =
1

Z(x ;w)
exp{〈w,Φ(x , y)}, (3.17)

with the partition function Z(x ;w) =
∑

y∈Σ exp{〈w,Φ(x , y)}. The joint
feature map (Equation 3.18) is given by stacking class-dependent feature
vectors for all classes σi ∈ Σ with |Σ| = k,

Φ(x , y) = ([[y = σ1]]ψ(x)T, . . . , [[y = σk]]ψ(x)T)T. (3.18)

The dimension of the joint feature representation is precisely |Σ|dim(ψ). A
similar approach is used in (Weston and Watkins, 1998; Crammer and Singer,
2001). The mapping in Equation 3.18 leads to the following inner product
in input-output space

〈Φ(xi, yi),Φ(xj, yj)〉 = [[yi = yj]]k(xi, xj),

with kernel k(xi, xj) = 〈ψ(xi), ψ(xj)〉. Rewriting Equation 3.17 as a softmax
function

p(y|x ;w) =
exp{〈w,Φ(x , y)}∑

y∈Σ exp{〈w,Φ(x , y)}

3.2. JOINT FEATURE REPRESENTATION 31

shows that the top scoring label y for a given input x can be computed via
a generalized linear model

ŷ = argmax
ȳ∈Σ

p(ȳ|x ,w) = argmax
ȳ∈Σ

〈w,Φ(x , ȳ)〉 (3.19)

because Z is constant and the exponential function is strictly monotonic.
Thus, multi-class classification tasks can be captured naturally by the model
f(x , y) = 〈w,Φ(x , y)〉. Since the number of classes is fixed, we do not need
an efficient decoding strategy of Equation 3.19. Instead, we compute f(x , ȳ)
explicitly for all ȳ ∈ Σ and return the highest scoring class.

As in classical multi-class classification settings, class-specific losses can
be realized by a loss matrix L = (δτσ), where in our case [L]τσ ∈ R

+
0 and

τ, σ ∈ Σ. Element [L]τσ, with τ 6= σ, denotes the misclassification costs
for classifying an object with true class τ erroneously into class σ. Usually,
correct classifications imply zero costs, that is, [L]ττ = 0. The corresponding
loss function can be stated as ∆(y, ŷ) = [L]yŷ. However, in many tasks, an
appropriate loss matrix L is unknown and the costs for a misclassification
are treated independently of the involved class labels. A common choice is
setting [L]τσ = 1 for all σ 6= τ ; the corresponding loss function reduces to
the 0/1-loss

∆(y, y′) = [[y 6= y′]].

To get a better feeling for our approach, consider the following example
where Σ = {+1,−1}. In the binary case w = (wT

−1,w
T
+1)

T holds and the
probability that y takes class +1 given an input x is determined by

p(y = +1|x ;w) =
exp{〈w,Φ(x ,+1)〉}

exp{〈w,Φ(x ,−1)〉}+ exp{〈w,Φ(x ,+1)〉}
= (1 + exp {〈w,Φ(x ,−1)〉 − 〈w,Φ(x ,+1)〉})−1

= (1 + exp {− (〈w+1, ψ(x)〉 − 〈w−1, ψ(x)〉)})−1

= (1 + exp {−〈w+1 −w−1, ψ(x)〉})−1 .

Defining w̄ = w+1 −w−1, we obtain a logistic regression (Equation 3.20) as
a special case for binary classification.

p(y|x , w̄) =
1

1 + exp{−y〈w̄, ψ(x)〉}
. (3.20)

Due to the implicit log-loss, logistic regression generally leads to non-sparse
solutions, see Figure 2.1. According to this section we may also treat logistic
regression as a special case of conditional random fields in Section 3.1.2.

32 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

Figure 3.3: A Markov random field for label sequence learning. The Xi

denote observations and the Yi their corresponding hidden class variables.

3.2.2 Label Sequence Learning

The problem of labeling observation sequences has applications that range
from language processing tasks such as named entity recognition, part-of-
speech tagging, and information extraction to biological tasks in which the
instances are often DNA strings. Traditionally, sequence models such as
the hidden Markov model (Rabiner, 1989; Juang and Rabiner, 1991) and
variants thereof have been applied to the label sequence learning problem.
Learning procedures for generative models adjust the parameters such that
the joint likelihood of training observations and label sequences is maximized.
By contrast, from the application point of view, the true benefit of a label
sequence predictor corresponds to its ability to find the correct label sequence
given an observation sequence. In this section we will derive a conditional
model for label sequence learning.

A simple approach to label sequence learning is the use of sliding windows.
For every time step t the label yt is predicted solely on features drawn out
of a window of size 2d+ 1, that is xt−d, . . . , xt, . . . , xt+d, of the neighborhood
of xt but independently of previous labels yt−1. Sliding windows allow the
application of any classical learning algorithm such as neural networks (Se-
jnowski and Rosenberg, 1987) or support vector machines (Hakenberg et al.,
2005) and can be extended by recurrent loops to capture the predictions of
antecedent time steps t−d, . . . , t−1 as additional inputs for the prediction of
time step t (Jordan, 1987; Giles et al., 1994). However, long-range dependen-
cies are rarely captured by window approaches which are thus inappropriate
in the absence of prior knowledge. In this section we will derive a conditional
model for label sequence learning.

In label sequence learning (Dietterich, 2002) the task is to find a mapping
from a sequential input x = x1, . . . , xT to a sequential output y = y1, . . . , yT ,
where yi ∈ Σ; i.e., each element of x is annotated with an element of the
output alphabet Σ. We denote the set of all possible labelings of x by Y(x).

3.2. JOINT FEATURE REPRESENTATION 33

When x is of length T we have |Y(x)| = |Σ|T . If all sequences are of length
T = 1 we trivially resolve multi-class classification as a special case (see
Section 3.2.1).

The label sequence learning task can be modeled in a natural way by a
Markov random field shown in Figure 3.3. According to Theorem 3.1, the
conditional density of a labeling y given an observation x factorizes across
the cliques. Similarly to a hidden Markov model, we have dependencies be-
tween neighboring labels and between labels and observations. Analogously,
decomposing parameters w into components wA and wB allows to rewrite
the conditional density as

p(y |x ;w) =
1

Z(x ;w)

T∏
t=2

ΥA(yt−1, yt;w
A)

T∏
t=1

ΥB(xt, yt;w
B), (3.21)

where the partition function is given by marginalization over all labelings
y ∈ Y(x), that is,

Z(x ;w) =
∑

y∈Y(x)

T∏
t=2

ΥA(yt−1, yt;w
A)

T∏
t=1

ΥB(xt, yt;w
B).

We represent the potential functions ΥA and ΥB by log-linear combinations
of basis functions φA and φB that capture label-label and label-observation
interactions, respectively.

ΥA(yt−1, yt;w
A) = exp

{
dA∑
i=1

wA
i φ

A
i (yt−1, yt)

}

ΥB(xt, yt;w
B = exp

{
dB∑
i=1

wB
i φ

B
i (xt, yt)

}
.

In many applications, the basis functions are modeled by indicator functions
that equal 1 if the corresponding pair exhibits a certain property. For in-
stance, in a part-of-speech tagging task, we might think of a label-label basis
function of the form

φA
123(yt−1, yt) = [[yt−1 = Verb ∧ yt = Noun]], (3.22)

that equals 1 if a verb is followed by a noun. Analogously, a label-observation
basis function may be

φB
234(xt, yt) = [[yt = Noun ∧ xt starts with capital letter]],

34 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

where φB
234 equals 1 if x contains a capitalized noun at position t.

Disregarding the normalization constant, the conditional probability in
Equation 3.21 can be rewritten in terms of basis functions by

p(y |x ;w) ∝
T∏

t=2

ΥA(yt−1, yt;w
A)

T∏
t=1

ΥB(xt, yt;w
B)

=
T∏

t=2

exp

{
dA∑
i=1

wA
i φ

A
i (yt−1, yt)

}
T∏

t=1

exp

{
dB∑
i=1

wB
i φ

B
i (xt, yt)

}

= exp

{
T∑

t=2

dA∑
i=1

wA
i φ

A
i (yt−1, yt) +

T∑
t=1

dB∑
i=1

wB
i φ

B
i (xt, yt)

}

= exp

{
dA∑
i=1

wA
i

T∑
t=2

φA
i (yt−1, yt) +

dB∑
i=1

wB
i

T∑
t=1

φB
i (xt, yt)

}
.

Aggregating the potentials across the cliques leads to

ΦA
i (x , y) =

T∑
t=2

φA
i (yt−1, yt) and ΦB

i (x , y) =
T∑

t=1

φB
i (xt, yt),

where Φ
A/B
i (x , y) equals the sum of the i-th label-label or label-observation

feature, respectively, evaluated along all positions t = 1, . . . , T . We now
define the joint feature representation Φ(x , y) by stacking up the label-label
and the label-observation basis functions

Φ(x , y) = (. . . ,ΦA
i (x , y), . . . ,ΦB

j (x , y), . . .)T. (3.23)

Given the transition features in Equation 3.22, the size of the joint feature
mapping is independent of the length of the sequences and determined by
dim(Φ) = |Σ|2 + |Σ|dim(ψ). Equation 3.23 together with the weights w =
(. . . , wA

i , . . . , w
B
j , . . .)

T show that the conditional probability in Equation 3.21
is precisely a member in the exponential family

p(y |x ;w) = exp{〈w,Φ(x , y)〉 − g(x ;w)} (3.24)

with partition function g(x ;w) = log
∑

y∈Y(x) exp{〈w,Φ(x , y)〉} = logZ(x ;w).
Since we are interested in finding the most likely labeling y given an obser-
vation x , we apply the argmax operator and yield

ŷ = argmax
ȳ∈Y

p(ȳ |x ;w) = argmax
ȳ∈Y

〈w,Φ(x , ȳ)〉. (3.25)

3.2. JOINT FEATURE REPRESENTATION 35

Thus, for our purpose, it suffices to consider generalized linear models of the
form

f(x , y) = 〈w,Φ(x , y)〉. (3.26)

The described feature map exhibits a first-order Markov property and as
a result, decoding can be performed by a Viterbi algorithm (Forney, 1973;
Schwarz and Chow, 1990) in O(T |Σ|2) (see Appendix B).

Several loss functions can be applied to sequences to measure the distance
between two labelings. Besides the 0/1 loss that only accounts for correctly
labeled sequences the Hamming loss is frequently applied to sequence annota-
tion since it allows for the differentiation between slight errors in annotation
and sequential trivia. The Hamming loss measures the ratio of incorrect
labels per sequence and is given by

∆H(y , ŷ) =
1

T

T∑
t=1

[[yt 6= ŷt]].

If all labels σ ∈ Σ are equally important, the Hamming loss, detailing the
fraction of incorrect tokens, is an appropriate choice. It decomposes over
the variables yt and can thus be applied for instance in Markov networks
(Taskar et al., 2004a). However, if there are labels of minor interest, such as
the outer tag in named entity recognition, the common Hamming loss is an
inappropriate choice. In these cases we might resort to a loss based on the
F1 measure. The F1 measure is defined as the harmonic average of precision
and recall given by

Precσ(y , ŷ) =

∑T
t=1[[yt = σ ∧ ŷt = σ]]∑T

t=1[[y
′
t = σ]]

Recσ(y , ŷ) =

∑T
t=1[[yt = σ ∧ ŷt = σ]]∑T

t=1[[yt = σ]]
.

There are two ways of averaging F1 scores for multiple labels, the micro-
average and the macro-average. Equation 3.27 details the micro-F1 score
that is averaged over all (relevant) labels σ ∈ Σ and consequently dominated
by frequent labels.

F1(y , ŷ) =
2
∑

σ∈Σ Precσ(y , ŷ)
∑

σ∈ΣRecσ(y , ŷ)∑
σ∈Σ Precσ(y , ŷ) +

∑
σ∈ΣRecσ(y , ŷ)

(3.27)

Similarly, a macro-F1 loss can be applied that gives an equal weight on every
label, regardless of how rare or common it is. Macro-F1 scores are therefore

36 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

dominated by rare labels (Yang, 1999). In either case, the corresponding loss
function is given by

∆F1(y , ŷ) = 1− F1(y , ŷ).

3.2.3 Natural Language Parsing
The parse tree of a sentence displays its structure in terms of its dependency
structure and is regarded as the primary formalism for further processing such
as a semantic analysis. The goal in natural language parsing is therefore
to predict the most probable parse tree y ∈ Y(x) that generates a given
input sentence x = x1, . . . , xT with xj ∈ Ω. Each node in the output tree
y is generated by a rule of a probabilistic context-free grammar G, a set of
recursive production rules used to generate patterns of strings, independently
of their context.

Frequently, discriminative natural language parsing models are either
based on re-ranking or on dynamic programming. The former generates
a set of n-best candidate parse trees and use a classifier to choose one out of
them (e.g., Johnson et al. 1999; Collins 2000; Shen et al. 2003). Approaches
based on dynamic programming maintain a parse forest or chart to store
potential trees (Geman and Johnson, 2002; Clark and Curran, 2004; Miyao
and Tsujii, 2002) and output the one with the highest score or probability.

Collins and Duffy (2002) present a parsing approach based on convolu-
tional kernels. Their objective function is optimized with a generalized per-
ceptron algorithm. In this setting, large-margin approaches (Taskar et al.,
2004b; Tsochantaridis et al., 2005) can be seen as the best of two worlds.
Firstly, in contrast to n-best ranking, they generate only parses that improve
the quality of the model (translated into support vectors). Secondly, they ap-
ply dynamic programming to decode the top scoring parse tree. Large-margin
approaches benefit from this efficient representation and lead to sparse mod-
els. To derive conditional models, we first introduce context-free grammars
in Definition 3.3 and then extend the concept to probabilistic context-free
grammars in Definition 3.4.
Definition 3.3 A contex-free grammar (CFG) is defined by a quadruple G =
(N ,Ω,Σ, S), where N is the set of nonterminals, Ω is the set of terminals,
Ω ∩N = ∅, Σ ⊂ N × (N ∪ Ω)∗ denotes the (finite) set of rules, and S ∈ N
is the start symbol. Each rule A→ α in Σ consists of a head A ∈ N and a
body α ∈ (N ∪ Ω)∗.
A probabilistic context-free grammar generates the same set of parses for a
text as the corresponding context-free grammar and assigns a probability to
each parse.

3.2. JOINT FEATURE REPRESENTATION 37

Figure 3.4: Left: Parse tree for the sentence "Curiosity kills the cat".
Right: corresponding joint feature map Φ(x,y).

Definition 3.4 The 5-tuple G = (N ,Ω,Σ, S, P) is a probabilistic context-
free grammar (PCFG) if (N ,Ω,Σ, S) is a context-free grammar and P : Σ→
[0, 1] associates a probability P (A → α) to every production (A → α) ∈ Σ
such that

∑
α∈(N∪Ω)∗ P (A→ α) = 1 for all A ∈ N .

The probability of a parse generated by a probabilistic context-free grammar
is simply the product of the probabilities of the productions used to generate
it. Trivially, every PCFG is also a weighted context-free grammar if we iden-
tify the weights with the log-probabilities of the productions. We will use
the terms probabilistic and weighted context-free grammar interchangeably.
In the remainder of this section we assume, for the sake of simplicity, that
the grammar G is in Chomsky normal form1.

Definition 3.5 A context-free grammar G = (N ,Ω,Σ, S) is said to be in
Chomsky normal form if all rules in Σ are either of the form A → a with
A ∈ N and a ∈ Ω, or of the form A→ BC, with A,B,C ∈ N .

Let φσ(x , y) be the number of times production rule σ ∈ Σ occurs in the
parse tree y of input sentence x . The conditional probability of y given x
can be written in terms of the counts φσ as

P (y |x) =
∏
σ∈Σ

P (σ)φσ(x ,y). (3.28)

We define the joint feature representation by stacking up the counts

Φ(x , y) = (. . . , φσ(x , y), . . .)T, (3.29)

1Note that every context-free grammar can always be transformed in a Chomsky normal
form.

38 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

as indicated in Figure 3.4. By means of 3.29, Equation 3.28 can be equiva-
lently expressed by a Gibbs distribution (Equation 3.3). Introducing weights

w = (. . . , wσ, . . .)
T with wσ = lnP (σ), (3.30)

allows to rewrite the conditional probability of a parse tree in terms of the
joint feature representation. We derive

p(y |x ;w) =
∏
σ∈Σ

P (σ)φσ(x ,y)

= exp
{
〈w,Φ(x , y)〉

}
=

1

Z(x ;w)
exp

{
〈w,Φ(x , y)〉

}
(3.31)

since

Z(x ;w) =
∑
y∈Y

exp
{
〈w,Φ(x , y)〉

}
=
∑
y∈Y

∏
σ∈Σ

P (σ)φσ(x ,y) = 1.

The joint feature map Φ(x , y) in Equation 3.29 is frequently used (compare
Tsochantaridis et al. 2005). However, the general definition of Φ(x , y) to-
gether with the Gibbs distribution allows for a much richer feature map (Chi,
1999). For instance, the mapping φσ(x , y) may not only count the number
of times production rule σ occurs in the parse y , but it also incorporates
structural features, such as the span-length of children nodes (Taskar et al.,
2004b).

Equations 3.29 and 3.31 lead to the same generalized linear model as in
the previous two sections, independently of the feature map Φ(x , y). The
most probable parse tree y given an input sentence x can be computed by

argmax
y∈Y(x)

p(y |x ;w) = argmax
y∈Y(x)

〈w,Φ(x , y)〉, (3.32)

where Y(x) denotes all valid parse trees with root node S and leaves corre-
sponding to the tokens of x . The weights w given by Equation 3.30 might
not be the best choice. Therefore, we obtain w by training the generalized
model in Equation 3.32. After the learning process, the entries of the weight
vector may be interpreted as scores that indicate how likely a certain produc-
tion rule is to be applied given the local context. Note that the feature map
in Equation 3.29 allows for the use of the Cocke-Kasami-Younger (CKY) al-
gorithm as an efficient decoding procedure in time O(|Σ|T 3) (Kasami 1965;
Younger 1967; see Appendix C). The inner product in input-output space is
given by

〈Φ(x , y),Φ(x ′, y ′)〉 =
∑
σ∈Σ

φσ(x , y)φσ(x ′, y ′).

3.2. JOINT FEATURE REPRESENTATION 39

A natural measure for parse trees is the F1 measure on correct con-
stituents, that is correctly placed triples (A, l, r), where A ∈ N is a non-
terminal and l and r denote left and right input string positions (Johnson,
1998). We denote the set of all triples of a tree y by E(y) where root nodes
and pre-terminal nodes are excluded because they are given as input to the
decoder. Thus, the F1 measure is defined in terms of correct constituents as
the harmonic average of precision and recall given by

Prec(y , ŷ) =
|E(y) ∩ E(ŷ)|
|E(ŷ)|

Rec(y , ŷ) =
|E(y) ∩ E(ŷ)|
|E(y)|

.

Here, precision equals the fraction of triples in the prediction ŷ that also
appear in the true y , and recall details the fraction of triples in the true y
that are correctly predicted by ŷ . The corresponding loss function can be
stated as

∆F1(y , ŷ) = 1−
2Prec(y , ŷ)Rec(y , ŷ)

Prec(y , ŷ) +Rec(y , ŷ)
= 1− F1(y , ŷ).

3.2.4 Supervised Clustering
The task in supervised clustering (Finley and Joachims, 2005) is – like any
clustering task – to group similar objects together and dissimilar objects into
different groups. But unlike in exploratory data analysis, a ground truth of
correct clusterings is known beforehand. This allows for learning the simi-
larity function that parameterizes the clustering model such that it correctly
groups similar objects in the training data together.

Every input x ∈ X is a collection of T objects, x = {x1, . . . , xT} where
every xj ∈ Ω. For a training input we are also given the correct clustering as
an adjacency matrix y ∈ Y , with [y]jk = 1 if objects xj and xk are elements
of the same cluster, and 0 otherwise, giving rise to a binary output alphabet
Σ = {0, 1}. Due to the symmetry of legal output variables we can restrict
output lattices to their lower triangle. The output space Y(x) for a given
input x therefore consists at most of 2(T (T−1)/2) elements.

We capture pairwise similarities of objects by d feature functions ψi :
Ω × Ω → R, 1 ≤ i ≤ d. The feature functions ψi(xj, xk) implement aspects
of the correspondence between xj and xk. For instance, if the discourse area
is to cluster email batches we may apply the tf.idf similarity of the message
bodies, the edit distance of the subject lines, or the similarity of color his-
tograms of images included in the messages. As in the previous sections, it is

40 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

Figure 3.5: Example detailing correlation clustering. The similarity matrix
gives rise to the solution C = {{x1, x2}, {x3}, {x4, x5, x6}}. Displayed are
only edges with positive weights.

natural to address the problem of learning the similarity measure by linearly
combining pairwise feature functions ψ with a weight vector w, forging the
parameterized similarity measure

sim(xj, xk;w) =
d∑

i=1

wiψi(xj, xk) = 〈w, ψ(xj, xk)〉. (3.33)

Applying the similarity function to all pairs of objects in a set xi yields
a similarity matrix. For a fixed weight vector w, the task is to find the
clustering that realizes the maximal inner-cluster similarity summed over all
clusters,

ŷ = argmax
ȳ∈Y(xi)

f(xi, ȳ) = argmax
ȳ∈Y(xi)

∑
j,k

[ȳ]jk sim(xj, xk). (3.34)

Substituting the parameterized counterpart (Equation 3.33) into Equation
3.34 leads directly to the joint feature representation in Equation 3.35. We
have

f(x , y) =

|x |∑
j=1

j−1∑
k=1

[y]jksim(xj, xk)

=
T∑

j=1

j−1∑
k=1

[y]jk〈w, ψ(xj, xk)〉

= 〈w,

(
T∑

j=1

j−1∑
k=1

yjkψ(xj, xk)

)
〉

= 〈w,Φ(x , y)〉, (3.35)

3.2. JOINT FEATURE REPRESENTATION 41

where the joint feature representation can be identified with the sufficient
statistics in the exponential family.

Similarly to the previous sections, the learning problem is to find a weight
vector w, such that the decoding over the induced similarity matrix yields
the correct cluster associations for each object. The problem of creating a
consistent clustering of instances from a similarity matrix is equivalent to the
problem of correlation clustering (Bansal et al. 2002, 2004; for an example see
Figure 3.5). In our setting, correlation clustering plays the role of decoding;
i.e., of generating the clustering ŷ for an input set x when the parameters w
are known. The decoding problem can be stated as

ŷ =argmaxȳ∈Y(x)f(x , ȳ) (3.36)
s.t. ∀jkl : (1− [ȳ]jk) + (1− [ȳ]kl) ≥ (1− [ȳ]jl) (3.37)
∀jk : [ȳ]jk ∈ {0, 1}. (3.38)

Equation 3.37 is the triangle inequality that requires ŷ to be a consistent
clustering. It says that if xj and xk are elements of the same cluster and xk

and xl are in the same cluster, then xj and xl have to be in the same cluster
as well. The obtained solution is equivalent to a poly-cut in a fully connected
graph spanned by the objects and their pairwise similarities and theoretically
accounts for an infinite number of clusters. However, maximizing f(x , y) over
integer assignments of matrix elements [y]jk is NP-complete. We will exploit
continuous approximations of this integer linear program in Chapter 8.

The loss inflicted by a clustering can be quantified by measuring the differ-
ences between the true partitioning y of a set and the partitioning predicted
by decoding over the similarity matrix, ŷ . A prominent measure is the Rand
index (Rand, 1971) given by

Rand(y , ŷ) =
2
∑

j,k<j[[[y]jk = [ŷ]jk]]

T (T − 1)
, (3.39)

which counts the number of wrong edges in the lower triangle of the adjacency
matrix. The corresponding loss ∆ is given by

∆Rand(y , ŷ) = 1−Rand(y , ŷ) =
∑
j,k<j

2 [[[y]jk 6= [ŷ]jk]]

T (T − 1)
.

As an alternative, one can also apply a loss that is proportional to the number
of objects that are not assigned to their correct cluster. Erroneously assigning
an object to a cluster with c elements will incur 2c incorrect entries in the
cluster matrix. Therefore, we measure the number of incorrectly assigned

42 CHAPTER 3. LEARNING IN JOINT INPUT-OUTPUT SPACES

objects as

∆total(y , ŷ) =
∑

j,k:k<j

| [[y]]jk − [ŷ]jk |∑
k′ 6=j[y]k′k

.

Meila (2003) discusses examples of other potential distance measures.

Chapter 4

Co-regularized Least Squares
Regression

In this chapter we examine the co-learning framework with univariate re-
gression models. Despite the increasing popularity of semi-supervised ap-
proaches, they have almost exclusively been applied to classification prob-
lems until now. We develop the semi-supervised regression algorithm co-
regularized least squares regression (coRLSR) and propose a semi-parametric
variant with improved scalability. CoRLSR is based on casting co-learning as
a regularized risk minimization problem in Hilbert spaces. Similar to other
kernel methods, the optimal solution in the Hilbert space can be described
by a linear combination of kernel functions “centered” on the set of labeled
and unlabeled instances. Similar to other semi-supervised approaches, the
solution, i.e., the expansion coefficients, can be computed in time cubic in
the size of the unlabeled data. As this does not reflect our intuition that
semi-supervised learning algorithms should be able to process, and benefit
from, huge amounts of unlabeled data, we also develop a semi-parametric
approximation that scales linearly with the amount of unlabeled data.

We also consider co-regression in a distributed setting. That is, we as-
sume that labeled data is available at different sites and must not be merged
(the labels need not be on the same instances and there might be privacy
concerns about moving the data). In this setting, we propose a distributed
iterative procedure that optimizes the same objective function as for central-
ized co-regression. Assuming that different views of the same unlabeled data
are available at the different sites, the only communication needed in each
iteration is to share the predictions of each site about the unlabeled data.

This chapter is structured as follows. We discuss related work in Section
4.1. In Section 4.2 we derive coRLSR and its semi-parametric approxima-
tion. The distributed co-regularized least squares regression algorithm is then

43

44 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

presented in Section 4.3. We report our experimental results in Section 4.4
and Section 4.5 provides a conclusion.

4.1 Related Work
Co-classification (Blum and Mitchell, 1998; Nigam and Ghani, 2000) and co-
clustering (Bickel and Scheffer, 2004) are two frameworks for classification
and clustering in domains where independent views — i.e., distinct sets of
attributes — of labeled and unlabeled data exist. Both are based on the
observation that the rate of disagreement between independent hypotheses
upper bounds their individual error rates (de Sa, 1994). A common applica-
tion of such approaches is hypertext classification where it can be assumed
that the links and text of each web page present two independent views of the
same data. However, minimizing the rate of disagreement increases the de-
pendency between the hypotheses and the original motivation for co-learning
no longer holds. Nevertheless, the predictive performance of these approaches
is often significantly better than for single-view approaches. More surpris-
ingly, in many domains splitting attributes randomly into different views
and applying a co-classification approach outperforms single-view learning
algorithms (Brefeld and Scheffer, 2004).

De Sa (1994) first observed the relationship between consensus of multi-
ple hypotheses and their error rates and devised a semi-supervised learning
method by cascading multi-view vector quantization and linear classifica-
tion. Blum and Mitchell (1998) introduced the co-training algorithm for semi-
supervised learning that greedily augments the training sets of two classifiers.
Alternatively, Collins and Singer (1999) suggest a variant of the AdaBoost
algorithm that boosts the agreement between two views on unlabeled data.

Dasgupta et al. (2001) and Leskes (2005) give bounds on the error of
co-training in terms of the disagreement rate of hypotheses on unlabeled ex-
amples in two independent views. This allows the interpretation of the dis-
agreement as an upper bound on the error solely on the basis of unlabeled ex-
amples and justifies the direct minimization of the disagreement. The co-EM
approach probabilistically labels all unlabeled examples and iteratively ex-
changes those labels between two views (Nigam and Ghani, 2000). Recently,
Farquhar et al. (2006) propose a fully supervised variant of a co-support vec-
tor machine that minimizes the training error as well as the disagreement
between two views.

Most studies on multi-view and semi-supervised learning consider classifi-
cation problems, while regression remains largely under-studied. Zhou and Li
(2005) apply co-training to kNN regression. Instead of utilizing two disjoint

4.2. EFFICIENT CO-REGRESSION 45

attribute sets, they use distinct distance measures for the two hypotheses. An
approach similar to non-parametric coRLSR has been proposed by Sindhwani
et al. (2005a) for classification. Generally, semi-supervised graph-based clas-
sification methods can be viewed as function estimators under smoothness
constraints, incorporating prior knowledge like smoothness constraints on
decision values by regularization techniques (Chung, 1997; Joachims, 2003;
Belkin et al., 2004; Zhou et al., 2005; Belkin et al., 2006). These methods
utilize kernels on labeled and unlabeled examples. Prominent variants are
graph Laplacians (Smola and Kondor, 2003) and RBF or heat kernels (Zhu
et al., 2003; Shin et al., 2006), but other similarity matrices are also used
(Pozdnoukhov and Bengio, 2006; Verbeek and Vlassis, 2006; Schwaighofer
and Tresp, 2003). Krishnapuram et al. (2004) proposed a Bayesian approach
to non-transductive graph-based learning.

Transductive approaches to function approximation (Chapelle et al., 1999;
Bosnic et al., 2003) have also been extended to Gaussian processes (Seo et al.,
2000; Le et al., 2006). Ng et al. (2007) examine semi-supervised regression
scenarios when the data contains categorial and continuous variables while
Schuurmans et al. (2006) include unlabeled examples by a metric based ap-
proach.

4.2 Efficient Co-Regression
In terms of the proposed learning framework, univariate function approxima-
tion tasks can be written as a special case with Y(x) = R for all x . Since the
output is single-valued there is no need to utilize joint input-output spaces.
As a consequence, the hypothesis is independent of an explicit ranking of all
output values but implicitly returns the argument of the maximum solely on
the basis of the input. We thus obtain the equality

ŷ = argmax
ȳ∈R

f̃(x , y) = f(x). (4.1)

For general V -view learning we are essentially looking for V functions from
different Hilbert spaces Fv (possibly defined by different instance descriptions
— views — and/or different kernel functions) such that the error of each
function on the training data and the disagreement between the functions on
the unlabeled data is small. Note, we are considering a setting slightly more
general than most other co-learning approaches: firstly, we directly consider
V ≥ 1 views and secondly, the instances described by different views may
differ. We will derive compact matrix representations and use subscripts to
denote view indices to omit double superscripts.

46 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

We are given V finite sets of training instances Lv ⊆ X , where the pro-
jection Φv(x) of instance x ∈ Lv onto view v is denoted as dv-dimensional
feature vector xv = (x1, . . . , xdv)

T. Additionally, we have
∣∣∣⋃V

v=1 Lv

∣∣∣ labels
y(x) ∈ R, and a set of m instances U ⊆ X for which the labels are unknown.
We will concentrate on squared loss `(y(x), fv(x)) = (y(x)−fv(x))2 and aim
at finding f1 : X → R, . . . , fV : X → R, i.e., f = (f1, . . . , fV) ∈ H1×· · ·×HV

that minimize

Q(f) =
V∑

v=1

[∑
x∈Lv

(y(x)− fv(x))2 + η ‖fv(·)‖2
]

+ λ

V∑
u,v=1

∑
x∈U

(fu(x)− fv(x))2

(4.2)
where the norms are in the respective Hilbert spaces and λ weights the in-
fluence of pairwise disagreements. To avoid cluttering the notation unneces-
sarily, we omit the obvious generalization of allowing different η for different
views. Minimizing Equation 4.2 for V = 1 and no unlabeled examples is
known as ridge regression (Saunders et al., 1998) or regularized least squares
regression (RLSR), see Appendix A for details.

An application of the extended representer theorem (Section 3.1.3) shows
that solutions to Equation 4.2 have always the form

f opt
v =

∑
x∈Lv∪U

αv(x)kv(x , ·), (4.3)

where kv(·, ·) is the reproducing kernel of the Hilbert space Fv. This allows us
to express (fv(x1), fv(x2), . . .)

T
xi∈Lv∪U as Kvαv and ‖fv(·)‖2 as αT

v Kvαv, where
[Kv]ij = Kv(xi, xj) and [αv]i = αv(xi). Here Kv forms a (strictly) positive
definite kernel matrix, i.e., it is symmetric and has no negative (and non
zero) eigenvalues. Similarly, we use the notation yv = (y(x1), y(x2), . . .)

T
xi∈Lv

.

4.2.1 Non-Parametric Least Squares Regression
With nv training examples in view v and m unlabeled examples, we can
rephrase 4.2 and obtain the exact (non-parametric) coRLSR problem:

Optimization Problem 4.1 Let for each view v ∈ {1, . . . , V } two matrices
Lv ∈ Rnv×(nv+m) and Uv ∈ Rm×(nv+m) be given, such that

Kv =

(
Lv

Uv

)

4.2. EFFICIENT CO-REGRESSION 47

is strictly positive definite. For fixed λ, η ≥ 0 the coRLSR optimization
problem is to minimize

Q(α) =
V∑

v=1

[
‖yv − Lvαv‖2 + ηαT

v Kvαv

]
+ λ

V∑
u,v=1

‖Uuαu −Uvαv‖2

over α = (α1, . . . , αV) ∈ Rn1+m × · · · × RnV +m.

This optimization problem has been considered in Sindhwani et al. (2005a)
for two-view classification. In the remainder of this section we propose a
closed form solution and analyze its runtime complexity.

Proposition 4.1 The solutions αv of the coRLSR optimization problem can
be found in time O (V 3m3) (assuming m ≥ n = maxv nv).

Proof With
Gv = LT

v Lv + ηKv + 2λ(V − 1)UT
v Uv

we get
∇αvQ(α) = 2Gvαv − 2LT

v yv − 4λ
∑

u:u 6=v

UT
v Uuαu.

At the optimum
(∇α1Q(α),∇α2Q(α), . . .)T = 0

holds and we can find the exact solution by solving G1 −2λUT
1 U2 · · ·

−2λUT
2 U1 G2 · · ·

...

︸ ︷︷ ︸

=:A

α1

α2
...

 =

LT
1 y1

LT
2 y2
...

 .

The solution requires the inversion of A which is particularly feasible since
A is strictly positive definite. This can be seen by rewriting A as the sum
A = B + C with

B =

G1 − 2λUT
1 U1 0 · · ·

0 G2 − 2λUT
2 U2 · · ·

...

is strictly positive definite for V ≥ 2 and

C =

 λUT
1 U1 −λUT

1 U2 · · ·
−λUT

2 U1 λUT
2 U2 · · ·

...

48 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

is also positive definite. Notice for the case V = 1 the problem reduces to
inverting G1 which is strictly positive definite as K1 is strictly positive defi-
nite by definition. The solution can thus be found in time O ((V m+ V n)3).
Using m > n we obtain the bound as stated above. �

For a two-view co-regression the system of equations reduces to(
α1

α2

)
=

(
G1 −2λUT

1 U2

−2λUT
2 U1 G2

)−1(
LT

1 y1

LT
2 y2

)
and we can use the partitioned inverse equations (Barnett, 1979) to obtain
the solution

α1 =
(
G1 − 4λ2UT

1 U2G2
−1UT

2 U1

)−1 (
L T

1 y1 + 2λUT
1 U2G2

−1LT
2 y2

)
,

and correspondingly α2.

4.2.2 Semi-parametric Approximation
While cubic time complexity in the number of labeled examples appears gen-
erally acceptable (supervised algorithms like SVMs, RLSR, etc. all have cubic
time complexity), cubic time complexity in the number of unlabeled examples
renders most real-world problems infeasible as typically m � n. Still, most
state-of-the-art semi-supervised or transductive learning algorithms have cu-
bic or worse time complexity. To achieve lower complexity in the number of
unlabeled instances, we resort to a semi-parametric approximation. In par-
ticular we optimize over functions that can be expanded in terms of labeled
training instances only, that is we approximate the minimizer of Equation
4.2 in each view v by

f opt
v = Kvαv ≈ Lvα

′
v (4.4)

where matrices Kv and Lv are defined as in Optimization Problem 4.1 with
α ∈ Rn+m and α′ ∈ Rn, respectively. Notice, that the approximation 4.4 vi-
olates the extended representer theorem. With nv training examples in view
v and m unlabeled examples, we can phrase the semi-parametric approxima-
tion to the coRLSR optimization problem as follows.
Optimization Problem 4.2 Given for each view v ∈ {1, . . . , V } a strictly
positive definite matrix Lv ∈ R

nv×nv and an arbitrary matrix Uv ∈ R
m×nv .

For fixed λ, η ≥ 0 the semi-parametric coRLSR optimization problem is to
minimize

Q(α) =
V∑

v=1

[
‖yv − Lvαv‖2 + ηαT

v Lvαv

]
+ λ

V∑
u,v=1

‖Uuαu −Uvαv‖2

4.2. EFFICIENT CO-REGRESSION 49

over α = (α1, . . . ,αV) ∈ Rn1 × · · · × RnV .

Typically, Lv and Uv are computed from a strictly positive definite kernel
function and form a positive definite kernel matrix Kv ∈ R(nv+m)×(nv+m) as

Kv =

(
Lv UT

v

Uv ∗

)
where the part marked by ∗ is not needed.

Proposition 4.2 The solutions αv of the semi-parametric coRLSR opti-
mization problem can be found in time O (M3n2m) (assuming m ≥ n =
maxv nv).

Note that the matrices Lv, Uv, and Gv in the following proof are different
from the corresponding matrices in the proof of Theorem 4.1. The symbols
are overloaded as they play corresponding roles in either proof. Furthermore,
this enables us to prove two theorems at once in the next section.
Proof With

Gv = L2
v + ηLv + 2(V − 1)λUT

v Uv

we get
∇αvQ(α) = 2Gvαv − 2Lvyv − 4λ

∑
u:u 6=v

UT
v Uuαu.

At the optimum
(∇α1Q(α),∇α2Q(α), . . .)T = 0

holds and we can find the exact solution by solving G1 −2λUT
1 U2 · · ·

−2λUT
2 U1 G2 · · ·

...

α1

α2
...

 =

L1y1

L2y2
...

 .

Again, this requires the inversion of a strictly positive definite matrix asG1 − 2λUT
1 U1 0 · · ·

0 G2 − 2λUT
2 U2 · · ·

...

is strictly positive definite for M ≥ 2 and λUT

1 U1 −λUT
1 U2 · · ·

−λUT
2 U1 λUT

2 U2 · · ·
...

50 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

is positive definite. The solution can thus be found in time O ((V n)3 + V 2m).
Using m > n we obtain the bound as stated above. �

For the two-view co-regression we can again make use of the partitioned
inverse equations to obtain

α1 =
(
G1 − 4λ2UT

1 U2G2
−1UT

2 U1

)−1 (
L1y1 + 2λUT

1 U2G2
−1L2y2

)
.

and correspondingly α2.

4.2.3 Relation to RLSR
It turns out that the above two Optimization Problems 4.1 and 4.2 are nat-
ural generalizations of regularized least squares regression. In both cases for
m = 0 we obtain V independent regularized least squares solutions. In the
semi-parametric case we also obtain V independent regularized least squares
solutions for λ = 0. The V solutions can be combined to a single model
by averaging their predictions. For V = 1 the agreement term (the second
part of the objective function in Optimization Problem 4.2) disappears and
we recover a single regularized least squares solution. In the non-parametric
case for λ = 0 or V = 1 the optimization problem still appears different
from the regularized least squares optimization problem as the regulariza-
tion term for each view includes a regularization over the unlabeled data.
However, applying the representer theorem to this case shows immediately
that all components of αv corresponding to unlabeled data will be zero for
the minimizer of the optimization problem. This shows that non-parametric
as well as semi-parametric coRLSR contain traditional RLSR as a special
case and can therefore both be seen as natural generalizations.

4.3 Distributed CoRLSR
Machine learning traditionally considers application scenarios where the data
is available at a single site (computer/cluster) to a single machine learning
algorithm. Novel problems and challenges arise whenever this is not the case
and the data is distributed over many sites and must not be collected at a
single site, e.g., for privacy reasons. In this section we devise a distributed
coRLSR algorithm for this scenario.

Consider a situation in which different companies have similar prediction
problems and could greatly benefit from better predictive accuracy. This is,
for example, the case for different loan providers each trying to prevent fraud
using a certain prediction technique. Another example could be companies

4.3. DISTRIBUTED CORLSR 51

Table 4.1: Distributed CoRLSR Algorithm

Input: Matrices as in Optimization Problem 4.1 and Proposition 4.3, or
matrices as in Optimization Problem 4.2 and Proposition 4.4.
1 I n i t i a l i z e ŷu = 0 at each s i t e .
2 repeat
3 f o r each view v s e q u e n t i a l l y do
4 αv ← G−1

v

[
LT

v yv + 2λUT
v

∑
u 6=v ŷu

]
5 ŷv ← Uvαv

6 send ŷv to a l l s i t e s .
7 u n t i l convergence

Output: Optimal solution αv of the respective coRLSR optimization prob-
lem.

trying to protect their computers from attacks over the internet using a
learned model of internet connections.

In both cases sharing the data or their models could increase the qual-
ity of the predictions. However, due to privacy concerns or non-disclosure
agreements the companies are rather unlikely to do that. In this section we
consider the case that the different companies, however, agree on a set of
unlabeled data and to exchange their predictions on this unlabeled data. As
the unlabeled data may even be appropriately generated synthetic data, it is
realistic to assume that companies do this.

Traditional machine learning algorithms cannot be applied in this setting.
We formulate a kernel based optimization problem and show that the globally
optimal solution to this problem can be found using gradient descent and only
sharing predictions on the unlabeled data.

4.3.1 Block Coordinate Descent CoRLSR
In this section we show that the above non-parametric and semi-parametric
coRLSR optimization problems can be solved with an iterative, distributed
algorithm that only communicates the predictions of each site about the
unlabeled data. The following Propositions 4.3 and 4.4 show that the Opti-
mization Problems 4.1 and 4.2 can also be solved in a distributed setting by
Algorithm 4.1. Both propositions are proved subsequently.

Proposition 4.3 The non-parametric coRLSR optimization problem can be
solved by Algorithm 4.1 with Gv = LT

v Lv + ηKv + 2(V − 1)λUT
v Uv.

52 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

Proposition 4.4 The semi-parametric coRLSR optimization problem can
be solved by Algorithm 4.1 with Gv = L2

v + ηLv + 2(V − 1)λUT
v Uv.

With all variables defined as in the corresponding non-parametric and semi-
parametric coRLSR definitions and proofs, we can prove both propositions
together. Note, however, the slight notational difference between the gradient
in the following proof and the gradient in the proof of Proposition 4.1. In
the following we use the symmetry of Lv to replace it by its transpose LT

v for
notational harmony with the gradient in the proof of Proposition 4.2.
Proof From the respective proofs we have

∇αvQ(α) = 2Gvαv − 2LT
v yv − 4λ

∑
u:u 6=v

UT
v Uuαu.

Now, we can compute the gradient directions using predictions (ŷu = Uuαu)
on the unlabeled data as

∇αvQv (αv,yv, {ŷu}u) = 2Gvαv − 2Lvyv − 4λUT
v

∑
u:u 6=v

ŷu.

While the gradient direction itself is only given jointly

− (∇α1Q1 (α1,y1, {ŷu}u) ,∇α2Q2 (α2,y2, {ŷu}u) , . . .)T ,

the global minimum can also be found by block coordinate descent (Bert-
sekas, 1999) over each view v. This only requires setting the block gradient
to zero, i.e., solving

Gvαv = LT
v yv + 2λUT

v

∑
u:u 6=v

ŷu .

As Gv is strictly positive definite and the objective function is convex, block
coordinate descent converges. �

4.3.2 Analysis of Distributed CoRLSR
Block coordinate descent has similar convergence properties as steepest de-
scent (Bertsekas, 1999) which reduces the error rate in each iteration by
a factor depending on the largest and the smallest eigenvalue of the Hes-
sian. Assuming that this factor is 1/δ, the error after N ∈ N iterations is re-
duced by a factor 1/δN . Let n = maxv nv. Given that all labels are from the
interval [−1, 1], we can upper bound the starting error Q(0)−Q(α∗) ≤ V n,

4.4. EMPIRICAL EVALUATION 53

where α∗ is the optimal solution. Let α(N) be the solution of Algorithm 4.1
after N iterations. To achieve an error reduction factor of at least ε, i.e.,
an upper bound on the error of Q

(
α(N)

)
− Q(α∗) ≤ V nε, we must have

N ≥ log1/δ ε = logδ
1
ε

iterations.
The matrices G−1

v in Algorithm 4.1 can be computed in time O(m3) and
O(mn2) for non-parametric and semi-parametric coRLSR, respectively. It
needs to be computed only once and can be computed at the same time for
all sites. Step 4 of Algorithm 4.1 can then be computed in time O (V (m+ n)2)
for non-parametric coRLSR and O(V mn) for semi-parametric coRLSR. As
each step has to be performed at each site, each iteration takesO (V 2(m+ n)2)
or O(V 2mn) time. Thus to achieve an error reduction factor of at least ε, Al-
gorithm 4.1 takesO

(
m3 + V 2(m+ n)2

⌈
log∆

1
ε

⌉)
andO

(
mn2 + V 2mn

⌈
logδ

1
ε

⌉)
time, respectively. Similarly, in each iteration, V m numbers have to be
broadcasted. If we consider the machine precision as constant, this requires
broadcasting O

(
V m

⌈
logδ

1
ε

⌉)
bits to achieve an error reduction by the factor

ε.

4.4 Empirical Evaluation
In this section we summarize experiments comparing regular RLSR with non-
parametric and semi-parametric coRLSR on benchmark regression datasets.

In all experiments we use a Gaussian kernel k(x,x′) = exp(−‖x−x′‖2/σ2)
with σ2 = 1/n2

∑n
i,j=1 ‖xi − xj‖2 and η = (

∑n
i=1 ‖xi‖/n)−1 as the regular-

ization parameter. Note, that σ and η depend only on the labeled examples;
in the case of multiple views, σv and ηv are computed from the attributes in
the respective view v. We report scaled root mean square errors (rmse)

rmse(f) =
1

max yi

√√√√ 1

m

m∑
i=1

(f(xi)− yi)2.

which allows for viewing all results in the same figure.

4.4.1 UCI Experiments
The UCI repository (Newman et al., 1998) contains 63 data sets with con-
tinuous target attributes. We omit data sets containing less than 50 ex-
amples and/or less than 4 attributes. We leave out the largest 20 data sets
because of memory problems in Matlab with inverting the matrices for the
non-parametric case. On the remaining 32 data sets we perform a 10-fold ‘in-
verse’ cross validation, i.e., in each run we use one fold as labeled examples

54 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

Figure 4.1: Pairwise rmse for non-parametric coRLSR, semi-parametric
coRLSR, and regular RLSR over 32 UCI data sets.

and the other 9 folds as unlabeled and holdout examples. In each run the
available attributes are split randomly into two disjoint sets. The results are
averages over 20 such runs. In all experiments we use λ = 1/10. The results
are shown in Figure 4.1 where error bars indicate the standard error.

In Figure 4.1 (top left) we plot the rmse of regular RLSR for all 32 UCI
problems (x-axis) against the corresponding rmse values of non-parametric
coRLSR (y-axis). Thus, each point refers to a UCI problem. The dashed line
marks the threshold where both methods perform equally well. Points below
this line indicate that non-parametric coRLSR has a lower rmse for these data
sets compared to regular RLSR. Figure 4.1 (top right) shows the analog for
regular RLSR and semi-parametric coRLSR. Both comparisons show that the
multi-view algorithms outperform the baseline in most of the 32 problems.
Figure 4.1 (bottom) compares the two multi-view methods. Semi-parametric
coRLSR performs slightly worse than non-parametric coRLSR.

While the figures indicate that coRLSR outperforms the baseline RLSR
method over all datasets, we want to confirm this hypothesis in a sound
statistical test. We use the null hypotheses that the algorithms perform
equally well. As suggested recently by Demšar (2006) we use the Wilcoxon
signed ranks test.

4.4. EMPIRICAL EVALUATION 55

The Wilcoxon signed ranks test is a nonparametric test used to detect
shifts in populations given a number of paired samples. The underlying idea
is that under the null hypothesis the distribution of differences between the
two populations is symmetric around zero. The procedure is as follows: (i)
compute the differences between the pairs, (ii) determine the ranking of the
absolute differences, and (iii) sum over all ranks with positive and negative
difference to obtain W+ and W−, respectively. The null hypothesis can be
rejected if W+ (and W− depending on whether we need a one-sided or a two-
sided test) is located in the tail of the null distribution which has a sufficiently
small probability.

The critical value of the one-sided Wilcoxon signed ranks test for 32 sam-
ples on a 0.5% significance level is 128. The test statistic for comparing
non-parametric coRLSR against RLSR is 54 < 128, the test statistic for
comparing semi-parametric coRLSR against RLSR is 66 < 128, and finally
the test statistic for comparing parametric coRLSR against semi-parametric
coRLSR is 63 < 128. Hence, on this significance level we can reject all three
null hypotheses. We conclude that the multi-view algorithms significantly
outperform regular RLSR and that non-parametric coRLSR is the best re-
gression method of our study.

4.4.2 Results for KDD Cup 2004 data set
In the KDD Cup data set, the task is to predict the amount of money do-
nated to a charity. The original data set comes with 479 attributes. We use
a binary encoding of nominal attributes with fewer than 200 distinct val-
ues. Since there are many missing values we add an indicator attribute for
each continuous attribute. The indicator equals 1 if the actual value is miss-
ing and 0 otherwise. The modified data set contains 95412 training examples
with 5551 attributes. We use a resampling approach to adjust λ. For a fixed
λ we draw a specified number of labeled and unlabeled examples and dis-
tinct holdout examples at random in each iteration. We average the rmse on
the holdout set over 25 runs with distinct, randomly drawn attribute splits.
We compare an equal number of parameter values for all methods. For each
problem we fix the apparently optimal λ for all methods and re-evaluate
the rmse for these parameter settings by again averaging over 25 runs with
distinct resampled training and holdout sets.

In order to explore the influence of unlabeled examples we use 100 labeled
and 200 holdout examples and vary the number of unlabeled examples. The
results are shown in Figure 4.2 (left). For 100 labeled and no unlabeled
examples both multi-view algorithms have lower rmse compared to the base-
line by simply averaging the predictions of the two views. As the number of

56 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

Figure 4.2: Left: Results on the KDD Cup 98 data set with 100 labeled
instances and varying numbers of unlabeled ones. Right: Execution times.

Table 4.2: Large-scale results on the KDD Cup 98 data set with 100 labeled
instances and 10000, 50000, and 90000 unlabeled examples.

10000 50000 90000
rmse 0.1312± 0.006 0.1078± 0.004 0.1253± 0.006

unlabeled examples increases, the advantage of multi-view over single-view
regression increases further. Again, non-parametric coRLSR turns out to be
the best regression method.

The performance of semi-parametric coRLSR can be further improved by
increasing the number of unlabeled instances. Table 4.2 reports rmse values
for 100 labeled and 10000, 50000, and 90000 unlabeled instances. Note that
non-parametric coRLSR is not feasible for these sample sizes.

Figure 4.2 (right) compares the execution time of regular RLSR, non-
parametric, and semi-parametric coRLSR. The figure shows execution time
for a fixed number of labeled and different numbers of unlabeled examples
and fitted polynomials. The empirical results confirm our theoretical find-
ings. Non-parametric coRLSR is costly in terms of computation time (the
degree of the fitted polynomial is 3). Its approximation is considerably faster
(the fit of semi-parametric coRLSR is a linear function of the number of un-
labeled examples as shown in Proposition 4.2). For any number of unlabeled
datapoints, the runtime of semi-parametric coRLSR is comparable to that of
regular RLSR.

4.5. CONCLUSIONS 57

4.5 Conclusions
In this chapter we proposed co-regularized least squares regression (coRLSR),
a novel semi-supervised regression algorithm based on the co-learning frame-
work. While coRLSR like many other semi-supervised or transductive ap-
proaches has cubic runtime complexity in the amount of unlabeled data, we
proposed a semi-parametric approximation of coRLSR which scales linearly
with the amount of unlabeled data.

Both non-parametric and semi-parametric coRLSR have closed form so-
lutions in the usual centralized learning setting. Additionally, both can be
solved in the less common distributed learning setting where the labeled
data must not be joined at a single site. This can be achieved by an itera-
tive distributed algorithm that only communicates the predictions about the
unlabeled data at each iteration.

Empirical results showed that coRLSR as well as its semi-parametric ap-
proximation clearly outperform traditional regularized least squares regres-
sion even on problems where there is no given feature split. The observed
improvements were achieved by applying co-learning based on a random fea-
ture split which therefore might even be more pronounced when natural
groups of features are available. While non-parametric coRLSR outperforms
its semi-parametric approximation in predictive accuracy, semi-parametric
coRLSR is clearly more desireable than the exact, non-parametric, version
in terms of execution time.

58 CHAPTER 4. CO-REGULARIZED LEAST SQUARES REGRESSION

Chapter 5

Co-perceptrons

In this chapter we leave the field of univariate predictions models and turn
towards predicting structured output variables with a generalized variant of
the perceptron algorithm (Collins and Duffy, 2002; Altun et al., 2003b). The
structural perceptron algorithm minimizes the empirical risk for 0/1 loss and
allows a dual representation that depends only on inner products in joint
input-output spaces. The perceptron allows a dual representation where the
inner product in joint input-output space can efficiently be computed by
kernel functions.

We study a semi-supervised variant of the structured perceptron. The co-
perceptron inherits the advantages of its fully supervised counterpart, that
is, it also minimizes the 0/1 loss and allows for the use of kernel functions.
Moreover, unlabeled examples can be included into the training process by
taking a multi-view approach. The semi-supervised perceptron implements
the consensus maximization principle. Although the (semi-supervised) per-
ceptron relies on a simple but intuitive algorithm, the key insights of this
chapter form the basis of generalized semi-supervised support vector learn-
ing in Chapter 6. Readers who are not familiar with perceptron learning may
find a review of the binary perceptron in Appendix A helpful.

Section 5.1 reports on related work. For the reader’s convenience we
briefly introduce the generalized variant of the single-view perceptron (Collins
and Duffy, 2002; Altun et al., 2003b) in Section 5.2 before presenting its semi-
supervised generalization in Section 5.3. Empirical studies with named entity
recognition problems are presented in Section 5.4. Section 5.5 concludes.

59

60 CHAPTER 5. CO-PERCEPTRONS

5.1 Related Work

In a rapidly developing line of research, many variants of discriminative se-
quence models are currently being explored. Recently studied variants in-
clude maximum entropy Markov models (McCallum et al., 2000), conditional
random fields (Lafferty et al., 2001), perceptron re-ranking (Collins, 2002),
hidden Markov support vector machines (Altun et al., 2003b), label sequence
boosting (Altun et al., 2003a), max-margin Markov models (Taskar et al.,
2004a), case-factor diagrams (McAllester et al., 2004), sequential Gaussian
process models (Altun et al., 2004a), kernel conditional random fields (Laf-
ferty et al., 2004), and support vector machines for structured output spaces
(Tsochantaridis et al., 2004).

De Sa (1994) observes a relationship between consensus of multiple hy-
potheses and their error rates and devises a semi-supervised learning method
by cascading multi-view vector quantization and linear classification. A
multi-view approach to word sense disambiguation combines a classifier that
refers to the local context of a word with a second classifier that utilizes the
document in which words co-occur (Yarowsky, 1995). Blum and Mitchell
(1998) introduce the co-training algorithm for semi-supervised learning that
greedily augments the training set of two classifiers. A version of the Ad-
aBoost algorithm boosts the agreement between two views on unlabeled data
(Collins and Singer, 1999).

Dasgupta et al. (2001) and Abney (2002) give PAC bounds on the error
of co-training in terms of the disagreement rate of hypotheses on unlabeled
data in two independent views. This justifies the direct minimization of the
disagreement. The co-EM algorithm for semi-supervised learning probabilis-
tically labels all unlabeled examples and iteratively exchanges those labels
between two views (Nigam and Ghani, 2000; Ghani, 2002). Muslea et al.
(2002) extend co-EM for active learning and Brefeld and Scheffer (2004)
examine a co-EM wrapper for the support vector machine.

The generalized perceptron is highly related to ranking tasks (Freund
et al., 1998; Collins, 2000) since the goal is to assign the highest value to
the relevant (true) output. The single-view perceptron for structured output
spaces was introduced by Collins and Duffy (2002). They used convolution
kernel functions (Haussler, 1999) for natural language parsing. Earlier models
for parsing relied on hand crafted grammars (Johnson et al., 1999), re-ranking
(Collins, 2000), or maximum likelihood estimates (Johnson, 1998). Altun
et al. (2003b) leverage this approach to support vector machines and explore
label sequence learning tasks with implicit 0/1 loss.

5.2. GENERALIZED PERCEPTRONS 61

5.2 Generalized Perceptrons
The perceptron for structured output spaces (Collins and Duffy, 2002; Altun
et al., 2003b) is a generalized linear model

f(x , y) = 〈w,Φ(x , y)〉, (5.1)

where Φ(x , y) denotes the joint feature representation of input x and output
y . Given the i-th training example (xi, yi), an update is performed if an
alternative output ȳ is decoded instead of the correct yi, that is

yi 6= ŷ = argmax
ȳ∈Y(x)

〈w,Φ(x , ȳ)〉.

This is equivalent to requiring that the inner product of the weights and
the differences of the feature representations of the true pair Φ(xi, yi) and all
alternative labelings ȳ to be positive, that is,

max
ȳ∈Y(xi)

ȳ 6=yi

〈w,Φ(xi, yi)〉 − 〈w,Φ(xi, ȳ)〉 = max
ȳ∈Y(xi)

ȳ 6=yi

〈w,Φ(xi, yi)− Φ(xi, ȳ)〉 > 0

must hold for all training instances 1 ≤ i ≤ n. The generalized update rule
(see also Equation A.10) inherits these difference vectors and has the form

w← w + Φ(xi, yi)− Φ(xi, ȳ). (5.2)

The influence of the correct feature representation is increased while that
of the alternative output is decreased. The update rule 5.2 together with
the initialization w = 0 allows us to rewrite the weight vector in terms of
differences between the training pairs and erroneously decoded outputs

w =
∑

i

∑
ȳ∈Y(xi)

ȳ 6=yi

αiyi ȳ
(
Φ(xi, yi)− Φ(xi, ȳ)

)
, (5.3)

where the αiyi ȳ ∈ N0 act as a counter, detailing how many times the alterna-
tive output ȳ has been decoded instead of the correct output yi of the i-th
example. Here, the true output as second substript is redundant since it is
involved in every update associated with the i-th example but its benefit will
become obvious in the next section. We keep it for the sake of consistency
instead of changing the notation at a later time.

Altun et al. (2003b) use a slightly different notation and propose the use
of pseudo-labels zi(ȳ) that equal +1 if ȳ = yi and −1 otherwise. In terms of
pseudo-labels, Equation 5.3 can be written as

w =
∑

i

∑
ȳ∈Y(xi)

α′i(ȳ)zi(ȳ)Φ(xi, ȳ),

62 CHAPTER 5. CO-PERCEPTRONS

where α′ ∈ N0 are adjusted counts. Notice that the notations are equivalent
and can be translated into each other using the equations α′i(yi) =

∑
ȳ 6=yi

αiyi ȳ

and α′(ȳ) = αiyȳ for all ȳ 6= yi. Substituting Equation 5.3 into Equation 5.1
leads to its equivalent dual formulation

f(x , y) =
∑

i

∑
ȳ∈Y(xi)

ȳ 6=yi

αiyi ȳ

(
〈Φ(xi, yi),Φ(x , y)〉 − 〈Φ(xi, ȳ),Φ(x , y)〉

)
. (5.4)

The dual depends only on inner products in input-output space and can be
computed efficiently by means of dual variables αiyi ȳ ∈ N0 and a compos-
ite kernel k′(xi, yi, ȳ , x , y) = k(xi, yi, x , y) − k(xi, ȳ , x , y), with k(x , y , x ′, y ′) =
〈Φ(x , y),Φ(x ′, y ′)〉. Thus, we can rewrite Equation 5.4 as

f(x , y) =
∑

i

∑
ȳ∈Y(xi)

ȳ 6=yi

αiyi ȳ k
′(xi, yi, ȳ , x , y). (5.5)

Algorithm 5.1 shows the dual perceptron algorithm that consecutively de-
codes each input in the training sample. When the decoding yields an incor-
rectly labeled sequence ȳ for the i-th example, instead of the correct sequence
yi, then the corresponding αiyȳ is updated according to

αiyi ŷ ← αiyi ŷ + 1. (5.6)

After an error has occurred, the correct sequence receives more, and the
incorrect prediction receives less influence. Since all initial αiyi ȳ = 0, it
suffices to store only those sequences in memory that have been used for an
update.

A simple generalization of Novikoff’s theorem (Novikoff, 1962), gives con-
vergence guarantees of the perceptron in terms of an upper bound on the
number of update steps given by t ≤ (r/γ̄)2‖w‖2, where r denotes the the
radius of the smallest hypersphere enclosing all difference vectors (Collins,
2002; Altun et al., 2003b). As in the regular case, for the theorem to hold a
solution preserving a functional margin γ̄ > 0 must exist.

5.3 Co-perceptrons
In this section we extend the perceptron for structured output variables to
semi-supervised learning. We focus on two-view learning, however, the pre-
sented results are easily generalized to V -view learning with V ≥ 1. The
co-perceptron implements the consensus maximization principle, that is, it

5.3. CO-PERCEPTRONS 63

Table 5.1: Dual Perceptron Algorithm

Input: Labeled data (x1, y1), . . . , (xn, yn).

1 I n i t i a l i z e a l l αiyi ȳ = 0 .
2 repeat
3 f o r i = 1, . . . , n
4 ŷ = argmax

ȳ∈Y(xi)
f(xi, ȳ) = argmaxȳ

∑
j

∑
ȳj 6=yj

αjyj ȳ k(xj , yj , ȳj , xi, ȳ)

5 i f yi 6= ŷ then
6 Increment αiyi ŷ ← αiyi ŷ + 1
7 end
8 end
9 u n t i l convergence

Output: Trained hypothesis f(x , y).

minimizes the error on the labeled examples and maximizes the agreement
between two hypotheses on the unlabeled examples.

In the semi-supervised setting we are given a set of n labeled examples
(x1, y1), . . . , (xn, yn) and m unlabeled examples xn+1, . . . , xn+m. We model the
views by utilizing two joint feature representations Φ1(xi, yi) and Φ2(xi, yi)
that live in distinct vector spaces. We assume that both feature maps are
sufficient for the decoding strategy. The joint decision function is defined as
the sum of the decision functions in the two views,

f(x , y) = f 1(x , y) + f 2(x , y). (5.7)

In each view relation 5.3 holds and either decision function has the form

f v(x , y) =
n+m∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
iyi ȳ k

v(xi, yi, ȳ , x , y), (5.8)

where v = 1, 2. The composite kernel kv is defined analogously to the single-
view case for v = 0, 1 by

kv(xi, yi, ȳ , x ′, y ′) = 〈Φv(xi, yi),Φ
v(x ′, y ′)〉 − 〈Φv(xi, ȳ),Φv(x ′, y ′)〉. (5.9)

According to the consensus maximization principle, the semi-supervised per-
ceptron algorithm now has to minimize the number of errors for labeled
examples and the disagreement for unlabeled examples.

64 CHAPTER 5. CO-PERCEPTRONS

Table 5.2: Dual Co-perceptron Algorithm

Input: Labeled (x1, y1), . . . , (xn, yn) and unlabeled data xn+1, . . . , xn+m, pa-
rameter Cu, number of iterations tmax.
1 I n i t i a l i z e a l l αv

iyi ȳ = 0 , v = 1, 2 .
2 f o r t = 1, . . . , tmax

3 f o r i = 1, . . . , n + m

4 Retr i eve ŷ1 = argmaxy∈Y(xi)

n+m∑
j=1

∑
ȳ 6=yj

α1
jyj ȳ k1(xj , yj , ȳ , xi, y) .

5 Ret r i eve ŷ2 = argmaxy∈Y(xi)

n+m∑
j=1

∑
ȳ 6=yj

α2
jyj ȳ k2(xj , yj , ȳ , xi, y) .

6 i f i−th example i s a l a b e l e d example
7 i f yi 6= ŷv , v = 1, 2
8 Update : αv

iyi ŷv ← αv
iyi ŷv + 1

9 end
10 e l s e
11 i f ŷ1 6= ŷ2

12 Update : α1
jŷ2 ŷ1 ← α1

jŷ2 ŷ1 + Cu and α2
jŷ1 ŷ2 ← α2

jŷ1 ŷ2 + Cu}
13 end
14 end
15 end
16 end

Output: Combined hypothesis f(x , y) = f 1(x , y) + f 2(x , y).

Each view v = 0, 1 predicts the output ŷv for an input i, whether it is
labeled or unlabeled, analogously to the single-view perceptron according to

ŷv = argmax
ȳ∈Y(xi)

f v(xi, ȳ). (5.10)

For labeled examples the goal is to minimize the error of either hypothesis.
Thus, the perceptron update rule for labeled examples remains unchanged;
if view v misclassifies the i-th labeled example, that is yi 6= ŷv

j , then the
respective parameters are updated according to Equation 5.11,

αv
iyi ŷv

j
← αv

iyi ŷv
j

+ 1. (5.11)

If the views disagree on the j-th unlabeled example – that is, ŷ1
j 6= ŷ2

j –
updates have to be performed that reduce the discord. Intuitively, each
decision is passed towards that of the peer view. In other words, we treat

5.4. EMPIRICAL RESULTS 65

the prediction of each view v as true label for the peer view v̄. Therefore,
in the case of a disagreement on the j-th unlabeled example both views are
updated simultaneously according to Equation 5.12.

α1
jŷ2

j ŷ1
j
← α1

jŷ2
j ŷ1

j
+ Cu; α2

jŷ1
j ŷ2

j
← α2

jŷ1
j ŷ2

j
+ Cu (5.12)

The parameter 0 ≤ Cu ≤ 1 determines the influence of a single unlabeled
example. If Cu = 1, each example has the same influence whether it is labeled
or unlabeled. Once the co-perceptron is trained, the joint decision function
(Equation 5.7) predicts outputs for unseen, new inputs x . Algorithm 5.2
shows the co-perceptron algorithm.

5.4 Empirical Results
In our empirical evaluation we concentrate on named entity recognition
(NER) problems. We study the benefit of semi-supervised label sequence
learning and compare the co-perceptron to its single-view counterpart and a
hidden Markov model. The latter is trained with multi-Bernoulli distributed
observation probabilities. We use the data set provided for task 1A of the
Biocreative challenge (Yeh et al., 2005) and the Spanish news wire article
corpus of the shared task of CoNLL 2002 (Sang, 2002).

In each experiment we randomly draw a specified number of labeled and
unlabeled training and holdout sentences without replacement in each itera-
tion. We assure that each label occurs at least once in the labeled training
data; otherwise, we discard and draw again. We first optimize parameter Cu

using resampling; we then fix Cu and present curves that show the average
token-based error over 100 randomly drawn training and holdout sets. The
baseline methods HMM and single-view perceptron are trained on concate-
nated views; error bars indicate standard error.

5.4.1 Biocreative Data Set
The Biocreative data contains 7500 sentences from biomedical papers ran-
domly selected from the PubMed/MedLine data base. The goal is to recog-
nize gene and protein names. We discriminate tokens that are parts of gene
names against all other tokens that are annotated with part-of-speech tags
according to the Penn tree bank (Marcus et al., 1993). View 1 consists of the
token itself together with letter 2, 3, and 4-grams; view 2 contains surface
clues like capitalization, inclusion of Greek symbols, numbers, and others as
documented in Table 5.3. Hakenberg et al. (2005) detail the usefullness of

66 CHAPTER 5. CO-PERCEPTRONS

Table 5.3: Feature Classes used in the Biocreative Experiments

Feature Example
Token Sro7
2, 3, 4-grams of token
initial uppercase Msp
all chars are upper case MMTV
mixed upper and lower case kDa
digit, dot, digit 75.0
numbers HSF1
special symbols ICAM-1
greek symbols alpha
length of token
positions of upper case characters

Figure 5.1: Perceptron learning curves for Biocreative. Displayed are
HMM (dotted), single-view perceptron (dashed), and co-perceptron (solid).

the extracted features by a recursive feature elimination approach. In both
views we draw features from a window of length 5.

Figure 5.1 (left) shows learning curves for HMM, single-view and multi-
view perceptrons for the Biocreative task. The two perceptrons significantly
outperform the generative HMM. Except for one point, the co-perceptron
beats its single-view, purely supervised counterpart significantly. In Figure
5.1 (right) we vary the number of unlabeled sequences for the Biocreative
data set. As the number of unlabeled data increases, the advantage of multi-
view over single-view sequence learning increases further. The co-perceptron
utilizes the additional unlabeled examples effectively.

5.4. EMPIRICAL RESULTS 67

Table 5.4: Feature classes used in the Spanish news wire experiments

Feature Example
Token informaciones
initial uppercase Madrid
initial lowercase especial
uppercase at position t CrimeNet
lowercase at position t especial
digit, dot, digit 34.32
numbers 1975
special symbols Lasa-Zabala
token between brackets/quotes el Grupo ¨Magenta¨
initial token Por . . .

Figure 5.2: Perceptron learning curves for Spanish news wire. Dis-
played are HMM (dotted), single-view perceptron (dashed), and co-perceptron
(solid).

5.4.2 Spanish News Wire

The CoNLL2002 data consists of sentences from a Spanish news wire archive
and contains 9 label types which distinguish person, organization, location,
and other names. We utilize all 9 labels for our experiments. We use 3100
sentences of between 10 and 40 tokens; leading to approximately 24000 dis-
tinct tokens in the dictionary. Moreover, we extract surface clue features
such as capitalization, numbers, and special symbol features (see Table 5.4
for examples). We represent each sentence by a token view and a view of
surface clues.

Figure 5.2 (left) details the learning curves for the Spanish news wire
data set. Again, the HMM performs most poorly and the co-perceptron

68 CHAPTER 5. CO-PERCEPTRONS

outperforms the single-view perceptron significantly. In Figure 5.2 (right)
we fix the number of labeled examples and vary the number of unlabeled
examples. We observe a similar effect as for Biocreative data set. Increasing
the number of unlabeled instances leads to lower error rates. Notice that for
5 labeled and 25 unlabeled examples the difference between both perceptrons
and the hidden Markov model is larger than 10%.

5.4.3 Execution Time
Figure 5.3 (left) plots execution time against training set size. The per-
formance benefits are at the cost of significantly longer training processes.
The observed execution time of co-perceptron scales between linearly and
quadratically with the number of unlabeled examples.

5.4.4 Feature splits
So far, we split the available features into a token and letter n-gram view
and a surface clue view. In this section, we compare this split to a random
feature split and to a split in which view 1 contains all odd, and view 2
all even features. Hence, each view contains half of the token features as
well as half of the surface clues. We utilize the Spanish news wire data set
and average the results from over 100 runs with randomly drawn labeled and
unlabeled instances for each split and method. We also draw distinct random
feature splits in each repetition.

Surprisingly, Figure 5.3 (right) shows that random splits work slightly
better than the token versus surface clues split. Moreover, Figure 5.3 (right)
shows that the odd-even split performs significantly better in two out of three
cases than the token versus surface clue split.

Hence, our experiments show that even though multi-view learning using
the split of token versus surface clues leads to a substantial improvement
over single-view learning, a random or odd-even split lead to an even better
performance. Since the performance of our initial split is below average, it is
clear that there has to be a feature split that lies above the average. Finding
such a split remains an open challenge.

5.5 Conclusions
Starting from the structural perceptron, we constructed a semi-supervised
learning method in joint input-output spaces. We derive the co-perceptron

5.5. CONCLUSIONS 69

Figure 5.3: Left: Execution time for single-view perceptron (dashed) and
co-perceptron (solid). Right: Error for different splits of features into views
for Spanish news wire.

that implements the principle of consensus maximization between hypothe-
ses. Our experiments with named entity recognition problems show that,
on average, this method utilizes unlabeled data effectively and significantly
outperforms their purely supervised counterparts structured perceptron and
HMM.

Although we focus on two-view learning, all results in this chapter can
easily be generalized to the V -view case with V ≥ 1. In this case, the rate of
disagreement is evaluated pairwise between all views as proposed in Chapter
4. We derive a self-training variant of the single-view perceptron in the case
v = 1 and the supervised perceptron in the case v = 1 and m = 0. Moreover,
co-perceptron generalizes the binary perceptron.

We observed that random feature splits perform better than splitting the
features into a token view and a view of surface clues. Nevertheless, the
multi-view perceptron outperforms its supervised counterparts even for the
initial weak split. Finding a good feature split into two (or more) views is
hardly tractable since one has to take all possible partitionings or clusterings
into account. From a statistical point of view, this is equivalent to finding a
factorization of the attributes that fulfills some criteria, for instance a high
within-cluster correlation and a small between-cluster correlation (Jakulin
and Bratko, 2004).

70 CHAPTER 5. CO-PERCEPTRONS

Chapter 6

Co-support Vector Learning

In this chapter we present semi-supervised support vector machines for struc-
tured output spaces (coSVMs). Similar to the co-perceptron, coSVMs imple-
ment the consensus maximization principle but take a large margin approach
in joint input-output space. The latter leads to confident predictions and a
solid theoretical underpinning. Moreover, coSVMs allows the incorporation
of arbitrary loss functions and provide sparse solutions in the number of used
constraints.

We begin with a review of related work in Section 6.1 and the structural
SVM (Tsochantaridis et al., 2005) in Section 6.2 that extends the binary
support vector machine (Appendix A) to structured output variables. The
semi-supervised coSVM is then presented in Section 6.3 in greater detail
for slack-rescaling losses. We provide details on the optimization strategy
in Section 6.4 and report the empirical results in Section 6.5. Section 6.6
concludes.

6.1 Related Work
Due to the success of discriminative structured prediction models, several
algorithms have been explored that utilize joint spaces of input and output
variables; these include max-margin Markov models (Taskar et al., 2004a),
kernel conditional random fields (Lafferty et al., 2004), Gaussian processes
for segmenting and annotating sequences (Altun et al., 2004a), and sup-
port vector machines for structured output spaces (Tsochantaridis et al.,
2005). These methods utilize kernels to compute the inner product in input-
output space. Not only does this approach allow us to capture long-distance
dependencies between inputs and outputs, but it is also sufficiently versa-
tile to cover other structures of outputs, such as (parse) trees, lattices, or

71

72 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

graphs. An application-specific learning method is constructed by defining
appropriate features, and choosing a decoding procedure that efficiently cal-
culates the argmax, exploiting the dependency structure of the features. For
instance, the decoder can be a chart-parser for tree-structured outputs, or a
Viterbi algorithm when joint features are constrained to depend only on ad-
jacent outputs. Nguyen and Guo (2007) compare state-of-the-art approaches
in sequential learning and Rätsch and Sonnenburg (2007) propose efficient
decomposition techniques allowing for large-scale experiments.

Multi-view methods naturally allow for the inclusion of unlabeled exam-
ples in discriminative learning. The co-training (Blum and Mitchell, 1998)
and co-EM algorithms (Nigam and Ghani, 2000) iteratively increment the
consensus of independent hypotheses by exchanging conjectured labels for
unlabeled data. Recently, Farquhar et al. (2006) proposed a fully supervised
variant of a co-support vector machine that minimizes the training error as
well as the disagreement between two views. Dasgupta et al. (2001) give
PAC bounds on the error of co-training in terms of the disagreement rate of
hypotheses on unlabeled data in two independent views. A corollary of their
results that holds under general assumptions is the inequality

Pr(f 1 6= f 2) ≥ max{Pr(err(f 1)), P r(err(f 2))}.

That is, the probability that two independent hypotheses disagree upper
bounds the error rate of either hypothesis. Thus, the strategy of semi-super-
vised multi-view learning can be stated as: Minimize the error for labeled
examples and maximize the agreement for unlabeled examples.

Altun et al. (2006) propose a semi-supervised approach to label sequence
learning by integrating Laplacian priors into structured large margin clas-
sifiers for pitch accent prediction. Xu et al. (2006) derive unsupervised
M3Networks by employing SDP relaxation techniques and Lee et al. (2007)
study semi-supervised CRFs and include unlabeled data via an entropy cri-
terion.

6.2 SVMs for Structured Output Variables
Before we present the derivation of the SVM for structured output variables
recall the generalized perceptron in Chapter 5 whose goal is to learn a linear
discriminant function f : X × Y → R given by f(x , y) = 〈w,Φ(x , y)〉 that
correctly decodes any output yi of the training sample (xi, yi); that is,

yi = argmax
ȳ∈Y

f(xi, ȳ).

6.2. SVMS FOR STRUCTURED OUTPUT VARIABLES 73

This is the case if Equation 6.1 holds for all 1 ≤ i ≤ n.

f(xi, yi)− max
ȳ∈Y(xi)

ȳ 6=yi

f(xi, ȳ) > 0 (6.1)

We make Equation 6.1 slightly more conservative by incorporating a con-
fidence tube around the decision hyperplane or, in other words, we take a
large margin approach and require the existence of γ̄ ≥ 0 such that

∀n
i=1 f(xi, yi)− max

ȳ∈Y(xi)
ȳ 6=yi

f(xi, ȳ) ≥ γ̄ (6.2)

holds. The scalar γ̄ is called the functional margin and depends on the scaling
of w. Its analogue, the geometrical margin, is independent of the weights and
given by γ = γ̄

‖w‖ . Support vector machines enforce confident predictions by
maximizing the geometrical margin γ; setting γ̄ = 1 leads us directly to the
following hard margin optimization problem.

Optimization Problem 6.1 (Primal Hard Margin SVM) Given n la-
beled examples (x1, y1), . . . , (xn, yn); the primal hard margin support vector
optimization problem is defined as

min
w

1

2
‖w‖2

subject to the constraints ∀n
i=1, ∀ȳ 6=yi

〈w,Φ(xi, yi)− Φ(xi, ȳ)〉 ≥ 1.

The shortcoming of Optimization Problem 6.1 is its divergence in case that at
least one of the constraints cannot be fulfilled. Thus, in general, we have to
allow pointwise relaxations of the hard margin constraints by slack variables.
There are several ways of introducing slack variables. For instance, slack
variables may penalize every margin violation for every constraint which is
equivalent to introducing a slack ξ(ȳ) for every ȳ 6= yi (Weston and Watkins,
1998; Har-Peled et al., 2002). Another possibility is to bind each slack vari-
able to an input example (Crammer and Singer, 2001) and let ξi take the
maximal violation caused by that example. We follow the latter approach
since it leads to a tight upper bound on the empirical risk. Each slack vari-
able ξi is bound to an input example xi, leading to the following soft-margin
optimization problem.

Optimization Problem 6.2 (Primal Soft Margin SVM) Given labeled
examples, joint feature mapping Φ, let C > 0 and r = 1, 2; the primal soft-
margin support vector optimization problem is defined as

min
w,ξ

1

2
‖w‖2 +

C

r

n∑
i=1

ξr
i

74 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

subject to the constraints

∀n
i=1,∀ȳ 6=yi

〈w,Φ(xi, yi)− Φ(xi, ȳ)〉 ≥ 1− ξi
∀n

i=1 ξi ≥ 0.

The parameter r = 1, 2 denotes a linear or quadratic penalization of the
error, respectively, and C > 0 determines the trade-off between margin max-
imization and error minimization. The objective is precisely the regularized
empirical risk with hinge loss. The sum

∑
i ξi upper bounds the empirical

risk with common 0/1 loss. This, however, might not be the best choice for
several applications (Joachims, 2005). Recently, two distinct ways of inte-
grating a loss function ∆ : Y×Y → R

+
0 into structured optimization problems

have been discussed, a margin-rescaling approach (Taskar et al., 2004a) and
a slack-rescaling approach (Tsochantaridis et al., 2005).

Margin-rescaling can be intuitively motivated by recalling that the size of
the margin γ = γ̄/‖w‖ quantifies the confidence in rejecting an erroneously
decoded output ȳ . Reweighting γ̄ with the current loss ∆(yi, ȳi) leads to a
weaker rejection confidence when yi and ȳ are similar, while severe differences
among them imply a large rejection threshold. Thus, rescaling the margin by
the loss implements the intuition that the confidence of rejecting a mistaken
output is proportional to its error. As it will turn out later, margin-rescaling
can always be applied when the loss function decomposes over the latent
variables of the output structure. This assumption on the loss function leads
to a simple integration of the loss into the decoding of the best runner-up.
The SVM with margin-rescaling is detailed in Optimization Problem 6.3 and
equivalent to applying the augmented hinge loss `m∆ in Equation 2.5.

Optimization Problem 6.3 (SVM, Margin-rescaled Loss) Given n la-
beled examples, decomposable loss function ∆ : Y × Y → R

+
0 , joint feature

mapping Φ, tradeoff C > 0, and r = 1, 2; the primal SVM optimization
problem with margin-rescaling loss is defined as

min
w,ξ

1

2
‖w‖2 +

C

r

n∑
i=1

ξr
i

subject to the constraints

∀n
i=1,∀ȳ 6=yi

〈w,Φ(xi, yi)− Φ(xi, ȳ)〉 ≥ r

√
∆(yi, ȳ)− ξi

∀n
i=1 ξi ≥ 0.

6.2. SVMS FOR STRUCTURED OUTPUT VARIABLES 75

Table 6.1: SVM Optimization Algorithm with Slack-rescaling

Input: i-th labeled example (xi, yi), Sv
j 6=i, C, r, repetitions rmax.

1 repeat
2 I n i t i a l i z e Sv

i = ∅ , αv
iyi ȳ = 0 f o r a l l ȳ ∈ Y(xi)

3 ȳv
i = argmaxȳ 6=yi

(1− 〈wv,Φv
i,yi,ȳ〉)

r
√

∆(yi, ȳ)
4 ξv

i = maxȳ∈Sv
i
{(1− 〈w,Φv

i,yi,ȳ〉)
r
√

∆(yi, ȳ)}
5 i f 〈wv,Φv

i,yi,ȳv
i
〉 < 1− ξv

i
r
√

∆(yi,ȳv
i)

6 Sv
i = Sv

i ∪ {ȳv
i }

7 Optimize αv
iyi ȳ over a l l ȳ ∈ Sv

i with Sv
j 6=i f i x e d

8 ∀ȳ ∈ Sv with αv
iyi ȳ = 0 : Sv

i = Sv
i \{ȳ}

9 end
10 u n t i l margin c o n s t r a i n t s a t i s f i e d or rmax r e p e t i t i o n s

Output: Optimized αv
i and working set Sv

i .

Margin-rescaling may lead to a situation where the contribution of an ex-
ample to the global solution depends only on irrelevant outputs ȳ since the
maximum over erroneous outputs maxȳ 6=yi

(〈w,Φ(xi, ȳ)〉 + ∆(yi, ȳ)) may be
dominated by the loss function. In this case only those examples are decoded
that realize a high loss, irrespectively of their appropriateness determined by
the inner product.

A different approach is taken by Tsochantaridis et al. (2005), who propose
to rescale the slack variables instead of the functional margin; thus, the error,
related to that example, is rescaled by the loss. Moreover, the slack-rescaling
approach still allows the sum

∑
ξi to be interpreted as an upper bound on

the empirical risk. The slack-rescaling variant is equivalent to applying the
augmented hinge loss `s∆ depicted in Equation 2.6. Optimization Problem
6.4 with arbitrary loss functions ∆ and slack-rescaled losses can be stated as
follows.

Optimization Problem 6.4 (SVM, Slack-rescaled Loss) Given labeled
examples, loss function ∆ : Y × Y → R

+
0 , joint feature mapping Φ, tradeoff

C > 0, and r = 1, 2; the primal SVM optimization problem with slack-
rescaling loss is defined as

min
w,ξ

1

2
‖w‖2 +

C

r

n∑
i=1

ξr
i

76 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

subject to the constraints

∀n
i=1,∀ȳ 6=yi

〈w,Φ(xi, yi)− Φ(xi, ȳ)〉 ≥ 1− ξi
r
√

∆(yi, ȳ)

∀n
i=1 ξi ≥ 0.

Tsochantaridis et al. (2005) derive corresponding 1- and 2-norm dual opti-
mization problems and propose an iterative optimization algorithm that is
proven to converge to the optimal solution in polynomial time. Notice, if ∆
is the 0/1 loss, Optimization Problems 6.2, 6.3, and 6.4 are equivalent.

6.3 Co-support Vector Machines
We introduced the V -learning objective as the joint minimization of the V
regularized empirical risks in addition to the disagreement of all pairs of
views. The objective function of SVMs already minimizes an upper bound
on the regularized empirical risk. In the remainder of this chapter we focus
on two-view learning although all results are easily generalizable to arbitrary
V -view learning. To avoid cluttering the notation, we will also focus on
the optimization of one view; the superscript v̄ indicates variables of the
respective peer view.

Thus, in the co-learning setting that we discuss here we have n labeled
examples (x1, y1), . . . , (xn, yn) and m unlabeled inputs xn+1, . . . , xn+m. For
two-view learning, the joint decision function is given by the sum

f(x , y) = f 1(x , y) + f 2(x , y),

where each view f v(x , y) = 〈wv,Φv(x , y)〉, v = 1, 2 has its respective feature
map. According to the consensus maximizing principle, the co-support vector
machine now has to minimize the number of errors for labeled examples and
the disagreement for the unlabeled examples. For view v = 1, 2 this is the case
if the labeled examples fulfill Equation 6.2, while for the unlabeled examples

f v(xi, ŷ v̄
i)− max

ȳy 6=ŷ v̄
i

f v(xi, ȳ) = γv
i ≥ 1 (6.3)

holds for all i = n+ 1, . . . , n+m. We call γv
i the margin realized by the i-th

example in view v. The structure ŷ v̄
i denotes the prediction of the peer view

v̄ that is treated as correct output for the i-th unlabeled input example.
The previous section showed that margin violations induced by a high

loss should be penalized more severely than a violation caused by an output
that is close to the true target. This can be done by either multiplying the

6.3. CO-SUPPORT VECTOR MACHINES 77

Table 6.2: CoSVM Optimization Algorithm with Slack-rescaling

Input: i-th unlabeled example xi, S1
j 6=i, S2

j 6=i, C, Cu, r, repetitions rmax.

1 I n i t i a l i z e S1
i = S2

i = ∅ , α1
iŷ?

i ȳ = α2
iŷ?

i ȳ = 0 f o r a l l ȳ ∈ Y(xi)
2 repeat
3 f o r each view v = 1, 2
4 ŷv

i = argmaxȳ〈wv,Φv(xi, ȳ)〉
5 ȳv

i = argmaxȳ 6=ŷv
i
(1− 〈wv,Φv

i,ŷv
i ,ȳ〉) r

√
∆(ŷv

i , ȳ)

6 ξv
i = maxȳ∈Sv

i
{(1− 〈w,Φv

i,ŷv
i ,ȳ〉) r

√
∆(ŷv

i , ȳ)}
7 γv

i = fv(xi, ŷv
i)− fv(xi, ȳv

i)
8 end
9 i f ŷ1

i 6= ŷ2
i ∨ 〈wv,Φv

i,ŷv
i ,ȳv

i
〉 < 1− ξv

i
r
√

∆(ŷv
i ,ȳv

i)
, v = 1, 2

10 f o r each view v = 1, 2
11 Subs t i tu t e former t a r g e t yv

i = ŷ v̄
i

12 i f [[ŷ1 6= ŷ2]]
13 Sv

i = Sv
i ∪ {ŷv

i }
14 e l s e
15 Sv

i = Sv
i ∪ {ȳv

i }
16 end
17 Optimize αv

iŷ v̄
i ȳ over a l l ȳ ∈ Sv

i with Sv
j 6=i f i x e d

18 ∀ȳ ∈ Sv with αv
iŷ v̄

i ȳ = 0 : Sv
i = Sv

i \{ȳ}
19 end
20 end
21 u n t i l consensus or rmax r e p e t i t i o n s

Output: Optimized α1
i and α2

i , sets S1
i and S2

i .

functional margin by the actual loss or equivalently by rescaling the slack
variables with the inverse loss. In the remainder of this section, we follow
the latter approach and present co-support vector learning with slack-rescaled
losses in greater detail. Nevertheless, all results can easily be obtained for a
margin-rescaling approach. We begin with the primal optimization problem
and derive the corresponding duals in a subsequent step.

Optimization Problem 6.5 (Primal CoSVM, Slack-rescaling) Given
n labeled examples and m unlabeled examples, loss function ∆, joint feature
mappings Φ1 and Φ2, let C,Cu > 0, r = 1, 2; the primal support vector

78 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

optimization problem with slack-rescaling loss in view v is defined as

min
wv ,ξv

1

2
‖wv‖2 +

C

r

(
n∑

i=1

(ξv
i)

r + Cu

n+m∑
i=n+1

(min{γ v̄
i , 1})(ξv

i)
r

)
subject to the constraints

∀n
i=1,∀ȳ 6=yi

〈wv,Φv(xi, yi)− Φv(xi, ȳ)〉 ≥ 1− ξv
i

r
√

∆(yi, ȳ)

∀n+m
i=n+1,∀ȳ 6=y(v̄) 〈wv,Φv(xi, y v̄

i)− Φv(xi, ȳ)〉 ≥ 1− ξv
i

r
√

∆(y v̄
i , ȳ)

∀n+m
i=1 ξv

i ≥ 0,

where the superscript v̄ denotes variables from the peer view.

The balancing factor Cu regularizes the influence of the unlabeled data.
Weights of min{γ v̄

i , 1} to the slacks ξv
n+1, . . . , ξ

v
n+m relate errors on unlabeled

examples to the margin of the peer view’s prediction. Thus, an unlabeled
sequence satisfying the margin constraint has the same influence in the peer
view as the labeled examples. The sum of the slack variables now consists of
an upper bound on the error for the labeled examples and an upper bound
on the disagreement weighted by the confidence of the peer view’s prediction.

Similarly to the regular support vector machine, the constraints of Opti-
mization Problem 6.5 can be integrated into the objective function by intro-
ducing non-negative Lagrange multipiers αv

iŷ?
i ȳ and βv

i for all i = 1, . . . , n+m

and every ȳ ∈ Y(xi). For r = 1, the corresponding Lagrangian of Optimiza-
tion Problem 6.5 in view v = 1, 2 takes the form

Q(wv, ξv) =
1

2
‖wv‖2 + C

(
n∑

i=1

ξv
i + Cu

n+m∑
i=n+1

(min{γ v̄
i , 1})ξv

i

)
−

n+m∑
i=1

βv
i ξ

v
i

−
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
iŷ?

i ȳ

(
〈wv,Φv(xi, ŷ?

i)− Φv(xi, ȳ)〉 − 1 +
ξv
i

∆(ŷ?
i , ȳ)

)
,

where ŷ?
i denotes either the true output for labeled examples, or equals the

prediction of the peer view for unlabeled examples, that is,

ŷ?
i =

{
yi : 1 ≤ i ≤ n

argmaxȳ f
v̄(xi, ȳ) : n+ 1 ≤ i ≤ n+m.

(6.4)

Treating the predictions of the peer view as constant, the Lagrangian of
view v is convex and the Karush Kuhn Tucker (KKT) conditions, that are

6.3. CO-SUPPORT VECTOR MACHINES 79

necessary and sufficient for w and ξ to be a solution, hold. Differentiating
the Lagrangian with respect to the slack variables leads to the following
equations for labeled examples,

∂Q

∂ξi
= C −

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
iyi ȳ

∆(yi, ȳ)
− βv

i
!
= 0,

and unlabeled examples,

∂Q

∂ξj
= (min{γ v̄

j , 1})CuC −
∑

ȳ∈Y(xj)

ȳ 6=argmaxȳ′ fv̄(xj ,̄y′)

αv
j,argmaxȳ′ f v̄(xj ,ȳ ′),ȳ

∆
(
argmaxȳ ′ f

v̄(xj, ȳ ′), ȳ
) − βv

j
!
= 0,

respectively. Using the nonnegativity of α and β leads to the generalized
box-constraints. We obtain

∀n
i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
iyi ȳ

∆(yi, ȳ)
≤ C (6.5)

∀n+m
j=n+1

∑
ȳ∈Y(xj)

ȳ 6=ŷv̄
j

αv
jŷ v̄

j ȳ

∆
(

ŷ v̄
j , ȳ
) ≤ (min{γ v̄

j , 1})CuC, (6.6)

where ŷ v̄
j = argmaxȳ ′ f

v̄(xj, ȳ ′) denotes the prediction of the peer view for the
j-th unlabeled example. Taking the derivative of the remaining part of the
Lagrangian with respect to the weight vector w gives us

∂Q

∂wv
= wv −

n+m∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
iŷ?

i ȳ

(
Φv(xi, ŷ?

i)− Φv(xi, ȳ)
)

!
= 0.

Introducing the shorthand notation for difference vectors Φiŷ?
i ȳ = Φ(xi, ŷ?

i)−
Φ(xi, ȳ), the weight vector can be represented in terms of the Lagrange mul-
tipliers αiŷ?

i ȳ ; we have

wv =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
iyi ȳΦ

v
i,yi,ȳ +

n+m∑
j=n+1

∑
ȳ∈Y(xj)

ȳ 6=ŷv̄
j

αv
jŷ v̄

j ȳΦ
v
j,ŷ v̄

j ,ȳ

=
n+m∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
iŷ?

i ȳΦ
v
i,ŷ?

i ,ȳ . (6.7)

80 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

Substituting Equation 6.7 and constraints 6.5 and 6.6 into the Lagrangian
removes its dependence on the primal variables and we resolve the corre-
sponding dual optimization problem that has to be maximized with respect
to the αiŷi ȳ . Before stating the dual, we need to define the composite kernel
k
(

xi, ȳ , xj, ȳ ′
)

that computes the inner product of two difference vectors in
input-output space and is given by

kv
(

xi, ŷ?
i , ȳ , xj, ŷ?

j , ȳ ′
)

= 〈Φv(xi, ŷ?
i),Φv(xj, ŷ?

j)〉 − 〈Φv(xi, ŷ?
i),Φv(xj, ȳ ′)〉

− 〈Φv(xi, ȳ),Φv(xj, ŷ?
j)〉+ 〈Φv(xi, ȳ),Φv(xj, ȳ ′)〉

= 〈Φv(xi, ŷ?
i)− Φv(xi, ȳ) , Φv(xj, ŷ?

j)− Φv(xj, ȳ ′)〉
= 〈Φv

i,ŷ?
i ,ȳ ,Φ

v
j,ŷ?

j ,ȳ ′〉.

Putting everything together, we derive the 1-norm co-support vector machine
optimization problem with slack-rescaling loss.

Optimization Problem 6.6 (L1 Dual CoSVM with Slack-rescaling)
Given n labeled and m unlabeled examples, composite kernel k1 and k2, and
loss function ∆, C,Cu > 0; the 1-norm dual co-support vector optimization
problem with slack-rescaling loss in view v = 1, 2 is defined as

max
α

n+m∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
iŷ?

i ȳ −
1

2

n+m∑
i,j=1

∑
ȳ 6=ŷ?

i
ȳ′ 6=ŷ?

j

αv
iŷ?

i ȳ α
v
jŷ?

j ȳ ′ k
v
(

xi, ŷ?
i , ȳ , xj, ŷ?

j , ȳ ′
)

subject to the constraints

∀n
i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
iyi ȳ

∆(yi, ȳ)
≤ C

∀n+m
i=n+1

∑
ȳ∈Y(xi)

ȳ 6=ŷv̄
i

αv
iŷ v̄

i ȳ

∆(ŷ v̄
i , ȳ)

≤ (min{γ v̄
i , 1})CuC

∀n+m
i=1 ∀ ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
i (ŷ?

i , ȳ) ≥ 0.

Applying the L2-norm, Optimization Problem 6.5 is particularly valid for
negative values of ξi since ξv

i < 0 satisfies the constraints

〈wv,Φv
i,ŷ?

i ,ȳ〉 ≥ 1− ξv
i√

∆(ŷ?
i , ȳ)

(6.8)

6.4. OPTIMIZATION STRATEGY 81

for every i and ȳ ∈ Y(xi) and moreover the sum
∑

i(ξ
v
i)

2 guarantees the ob-
jective to be positive. We thus may drop the non-negativity constraint on
the slack variables ξv

i ≥ 0. Setting r = 2, the dual 2-norm co-support vector
machine optimization problem for slack-rescaling loss can be derived analo-
gously to the 1-norm case by re-substituting primal derivatives with respect
to wv and ξv

i into the Lagrangian. Similar to the regular 2-norm support
vector machine, additional constraints are augmented into the kernel func-
tion. The derivation of the corresponding 2-norm dual is straight forward;
we will directly state the optimization problem.

Optimization Problem 6.7 (L2 Dual CoSVM with Slack-rescaling)
Given n labeled and m unlabeled examples, composite kernels k1 and k2, and
loss function ∆, C,Cu > 0; the 2-norm dual co-support vector optimization
problem with slack-rescaling loss in view v = 1, 2 is defined as

max
α

n+m∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=ŷ?
i

αv
iŷ?

i ȳ −
1

2

n+m∑
i,j=1

∑
ȳ 6=ŷ?

i
ȳ′ 6=ŷ?

j

αv
iŷ?

i ȳ α
v
jŷ?

j ȳ ′ k
v
2

(
xi, ŷ?

i , ȳ , xj, ŷ?
j , ȳ ′

)

subject to the constraints ∀2
v=1∀n+m

i=1 ∀ȳ 6=ŷ?
i
αv

iŷ?
i ȳ ≥ 0, with composite kernel

kv
2(xi, ŷ?

i , ȳ , xj, ŷ?
j , ȳ ′) = kv(xi, ŷ?

i , ȳ , xj, ŷ?
j , ȳ ′) + δ′i,ŷ?

i ,ȳ,j,ŷ?
j ,ȳ ′ where

δ′i,ŷ?
i ,ȳ,j,ŷ?

j ,ȳ ′ =

(C
√

∆(yi, ȳ)∆(yj, ȳ ′))−1 : i = j ≤ n(
(min{γ v̄

j , 1})CuC
√

∆(ŷ v̄
i , ȳ)∆(ŷ v̄

j , ȳ ′)
)−1

: n < i = j

0 : otherwise.

6.4 Optimization Strategy
The optimization of the dual problems of the previous section is difficult
since either view depends on predictions of the peer view for unlabeled ex-
amples. These predictions may change during the training process and thus
turn the problem into a nonconvex one. We implicitly deal with this by ap-
plying a cutting plane method (Kelley, 1960). In our setting, a cutting plane
translates into finding the most strongly violated constraint and adding it to
the working set if the current violation is larger than those realized by con-
straints already in the working set. In doing so, we successively shrink the
feasible region in the primal, or equivalently, instantiate a new dual variable,
associated with this constraint, see also (Altun et al., 2007).

Since the dual variables αv
iy?

i ȳ are tied to observations xi, the dual op-
timization problem splits into n + m disjoint subspaces spanned by every

82 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

αi with fixed values for the αj 6=i (Joachims, 1999b); the optimization iter-
ates over these subspaces as follows. In an outer loop, the co-support vector
machine iterates over the examples and consecutively optimizes the associ-
ated parameters αi, using distinct working set approaches for labeled (Table
6.1, see also Tsochantaridis et al. 2005) and unlabeled (Table 6.2) examples,
adding a new constraint in each iteration if necessary.

Labeled instances are optimized in either view v = 1, 2 separately. Algo-
rithm 6.1 computes the most strongly violated constraint ȳv

i in view v (line
3) and relates the induced error to the actual slack for that example (line 4).
If the margin constraint is violated (line 5), an update has to be performed.
That is, the erroneously decoded output is added to the working set (line 6)
and the dual parameters are optimized over the subspace spanned by the i-th
input example (line 7). For an unlabeled instance, Algorithm 6.2 computes
the top scoring output (line 4) and its best runner-up (line 5) for both views
and relates their difference to the current slack (line 6). The if-clause in
line 9 checks whether both views disagree on the prediction and determines
possible margin violations in the views. If an error is detected, an update is
performed (line 10-18).

The proposed optimization scheme leads to sparse models, since it suffices
to explicitly store only those αiŷ?

i ȳ whose associated output ȳ is decoded
instead of the true yi or the prediction of the peer view ŷ v̄

i , respectively. All
dual variables that are not included in the active working set are implicitly
considered to be zero. Outputs ȳ with αiŷ?

i ȳ = 0 are removed from the working
set in order to speed up computation. When the loop reaches an example for
the second time, all former outputs αiŷ?

i ȳ of that example are removed since
the errors or disagreements that they used to correct in earlier iterations of
the main loop may have been resolved. Since the cost factors upper bound
the growth of the αiŷ?

i ȳ , consensus might not be established and we therefore
integrate a user defined constant rmax that bounds the number of iterations.

6.5 Empirical Results
We investigate our approach by applying the semi-supervised support vector
machine to multi-class classification (Section 6.5.1), named entity recognition
(Section 6.5.2), and natural language parsing (Section 6.5.3). We explore the
benefits of co-learning and investigate its execution time. The baseline SVM
is described by Tsochantaridis et al. (2005).

In each setting, the influence of unlabeled examples is determined by a
smoothing strategy which exponentially approaches Cu after a fixed number
of epochs. We first optimize parameter Cu using resampling; we then fix Cu

6.5. EMPIRICAL RESULTS 83

Figure 6.1: Error rates for the Cora data set for 200 (left) and 400 (right)
labeled examples and varying numbers of unlabeled examples. Displayed are
structured SVM (dashed), transductive SVM (dotted), and coSVM (solid).

and present curves that show the average error over distinct randomly drawn
training and holdout sets. The baseline methods SVM and also TSVMlight for
the multi-class classification and structural perceptron for the NER experi-
ments, are trained on concatenated views. We initialize rmax = 10, C = 1.
For all problems and sample sizes we conduct a one-sided t-test at a 1%
confidence level. Significant results are indicated in the text.

6.5.1 Multi-Class Classification
Our multi-class classification experiments are based on the Cora data set
that contains 9,947 linked computer science papers. We remove documents
without a reference section and obtain 9,555 papers divided into eight differ-
ent classes. We exploit the link structure and generate two natural views of
the documents: a term frequency view of the document and an outlink view.
We extract term frequencies of the document and of the anchor text of the
inbound links. The latter consists of the term frequencies of three sentences,
centered at the occurrence of the reference.

We use the common 0/1 loss and the respective 2-norm variant of both
structured prediction methods and the transductive SVMlight (Joachims,
1999a), trained with a one-against-all strategy, as an additional baseline.
Figure 6.1 details error rates and standard errors in percent for different
numbers of labeled and unlabeled training examples and 500 holdout exam-
ples. The results are averages over 100 repetitions with distinct training and
holdout sets. The performance of the TSVM deteriorates when the num-
ber of unlabeled instances is increased. The co-trained SVM significantly
outperforms its fully supervised counterpart for all numbers of labeled and

84 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

Figure 6.2: Token error for the Biocreative data set. Displayed are percep-
tron (dashed-dotted), co-perceptron (dotted), structured SVM (dashed) and
coSVM (solid).

unlabeled examples. However, the number of unlabeled examples has no
significant effect on the results.

6.5.2 Named Entity Recognition
We look at the effectiveness of our approach on two named entity recognition
problems. We use the data set provided for task 1A of the Biocreative chal-
lenge and the Spanish news wire article corpus of the shared task of CoNLL
2002.

The Biocreative data contains 7500 sentences from biomedical papers;
gene and protein names are to be recognized. We discriminate tokens that are
parts of gene names against all other tokens. We utilize label-observation fea-
tures like the token itself, letter 2,3 and 4-grams, and surface clues like capi-
talization, inclusion of Greek symbols, numbers, and others. The CoNLL2002
data contains 9 label types which distinguish between person, organization,
location, and other names. We use 3100 sentences of between 10 and 40
tokens. The extracted label-observation features cover the token itself and
surface clues.

We ensure that each label occurs at least once in the labeled training data;
otherwise, we discard and draw again. The holdout sets consist of either 500
Biocreative or 300 Spanish news wire sentences, respectively. We utilize a
random feature split of the attributes into two views for each repetition.
We report token errors in percent for coSVM, single-view SVM, and also
for supervised perceptron and co-perceptron (Chapter 5) as an additional
baseline for both data sets.

Figure 6.2 (left) shows learning curves for all four algorithms for the

6.5. EMPIRICAL RESULTS 85

Figure 6.3: Token error for the Spanish news wire data set. Left: train-
ing curves for perceptron (dashed-dotted), co-perceptron (dotted), structured
SVM (dashed) and coSVM (solid). Right: error depending on the unlabeled
sample size.

Biocreative data set. The two perceptrons are clearly outperformed by both
support vector algorithms. CoSVM leads to significantly lower error rates
than its supervised counterpart. When we fix the number of labeled examples
and vary the number of unlabeled instances in Figure 6.2 (right) we observe
that coSVM effectively utilizes the unlabeled data. The error rates decrease
significantly when the number of unlabeled instances increases.

Learning curves for the Spanish news wire data set are detailed in Figure
6.3 (right). Except for 20 labeled and 100 unlabeled instances, the semi-
supervised algorithms outperform their fully supervised counterparts signifi-
cantly. Increasing the number of unlabeled data in Figure 6.3 leads to signif-
icantly better error rates for co-perceptron and co-support vector machines.

6.5.3 Natural Language Parsing
For our natural language parsing experiments we learn an unlexicalized,
weighted context-free grammar on subsets of the Penn treebank Wall Street
Journal corpus (Marcus et al., 1993, 1994) and the Negra corpus (Skut et al.,
1997). Both are tagged with part-of-speech and completely annotated with
syntactic structures.

We use the subsets 2-21 of the Wall Street Journal corpus that con-
tain 39,833 sentences. We extract sentences of length of at most 15 words.
From the annotations of the resulting 8,666 sentences we build a context-free
grammar of approximately 4,800 distinct production rules. The Negra cor-
pus contains 20,602 sentences from a German newspaper archive. We extract
sentences of between 5 and 25 tokens. The resulting 14,137 sentences contain

86 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

Figure 6.4: F1 scores for the Wall Street Journal (WSJ) corpus (top) and
the Negra corpus (bottom). Displayed are results for 4 labeled (left column)
and 40 labeled (right column) examples and varying numbers of unlabeled
examples.

more than 26,700 production rules in Chomsky normal form.
The extracted local feature maps contain the rule itself and binarized

border and span width features for both corpora. The algorithms are evalu-
ated on different numbers of labeled and unlabeled examples. Each result is
averaged over 100 repetitions. In each repetition we use distinct, randomly
chosen feature splits and randomly drawn training and holdout sets. The
latter is of size 100. We use a modified variant of the CKY implementation
by Johnson (1998) for the decoding and apply 2-norm SVMs with the loss
∆(yi, ȳ) = 1− F1(yi, ȳ) (see also Section 3.2.3).

Figure 6.4 (top row) details F1 scores for different numbers of labeled
and unlabeled training instances for the Wall Street Journal corpus. Surpris-
ingly, even with no unlabeled data, coSVM leads to better F1 scores than
regular SVM by simply averaging the predictions of the two views. When
we add unlabeled instances, the performance of coSVM increases. Note that
additional unlabeled examples further improve F1 score significantly.

6.6. CONCLUSIONS 87

Figure 6.5: Execution time.

The results for experiments with the Negra corpus are shown in Figure
6.4 (bottom row). The observations are very similar. Again, averaging the
independently trained hypotheses leads to better F1 scores than regular SVM.
The performance is further significantly increased by adding unlabeled data.

6.5.4 Execution Time
The observed performance benefits of coSVM are at the cost of significantly
longer training processes. Figure 6.5 plots execution time against training set
size for 4 labeled and different numbers of unlabeled examples. Empirically,
we observe that the execution time of co-trained SVM scales between linearly
and quadratically in the number of unlabeled examples.

6.6 Conclusions
We devised a semi-supervised variant of the support vector machine for struc-
tured output variables and arbitrary loss functions (coSVM). It is based on
the co-training framework and implements the principle of consensus maxi-
mization between hypotheses. We derived 1- and 2-norm optimization prob-
lems that not only allow for the usage of arbitrary loss functions but also
allow for the use of arbitrary feature mappings and corresponding decoding
strategies.

We used various norms, loss functions, and feature splits in our experi-
ments. Empirical results for multi-class classification, named entity recogni-
tion, and natural language parsing tasks showed that coSVM leads to better
models in terms of the chosen loss function compared to the fully-supervised
SVM. We observe that the co-trained support vector machine with no unla-

88 CHAPTER 6. CO-SUPPORT VECTOR LEARNING

beled examples significantly outperforms the baseline methods in all tasks.
We credit this finding to averaging two independently trained hypotheses.
However, the prediction accuracy of coSVM can be further increased by
adding unlabeled examples in the named entity recognition and parsing ex-
periments.

The increase in performance comes at the cost of longer execution times.
The semi-supervised support vector machine benefits from the inclusion of
unlabeled examples into the training process. We observed that coSVM sig-
nificantly outperforms its single-view counterpart in all tasks.

The presented coSVM generalizes several lines of research, such as bi-
nary co-training approaches (Blum and Mitchell, 1998; Brefeld and Scheffer,
2004) structured perceptrons (Collins and Duffy, 2002; Altun et al., 2003b),
maximum Markov networks (Taskar et al., 2004a), and SVMs for structured
output spaces (Tsochantaridis et al., 2005).

Notice that this optimization scheme is independent of the joint feature
mapping Φ1 and Φ2 (either explicitly or via a kernel function) and the loss
function ∆. Due to this general setup, the coSVM can be applied to a variety
of problems. To apply coSVM, it suffices to define appropriate joint feature
mappings, a loss function, and a corresponding decoding for the problem at
hand.

Chapter 7

Transductive Support Vector
Machines

In this chapter, we study the problem of learning kernel machines trans-
ductively for structured output variables. Transductive learning can be re-
duced to combinatorial optimization problems over all possible labelings of
the unlabeled data. In order to scale combinatorial semi-supervised learning
to structured variables, we transform the corresponding non-convex, combi-
natorial, constrained optimization problems into continuous, unconstrained
optimization problems. The discrete optimization parameters are eliminated
and the resulting differentiable problems can be optimized efficiently.

Several semi-supervised techniques in joint input-output spaces have been
studied. One of the most promising approaches is the integration of unlabeled
instances by Laplacian priors into structured large margin classifiers (Lafferty
et al., 2004; Altun et al., 2006). Lee et al. (2007) study semi-supervised CRFs
and include unlabeled data via an entropy criterion such that their objective
acts as a probabilistic analogon to the transductive setting we discuss here.
Xu et al. (2006) derive unsupervised M3Networks by employing SDP relax-
ation techniques. Their optimization problem is similar to the transductive
criterion derived in this paper.

The technique of binary unconstrained gradient-based optimization of
SVMs (Chapelle, 2006) is based on the observation that constraints of the
form yi〈w,xi〉 ≥ 1−ξi can be written as equalities ξi = max{1−yi〈w,xi〉, 0}.
Inserting these expressions of ξi into the primal SVM criterion leads to an
unconstrained, convex quadratic optimization problem. When the maxi-
mum is replaced by a softmax, the resulting differentiable criterion can
be minimized, for instance, by conjugate gradient descent. This technique
unfolds its benefit for semi-supervised learning based on the TSVM crite-
rion (Chapelle and Zien, 2005). Traditional TSVM implementations (Ben-

89

90 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

net and Demiriz, 1998; Joachims, 1999a) solve a combinatorial optimization
problem with pseudo-labels ŷj for the unlabeled xj. These additional dis-
crete optimization parameters can be removed from the problem altogether
when the constraints ŷj〈w,xi〉 ≥ 1− ξi are expressed using absolute values:
ξj = max{1 − |〈w,xj〉|, 0}. The resulting problem remains non-convex, but
is now continuous and has fewer parameters.

When unlabeled data and two distinct views Φ1 and Φ2 on the instances
are available, co-learning can be employed. Co-learning algorithms employ
a mechanism that reduces the rate of disagreement on unlabeled data be-
tween two hypotheses, thus reducing an upper bound on their error rate.
This disagreement minimization, has been introduced in previous chapters
by iterative label-exchanging strategies. CoSVM has two optimization cri-
teria that are interleaved by exchanging labelings for unlabeled inputs. We
present an optimization problem that integrates them into a joint criterion.

The structure of this chapter and its main contributions are as follows.
We leverage the technique of continuous optimization to structured input-
output spaces, addressing the supervised (Section 7.1), the transductive (Sec-
tion 7.2), and the multi-view case (Section 7.3). Our treatment covers general
loss functions and linear discrimination as well as general kernels. We empir-
ically examine the benefit of generalized transductive SVMs for multi-class
classification and label sequence learning tasks in Section 7.4. Section 7.5
provides a discussion of the experimental results and Section 7.7 concludes.

7.1 Unconstrained Optimization for
Structured Output Spaces

Optimization Problem 7.1 is the known SVM learning problem in input-
output spaces with cost-based margin-rescaling, which includes the fixed size
margin with 0/1-loss as a special case. All presented results can also be
derived for slack-rescaling approaches; however, the corresponding constraint
generation becomes more difficult. Generally, the norm of w plus the sum
of the slack terms ξi is minimized, subject to the constraint that, for all
examples (xi, yi), the correct label yi receives the highest score by a margin.
Using the shorthand Φiyi ȳ = Φ(xi, yi)−Φ(xi, ȳ), we can state the optimization
problem of the structural support vector machine as follows.

Optimization Problem 7.1 (SVM) Given n labeled training pairs, loss
function ∆ and C > 0, the primal constraint SVM optimization problem is

7.1. UNCONSTRAINT OPTIMIZATION 91

defined as

min
w,ξ

||w||2 + C
n∑

i=1

ξi

s.t. ∀n
i=1 ∀ ȳ∈Y(xi)

ȳ 6=yi

〈w,Φiyi ȳ〉 ≥ ∆(yi, ȳ)− ξi,
∀n

i=1 ξi ≥ 0.

In general, unconstrained optimization is easier to implement than con-
strained optimization. For the SVM, it is possible to resolve the slack terms:

ξi = max

{
max
ȳ 6=yi

{
∆(yi, ȳ)− 〈w,Φiyi ȳ〉

}
, 0

}
= maxȳ 6=yi

{
`∆(yi,ȳ)

(
〈w,Φiyi ȳ〉

)}
, (7.1)

where `∆(t) = max{∆ − t, 0} is the hinge loss with margin-rescaling (see
Equation 2.5). We can now pose Optimization Problem 7.2 for structured
outputs, a simple quadratic optimization function without constraints.

Optimization Problem 7.2 (∇SVM) Given n labeled training pairs, loss
function ∆, and let C > 0; the unconstrained SVM optimization problem is
defined as

min
w

||w||2 + C
n∑

i=1

ξi, (7.2)

where ξi = maxȳ 6=yi
`∆(yi,ȳ)

(
〈w,Φiyi ȳ〉

)
.

The ξi remain in Optimization Problem 7.2 for better comprehensibility;
when they are expanded, the criterion is a closed expression. When the
maximum is approximated by the softmax, and a smooth approximation of
the hinge loss is used, Equation 7.1 is also differentiable. Following the latter,
we substitute the Huber loss for the hinge loss. The differentiable surrogat
is based on a quadratic approximation around zero and equals the hinge loss
otherwise (see Figure 7.1). The Huber loss `∆,ε and its first derivative is
given by

`∆,ε(t) =

∆− t : t ≤ ∆− ε

(∆+ε−t)2

4ε
: ∆− ε ≤ t ≤ ∆ + ε

0 : otherwise

∂`∆,ε

∂t
=

−1 : t ≤ ∆− ε

−1
2
(∆−t

ε
+ 1) : ∆− ε ≤ t ≤ ∆ + ε

0 : otherwise .

92 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Figure 7.1: The differentiable Huber loss `∆=1,ε=0.5.

The softmax can be derived by using the ρ-norm of a vector z = (z1, . . . , zd)
T,

‖z‖ρ = ρ

√√√√ d∑
i=1

zρ
i

that is known to converge to the maximal element zi when ρ→∞. To derive
a differentiable approximation we apply the exponential operator to z in a
component-wise manner by defining

‖exp{z}‖ρ
def
= ρ

√√√√ d∑
i=1

(
exp{zi}

)ρ
. (7.3)

Taking the natural logarithm of Equation 7.3 leads to the so-called softmax
function

log ‖ exp{z}‖ =
1

ρ
log
∑

exp{ρ|zi|}. (7.4)

Since all transformations are monotonic, the parameter ρ still controls the
degree of approximating the maximum, that is for ρ→∞ we precisely obtain
the maximum operator. We use a slightly different form of the softmax as
an approximation of the maximum. First, we extend it to sets instead of
vectors and secondly, we incorporate some constants allowing an interpretion
for ρ → 0 as the sum of the elements. The softmax and its derivative are
displayed in the following equations,

smax
ỹ 6=yk

(s(ỹ)) =
1

ρ
log

(
1 +

∑
ỹ 6=yk

(exp{ρs(ỹ)} − 1)

)
∂

∂s(ȳ)
smax

ỹ 6=yk

(s(ỹ)) =
exp{ρs(ȳ)}

1 +
∑

ỹ 6=yk
(exp{ρs(ỹ)} − 1)

,

7.2. UNCONSTRAINED TRANSDUCTIVE SVMS 93

where we will use s(ỹ) = `∆(yi,ỹ)
(
〈w,Φiyi ỹ〉

)
. An application of the representer

theorem shows that w can be expanded as

w =
∑

k

∑
ȳ 6=yk

αkyk ȳ Φkyk ȳ . (7.5)

The gradient is a vector over dual parameters αkyk ȳ for each example xk with
true label yk and each possible incorrect label ȳ . Computationally, only non-
zero coefficients have to be represented. The gradient of Equation 7.2 with
respect to w is given by

∇OP2 = 2w∇w + C
n∑

i=1

∇ξi
.

Thus, applying Equation 7.5 gives us the first derivative in terms of the αkyk ȳ

∂OP2

∂αkyk ȳ
= 2w

∂w

∂αkyk ȳ
+ C

n∑
i=1

∂ξi
∂αkyk ȳ

.

The partial derivative ∂w
∂αkyk ȳ

resolves to Φkyk ȳ ; that of ξi can be decomposed
by the chain rule into

∂ξi
∂αkyk ȳ

=
∂ξi
∂w

∂w

∂αkyk ȳ
=
∂ξi
∂w

Φkyk ȳ ,

∂ξi
∂w

=
∑
ȳ 6=yi

∂ smax
ỹ 6=yi

s(ỹ)

∂s(ȳ)
·
∂`∆(yi,ȳ)

(
〈w,Φiyi ȳ〉

)
∂〈w,Φiyi ȳ〉

· Φiyi ȳ .

This solution generalizes binary unconstrained transductive learning (Cha-
pelle, 2006) for general input-output spaces. The global minimum of Opti-
mization Problem 2 can now easily be found with a standard gradient al-
gorithm, such as conjugate gradient descent. By rephrasing the problem
as an unconstrained optimization problem, its intrinsic complexity has not
changed. We will observe the benefit of this approach in the following sec-
tions.

7.2 Unconstrained Transductive SVMs
In this section we present the transductive support vector machine (Vapnik,
1998) that has also been investigated by Bennet and Demiriz (1998) and
Joachims (1999a). It consists of an EM-like self-training, wrapped around
a support vector machine. In semi-supervised learning, unlabeled x ∗j for

94 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Figure 7.2: Loss u∆=1,τ=0.6(t) (solid) and first derivative (dashed).

n+1 ≤ j ≤ n+m are given in addition to the labeled pairs (xi, yi) for
1 ≤ i ≤ n, where usually n � m. Optimization Problem 7.3 requires the
unlabeled data to be classified by a large margin, but the actual label is
unconstrained; this favors a low-density separation.

Optimization Problem 7.3 (TSVM) Given a set of n labeled training
pairs (x1, y1), . . . , (xn, yn) and m unlabeled input examples x ∗n+1, . . . , x ∗n+m, loss
function ∆, and C, Cu > 0; the constrained TSVM optimization problem is
defined as

min
w,ξ

||w||2 + C
n∑

i=1

ξi + Cu

n+m∑
j=n+1

ξ∗j

subject to the constraints

∀n
i=1∀ȳ 6=yi

〈w,Φiyi ȳ〉 ≥ ∆(yi, ȳ)− ξi
∀n+m

j=n+1∃y∗j ∀ȳ 6=y∗j 〈w,Φjy∗j ȳ〉 ≥ ∆(y∗j , ȳ)−ξ∗j
∀n

i=1 ξi ≥ 0

∀n+m
j=n+1 ξ

∗
j ≥ 0.

Optimization problem 7.3 requires that there exists an y∗j such that all other
labels ȳ violate the margin by no more than ξ∗j . Hence, the value of slack
variable ξ∗j is determined by the label ȳ that incurs the strongest margin
violation. Alternatively, the sum of margin violations over all ȳ 6= y∗j may
be upper bounded by ξ∗j . In fact we can interpolate between max and sum
by varying the softmax parameter ρ. Note that the optimum expansion α is
sparse, as only margin violating labels ȳ contribute to the aggregation.

The constraints on ξ∗j involve a disjunction over all possible labelings
y∗j of the unlabeled x ∗j which causes non-convexity and renders QP-solvers

7.2. UNCONSTRAINED TRANSDUCTIVE SVMS 95

not directly applicable. The TSVM implementation in SVMlight (Joachims,
1999a) treats the pseudo-labels y∗j as additional discrete parameters. The
existential quantifier is thus removed, but the criterion has to be minimized
over all possible values of (y∗n+1, . . . , y∗n+m) and, in a nested step of convex
optimization, over w. Analogously to the ξi (Equation 7.1), we replace the
constraints on ξ∗j :

ξ∗j = min
y∗j

max

{
max
ȳ 6=y∗j

{
∆(y∗j , ȳ)− 〈w,Φjy∗j ȳ〉

}
, 0

}
= min

y∗j
max
ȳ 6=y∗j

{
u∆(y∗j ,ȳ)(〈w,Φjy∗j ȳ〉)

}
. (7.6)

We quantify the loss induced by unlabeled instances u∆,τ by a function
slightly different from Huber loss `∆,ε. Diverging from `, we engineer u to be
symmetric, and to have a vanishing derivative at (and around) the point of
symmetry. At this point, two labels score equally well (and better than all
others), and the corresponding margin violation can be mitigated by moving
w in two symmetric ways.

u∆,τ (t) =

1 : |t| ≤ ∆− τ

1− (|t|−∆+τ)2

2τ2 : ∆− τ ≤ |t| ≤ ∆
(|t|−∆−τ)2

2τ2 : ∆ ≤ |t| ≤ ∆ + τ
0 : otherwise

∂u∆,τ

∂t
=

0 : |t| ≤ ∆− τ

−sgn(t)

τ2 (|t| −∆ + τ) : ∆− τ ≤ |t| ≤ ∆

+
sgn(t)

τ2 (|t| −∆− τ) : ∆ ≤ |t| ≤ ∆ + τ
0 : otherwise.

Having rephrased the constraints on ξ∗j as an equation, we can pose the un-
constrained transductive SVM optimization problem for structured outputs.

Optimization Problem 7.4 (∇TSVM) Given a set of n labeled training
pairs (x1, y1), . . . , (xn, yn) and m unlabeled input examples x ∗n+1, . . . , x ∗n+m, loss
function ∆, and C,Cu > 0; the unconstrained ∇TSVM optimization problem
is defined as

min
w

||w||2 + C
n∑

i=1

ξi + Cu

n+m∑
j=n+1

ξ∗j (7.7)

96 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

where

ξi = max
ȳ 6=yi

`∆(yi,ȳ)
(
〈w,Φiyi ȳ〉

)
ξ∗j = min

y∗j
max
ȳ 6=y∗j

u∆(y∗j ,ȳ)

(
〈w,Φjy∗j ȳ〉

)
.

Variables ξi and ξ∗j remain in Optimization Problem 7.4 for notational har-
mony; they can be expanded to yield a closed, unconstrained optimization
criterion.

Calculation of the ξ∗j requires minimization over y∗j and maximization
over ȳ . For multi-class classification, this can be implemented by explicit
enumeration. For general structured output spaces, y∗j is determined by a
decoder (e.g., a Viterbi algorithm for label sequence learning or a chart parser
for parsing). For 0/1-loss, the worst margin violator ȳ is the first runner-up,
and a 2-best decoder can be used to find both y∗ and ȳ at the same time.
For a Hamming-like loss, which shows the same Markov property as the
feature map, ȳ can be found by a modification of the decoder which rewards
predicting wrong symbols.

Again we invoke the representer theorem 7.5 and optimize along the gra-
dient ∂OP4

∂α
. In addition to the derivatives calculated in the Section 7.1, we

need the partial derivatives of the ξ∗j . They are analogous to those of ξi; let
s̄(ỹ) = u∆(y∗j ,ỹ)(〈w,Φjy∗j ỹ〉), we have

∂ξ∗j
∂w

=
∑
ȳ 6=y∗j

∂ smax
ỹ 6=y∗j

s̄(ỹ)

∂s̄(ȳ)
·
∂u∆(y∗j ,ȳ)

(
〈w,Φjy∗j ȳ〉

)
∂〈w,Φjy∗j ȳ〉

· Φjy∗j ȳ .

Every expansion coefficient α∗jy∗j ȳ influences how strongly f favors label y∗j over
ȳ for the unlabeled example j. This solution generalizes unconstrained trans-
ductive learning (Chapelle and Zien, 2005) for general input-output spaces.

Algorithmically, continuous optimization over all parameters αkyk ȳ is im-
possible due to exponentially many ȳ ’s. However, our loss functions cause
the solution to be sparse. In order to narrow the search to the non-zero vari-
ables, generalized ∇TSVM training interleaves two steps. In the decoding
step, the algorithm iterates over all training instances and uses a 2-best de-
coder to produce the highest scoring output ŷ and the worst margin violator
ȳ 6= ŷ . For labeled examples (xi, yi), output ŷ has to be equal to the de-
sired yi, and ȳ must not violate the margin. Otherwise, the difference vector
Φiyi ȳ is added to the (initially empty) working set of the i-th example. For
unlabeled data, the highest-scoring output of the joint classifier ŷ∗j serves as
desired labeling and the runner-up as margin violator ȳj. Again, in the case
of a margin violation, Φjy∗ ȳ is added to the working set for xj.

7.2. UNCONSTRAINED TRANSDUCTIVE SVMS 97

Table 7.1: The ∇TSVM Algorithm

Input: Labeled data {(xi, yi)}ni=1, unlabeled data {x ∗j }n+m
j=n+1; parameters

C,Cu, εα > 0.
1 repeat
2 f o r each l a b e l e d example (xi, yi)
3 ȳ ← argmaxy 6=yi

∆(yi, y) + 〈w,Φ(xi, y)〉
4 i f `∆(yi,ȳ),ε(〈w,Φ(xi, yi)〉 − 〈w,Φ(xi, ȳ)〉) > 0
5 W ←W ∪ {(i, yi, ȳ)}
6 end
7 end
8 f o r each unlabe led example x ∗j
9 ŷ∗j ← argmaxy〈w,Φ(x ∗j , y)〉)

10 ȳ ← argmaxy 6=y∗j
∆(y∗j , y) + 〈w,Φ(x ∗j , y)〉

11 i f ∃y∗j ∈W ∧ y∗j 6= ŷ∗j
12 ∀ȳ : W ←W\{(j, y∗j , ȳ)}
13 end
14 i f u∆(y∗j ,ȳ),τ (〈w,Φ(x ∗j , y∗j)〉 − 〈w,Φ(x ∗j , ȳ)〉) > 0
15 y∗j ← ŷ∗j
16 W ←W ∪ {(j, y∗j , ȳ)}
17 end
18 end
19 α← argminα′ TSV M(α′,W)
20 ∀αkyȳ < εα : W ←W\{(k, yk, ȳ)}
21 u n t i l convergence

Output: Optimized α, working set W .

In the optimization step, conjugate gradient descent (CG) is executed
over the parameters αkyk ȳ , given by all examples xk, desired outputs yk, and
all associated pseudo-labels ȳ currently in the working set. As proposed in
Chapelle (2006) we use the kernel matrix as a preconditioner, which speeds
up the convergence of the CG considerably. The inner loop of the ∇TSVM
algorithm is depicted in Table 7.1. In an outer loop, ∇TSVM first increases C
in a barrier fashion to avoid numerical instabilities, and eventually increases
the the influence of the unlabeled examples Cu. The algorithm terminates
when the working set remains unchanged over two consecutive iterations and
C and Cu have reached the desired maximum value. Notice that ∇TSVM
reduces to ∇SVM when no unlabeled examples are included in the training

98 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

process; i.e., for ∇SVM, lines 8-18 are removed from Table 7.1.
For binary TSVMs it has proven useful to add a balancing constraint

to the optimization problem that ensures that the relative class sizes of the
predictions are similar to those of the labeled points (Joachims, 1999a). For
structured outputs, the relative frequencies of the output symbols σ ∈ Σ may
be constrained:∑n+m

j=n+1

∑|xj |
t=1[[yj,t = σ]]∑n+m

j=n+1 |xj|
=

∑n
i=1

∑|xi|
s=1[[yi,s = σ]]∑n
i=1 |xi|

.

Analoguously to binary TSVMs (Chapelle and Zien, 2005), this can be re-
laxed to “soft” linear constraints:

n+m∑
j=n+1

|xj |∑
t=1

(
〈w,Φ(xj,t, σ)〉+ bσ − 〈w, Φ̄(xj,t)〉+ b̄

)
= p̂σ

where Φ(xj,t, σ) are the feature maps corresponding to predicting σ for posi-
tion t of xj, Φ̄(xj,t) =

∑
ω∈Σ Φ(xj,t, ω)/|Σ| is their average, the bσ are newly

introduced label biases with average b̄ =
∑

σ bσ/|Σ|, and

p̂σ = (
∑

j

|xj|)(
∑

i

∑
s

[[yis = σ]]/(
∑

i

|xi|)− 1/|Σ|)

are centered predicted class sizes. By appropriately centering the unlabeled
data, these constraints can be equivalently transformed into fixing the bσ
to constants. However, we do not implement any balancing here, as we
empirically observe the fractions of predicted symbols to roughly agree with
the corresponding fractions on the known labels.

7.3 Unconstraint CoSVM Optimization
The continuous optimization technique can also be applied to co-support
vector machines. Recall that in the multi-view setting, two views Φ1 and
Φ2 on the instances are available. The classifier combines two functions that
operate in distinct views:

f(x , y) = f 1(x , y) + f 2(x , y),

with f v(x , y) = 〈wv,Φv(x , y)〉 for v = 1, 2. In the typical co-learning case,
Φ1 and Φ2 are independent representations of x . By establishing a consensus
between the hypotheses on the unlabeled data, co-learning minimizes an
upper bound on the error rate.

7.3. UNCONSTRAINT COSVM OPTIMIZATION 99

The coSVM optimization problem requires that for each unlabeled in-
stance xj both classifiers agree on some label y by a large margin. The
coSVM for structured output variables in Chapter 6 has two optimization
criteria that are interleaved by discrete pseudo-labels for unlabeled exam-
ples that have to be exchanged iteratively between the views. Optimization
Problem 7.5 integrates them into a joint criterion, again using existential
quantification for the yj. A parameter Cu quantifies the influence of the un-
labeled data. We rephrase the constraints on ξi in Equation 7.1. For ξv

j ,
associated with unlabeled examples, we obtain a similar result,

ξv
j = max

{
max
ȳ 6=y v̄

i

{
∆(y v̄

i , ȳ)− 〈wv,Φv
iy v̄

i ȳ〉
}
, 0

}
= max

ȳ 6=y v̄
i

`∆(y v̄
i ,ȳ)

(
〈wv,Φv

iy v̄
i ȳ〉
)
.

Again, the prediction y v̄
j of the peer view v̄ is treated as the true output for

the j-th unlabeled input. Thus, we arrive at Optimization Problem 7.5.

Optimization Problem 7.5 (Unconstrained coSVM) Given n labeled
examples and m unlabeled examples, loss function ∆, joint feature mappings
Φ1 and Φ2, C,Cu > 0; the unconstrained ∇coSVM optimization problem with
margin-rescaling loss is defined as

min
w1,w2

1

2

2∑
v=1

||wv||2 + C
2∑

v=1

n∑
i=1

ξv
i + Cu

2∑
v=1

n+m∑
j=n+1

ξv
j (7.8)

where for v = 1, 2,

ξv
i = max

ȳ 6=yi

`∆(yi,ȳ)(〈wv,Φv
iyi ȳ〉)

ξv
j = max

ȳ 6=ŷ v̄
j

`∆(ŷ v̄
j ,ȳ)(〈wv,Φv

jŷ v̄
j ȳ〉)

ŷv
j = argmax

ȳ∈Y(xj)

〈wv,Φv(xj, ȳ))〉.

Optimization Problem 7.5 has a single, closed-form optimization criterion.
Replacing the Huber loss for the hinge loss and the maximum by the softmax
makes the criterion differentiable, and optimization can follow the gradient
∂OP5

∂α
. In addition to the derivatives calculated in the Section 7.1, we need

the partial derivatives of the ξv
j . They are analogous to those of ξi for each

v = 1, 2. We have

∂ξv
j

∂wv
=
∑
ȳ 6=y v̄

j

∂ smax
ỹ 6=y v̄

j

s(ỹ)

∂s(ȳ)
`′∆(y v̄

j ,ȳ)

(
〈wv,Φv

jy v̄
j ȳ〉
)

Φv
jy v̄

j ȳ .

100 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Every expansion coefficient αv
jy v̄

j ȳ influences how strongly f favors the peer
labeling y v̄

j over ȳ for the unlabeled example j.
As ∇TSVM, unconstrained coSVM training interleaves two steps. In the

decoding step, the algorithm iterates over all training instances and uses a
2-best decoder to produce the highest-scoring output ŷ and the runner-up
ȳ 6= ŷ . For labeled examples (xi, yi), output ŷ has to be equal to the desired
yi and ȳ must not violate the margin. Otherwise, the highest-scoring margin
violator is added to the (initially empty) working set of negative pseudo-
labels for the i-th example. For unlabeled data, the highest-scoring output
of the joint classifier ŷj serves as desired label. If ȳv

j violates the margin in
any view, both ŷj and ȳv

j are added to the working set for the j-th example.
In the optimization step, conjugate gradient descent is executed over the

parameters αkyk ȳ , given by all examples xk, desired outputs yk, and all nega-
tive pseudo-labels ȳ currently in the working set of the k-th example. After
each optmization step, the influence of the unlabeled examples Cu is increased
as well as the parameter of the barrier approach to guarantee a fast conver-
gence. The algorithm terminates when no difference vectors are added to any
working set in an iteration. Table 7.2 depicts the inner loop of ∇coSVM.

7.4 Experiments
We investigate unconstrained optimization of structured output support vec-
tor machines by comparing differentiable ∇SVM and ∇TSVM to SVMs
solved by constrained, quadratic programming (QP) approaches. In each
setting, the influence of unlabeled examples is determined by a smoothing
strategy which exponentially approaches Cu after a fixed number of epochs.
We optimize Cu using resampling and then fix Cu and present curves that
show the average error over 100 randomly drawn training and holdout sets;
error bars indicate standard error. In all experiments we set C = 1, ε = 0.3,
and τ = 0.4.

7.4.1 Execution Time
Figure 7.3 compares the execution times of CG-based∇SVM and∇TSVM to
a QP-based SVM where we use the same convergence criteria for all optimiz-
ers. ∇TVSM is trained with the respective number of labeled examples and
a five-fold larger set of unlabeled instances. In addition to being faster than
a solution based on solving QPs, the continuous optimization is remarkably
efficient at utilizing the unlabeled data. For instance, ∇TSVM with 50 la-
beled and 250 unlabeled examples converges considerably faster than ∇SVM

7.4. EXPERIMENTS 101

Table 7.2: The ∇coSVM Algorithm

Input: Labeled data {(xi, yi)}ni=1, unlabeled data {xj}n+m
j=n+1; parameters C,

Cu, rmax > 0.
1 repeat
2 f o r each l a b e l e d example (xi, yi) and v = 1, 2
3 ȳv ← argmaxy 6=yi

∆(yi, y) + 〈wv,Φv(xi, y)〉
4 i f `∆(yi,ȳ),ε(〈wv,Φv(xi, yi)〉 − 〈wv,Φv(xi, ȳv)〉) > 0
5 W v ←W v ∪ {(i, yi, ȳv)}
6 end
7 end
8 f o r each unlabe led example xj and v = 1, 2
9 ŷ v̄

j ← argmaxy〈wv̄,Φv̄(xj , y)〉
10 ȳv ← argmaxy 6=y v̄

j
∆(y v̄

j , y) + 〈wv,Φv(xj , y)〉
11 i f ∃y v̄

j ∈W v ∧ y v̄
j 6= ŷ v̄

j

12 ∀ȳ : W v ←W v\{(j, y v̄
j , ȳ)}%\hspace { 7 .8cm}

13 end
14 i f `∆(ŷ v̄

j ,ȳv)(〈wv,Φv(xj , y v̄
j)〉 − 〈wv,Φv(xj , ȳv)〉) > 0

15 y v̄
j ← ŷ v̄

j

16 W v ←W v ∪ {(j, y v̄
j , ȳv)}

17 end
18 end
19 α← argminα′ coSV M(α′,W 1,W 2)
20 u n t i l convergence or rmax i t e r a t i o n s

Output: Optimized α working sets W 1 and W 2.

and qpSVM with only 200 labeled instances.

7.4.2 Multi-class Classification
For the multi-class classification experiments, we use a cleaned variant of
the Cora data set that contains 9,555 linked computer science papers with
a reference section. The data set is divided into eight different classes. We
extract term frequencies of the document and of the anchor text of the in-
bound links. The latter are drawn from three sentences, centered at the
occurrence of the reference. We compare the performances of ∇TSVM with
0/1 loss to the performance of TSVMlight (Joachims, 1999b), trained with
a one-against-all strategy. Figure 7.4 details the error-rates for 200 labeled
examples and varying numbers of unlabeled instances. With no unlabeled

102 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Figure 7.3: Execution time.

Figure 7.4: Error rates for the Cora data set.

data, both transductive methods reduce to their fully-supervised, inductive
counterparts. Both SVMs perform equally well for the labeled instances.
However, when unlabeled examples are included into the training process,
the performance of TSVMlight deteriorates. The error-rates of ∇TSVM show
a slight improvement with 800 unlabeled instances.

We also apply our method to the six-class dataset COIL as used in Cha-
pelle et al. (2006a), and compare to the reported one-against-all TSVM re-
sults. For n = 10 labeled points, we achieve 68.87% error, while the one-
against-all TSVM achieves 67.50%. For n = 100 points, the results are
25.42% as compared to 25.80%.

7.4.3 Artificial Sequential Data
The artificial galaxy data set (Lafferty et al., 2004) consists of 100 sequences
of a length of 20, generated by a two state hidden Markov model. The initial

7.4. EXPERIMENTS 103

Figure 7.5: The galaxy data set (top left) and error rates for ∇SVM and
∇TSVM using RBF (top right) and graph kernels (bottom).

state is chosen uniformly and there is a 10% chance of switching the state.
Each state emits instances uniformly from one of the two classes (see Figure
7.5; top left).

We run ∇SVM and ∇TSVM using Hamming loss with two different ker-
nels, a Gaussian RBF kernel with bandwidth σ = 0.35 and a semi-supervised
graph kernel. The graph kernel is constructed from a 10-nearest neighbor
graph and given by K = 10 (L+1ρ)−1, with graph Laplacian L and ρ = 10−6

as proposed by Lafferty et al. (2004).
In each experiment we draw a certain number of labeled sequences at

random and use the rest either as unlabeled examples or as holdout set.
We report the averages over 20 runs. Figure 7.5 (top right and bottom)
details the results for the semi-supervised vs. supervised algorithm and the
semi-supervised vs. standard kernel. Since the approaches are orthogonal, we
apply all four combinations. For increasing numbers of labeled examples, the
error rates of the tested models decrease. The continuous TSVM performs
slightly better than the supervised SVM; the differences are significant in
only a few cases. This problem is very well tailored for the Laplacian kernel.
The error rates achieved with the semi-supervised kernel are between 3% to
20% lower than the corresponding results for the RBF kernel.

104 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Figure 7.6: Token error for the Spanish news wire data set with 10 labeled
instances.

7.4.4 Named Entity Recognition
The CoNLL2002 data consists of sentences from a Spanish news wire archive
and contains nine label types which distinguish between person, organization,
location, and other names. We use 3, 100 sentences of between 10 and 40
tokens, leading to ≈ 24, 000 distinct tokens in the dictionary. Moreover, we
extract surface clue features, such as capitalization and others. We use a
window of size three, centered around each token.

In each experiment we randomly draw a specified number of labeled and
unlabeled training and holdout data without replacement in each iteration.
We ensure that each label occurs at least once in the labeled training data,
otherwise, we discard and draw again. We compare ∇TSVM with 0/1 loss
and Hamming loss to the HM-SVM (Altun et al., 2003b), trained by incre-
mentally solving quadratic programs over subspaces associated with individ-
ual input examples. Figure 7.6 details the results for 10 labeled sequences.
∇SVM converges to better local optima than HM-SVM. We credit this

finding to global conjugate gradient based optimization compared to solving
local quadratic programs. When unlabeled examples are included in the
training process, the error of the ∇TSVM decreases significantly. ∇TSVMH

with Hamming loss performs slightly better than ∇TSVM0/1 using 0/1 loss.

7.5 Discussion
The TSVM criterion is non-convex and the minimization can be difficult even
for binary class variables. In order to scale the TSVM to structured outputs,
we employ a technique that eliminates the discrete parameters and allows for
a conjugate gradient descent in the space of expansion coefficients α. Empir-

7.6. COMPARISON WITH COSVMS 105

ical comparisons of execution time show that the continuous approaches are
more efficient than standard approaches based on quadratic programming.

For the Cora text classification problem, transductive learning does not
achieve a substantial benefit over supervised learning. Worse yet, the com-
binatorial TSVM increases the error substantially, whereas ∇TSVM has a
negligible effect. In order to provide an unbiased account, we present this
finding with emphasis equal to any positive result. For the Spanish news
named entity recognition problem, we consistently observe small but signifi-
cant improvements over purely supervised learning.

One might expect transductive learning to outperform supervised learn-
ing because more information is available. However, these test instances
introduce non-convexity, and the local minimum retrieved by the optimizer
may be worse than the global minimum of the convex supervised problem.
Our experiments indicate that this might occasionally occur.

For the galaxy problem, the benefit of ∇TSVM over ∇SVM is marginal,
and observable only for very few labeled examples. By its design this problem
is very well suited for graph kernels, which reduce the error rate by 50%. In
the graph Laplacian approach (Sindhwani et al., 2005b), an SVM is trained
on the labeled data, but in addition to the standard kernel, the graph Lapla-
cian derived from labeled and unlabeled points serves as a regularizer. For
binary classification, combining TSVM and graph Laplacian yields the great-
est benefits (Chapelle and Zien, 2005). For structured variables, we observe
a similar effect, though much weaker.

The presented ∇TSVM rests on a cluster assumption for entire struc-
tures, while graph-based methods (Lafferty et al., 2004; Altun et al., 2006)
exploit the distribution of parts of structures. Both approaches improve over
supervised learning on some datasets and fail to do so on others. This raises
the question of how to determine which kind of assumptions are appropriate
for a given task.

7.6 Comparison with CoSVMs
Figure 7.7 shows a comparison of the performance of ∇TSVMs and coSVMs
for multi-class classification named entity recognition tasks, respectively. We
utilized the Cora and the Spanish news wire data sets. In the latter we refrain
from employing a window of size 3 around each token for computational
reasons. The respective experimental settings are detailed in Section 6.5.1
(multi-class) and 6.5.2 (NER).

Figure 7.7 (left) shows the results for the Cora multi-class classification
task. Both semi-supervised algorithms hardly make use of the inclusion of

106 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Figure 7.7: Comparison of ∇TSVM and coSVM. Left: Results for the
Cora data set. Right: Results for the Spanish news wire data set.

unlabeled examples. However, coSVM leads to significantly lower error rates
than ∇TSVM. The difference in performance is about 4%.

The right hand side of Figure 7.7 details the results for the Spanish news
wire named entity recognition task. CoSVM effectively incorporates unla-
beled examples and we observe a negative correlation of the number of un-
labeled examples and the token error; that is, if we add unlabeled examples,
the error decreases further. By contrast, the transductive SVM cannot make
use of the inclusion of unlabeled data. The performance drops for only a few
unclassified sequences and recovers slightly when more unlabeled sequences
are included.

7.7 Conclusions
We devised a transductive support vector machine for structured variables
(∇TSVM). We transformed the original combinatorial and constrained opti-
mization problem into a differentiable and unconstrained one. The resulting
optimization problem is still non-convex but can be optimized efficiently, for
instance via a conjugate gradient descent. A differentiable variant of the
SVM for structured variables (∇SVM) is obtained for the special case of a
fully labeled training set.

We applied both methods with various loss functions to multi-class clas-
sification and sequence labeling problems. Based on our empirical findings,
we can rule out the hypothesis that ∇TSVM generally improves learning
with structured output variables over purely supervised learning, as well as
the hypothesis that ∇TSVM never improves accuracy. Moreover, a direct
comparison with coSVMs indicated that including unlabeled examples ac-

7.7. CONCLUSIONS 107

cording to the consensus maximization principle outclasses the principle of
transduction in many settings.

108 CHAPTER 7. TRANSDUCTIVE SUPPORT VECTOR MACHINES

Chapter 8

Supervised Clustering of
Streaming Data for Email
Batch Detection

This chapter deals with a case study on email batch detection. Although
batch detection this is actually an unsupervised task, a ground truth of
correct clusterings exists and essentially we arrive at an instance of semi-
supervised learning.

Senders of spam, phishing, and virus emails avoid mailing multiple iden-
tical copies of their messages. Once a message is known to be malicious,
all subsequent identical copies of the message could be blocked easily, and
without any risk of erroneously blocking regular emails. Collective features
of jointly generated batches of messages could provide additional hints for
automatic classification, if batches could be recognized as such. Tools for
spam, phishing, and virus dissemination employ templates and stochastic
grammars, for text messages as well as for images and the source code of
viruses. The templates are instantiated for each message. Table 8.1 shows
two illustrative spam messages, generated from the same template.

A natural approach to identifying batches in incoming messages is to
cluster groups of similar instances. But unlike for exploratory data analysis,
a ground truth of correct clusterings exists. In order to decide which tech-
nique to use, one has to consider the characteristics of electronic messaging.
The overall amount of spam in electronic messages is estimated to be ap-
proximately 80 percent. Currently, 80 to 90 percent of these messages are
generated by only a few spam senders, each of them maintaining a small num-
ber of templates at a time, but exchanging them rapidly. Thus, examining
the total email traffic of a short time window, the bulk of incoming messages
has been generated by a small number of templates while the remaining 20

109

110CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

Table 8.1: Two spam mails from the same batch
Hello,
This is Terry Hagan.We are accepting your mo rtgage
application. Our company confirms you are legible for
a $250.000 loan for a $380.00/month. Approval process
will take 1 minute, so please fill out the form on our
website:
http://www.competentagent.com/application/
Best Regards, Terry Hagan;
Senior Account Director
Trades/Fin ance Department North Office
Dear Mr/Mrs,
This is Brenda Dunn.We are accepting your mortga ge
application. Our office confirms you can get a $228.000
lo an for a $371.00 per month payment. Follow the
link to our website and submit your contact informa-
tion. Easy as 1,2,3.
http://www.competentagent.com/application/
Best Regards, Brenda Dunn;
Accounts Manager
Trades/Fin ance Department East Office

percent cover newsletters, personal, and business communications. In a clus-
tering solution, the latter would result in a large number of singleton clusters
while newsletters and spam batches would lead to many large groups. An
appropriate clustering algorithm needs to allow for an arbitrary number of
clusters and an adjustable similarity measure that can be adapted to yield
the ground truth of correct clusterings.

Initially, correlation clustering meets all these requirements. Finley and
Joachims (2005) adapt the similarity measure of correlation clustering with
structural support vector machines. The solution is equivalent to a poly-cut
in a fully connected graph spanned by the messages and their pairwise sim-
ilarities. However, this solution ignores the temporal structure of the data.
And although training can be performed offline, the correlation clustering
procedure has to make a decision for each incoming message in real time as
to whether or not it is part of a batch. Larger email service providers have
to deal with an amount of emails in the order of 108 emails each day. Being
cubic in the number of instances, this solution leads to intractable problems
in practice. We devise a sequential clustering technique that overcomes these

8.1. RELATED WORK 111

drawbacks. Exploiting the temporal nature of the data, it is linear in the
number of instances. Sequential clustering can easily be integrated in struc-
tural SVMs, allowing for the similarity measure to be adapted for a labeled
training set.

This chapter is structured as follows. We discuss related work in Section
8.1 and introduce the problem setting in Section 8.2 where we also we derive
a learning method starting from a relaxed clustering variant. In Section 8.3,
we exploit the temporal nature of the data and devise a sequential clustering
algorithm with an appropriate learning variant. We report on experimental
results in Section 8.4. Section 8.5 provides a conclusion.

8.1 Related Work
Prior work on clustering of streaming data mainly focused on finding single-
pass approximations to k-Center algorithms. Guha et al. (2003) develop
a constant-factor approximation for k-Median clustering, whereas Ordonez
(2003) use an incremental version of k-Means for clustering streams of binary
data.

Prior information about the clustering structure of a data set allows
for enhancements to clustering algorithms such as k-Means. For instance,
Wagstaff et al. (2001) incorporate the background knowledge as must-link
and cannot-link constraints into the clustering process. Bar-Hillel et al.
(2003) and Xing et al. (2002) demonstrate the learning of a metric over
the data space that incorporates prior knowledge. Using batch information
for spam classification has been studied for settings where multiple users re-
ceive spam emails from the same batch. Gray and Haahr (2004) as well as
Damiani et al. (2004) discuss the difficulties concerning the distribution of
batch information and trust between users, while mostly heuristics are used
to identify duplicate emails from the same batch.

More sophisticated exploration of robust identification of duplicates has
been done in other domains, for instance in terms of fixed similarity mea-
sures, such as the fraction of matching words (Cooper et al., 2002a,b) and
sentences (Brin et al., 1995). Other applications include the identification
of duplicates in data bases (Bilenko and Mooney, 2003), and in centralized
(Kolcz et al., 2004) and decentralized networks (Zhou et al., 2003). Learning
adaptive similarity measures from data has previously been studied by Ris-
tad and Yianilos (1997). Correlation clustering with fully connected graphs
is introduced in (Bansal et al., 2002). A generalization to arbitrary graphs
is presented in Charikar et al. (2005) and Emanuel and Fiat (2003) show
the equivalence to a poly-cut problem. Approximation strategies for the

112CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

NP-complete decoding are presented in Demaine and Immorlica (2003) and
Swamy (2004). Finley and Joachims (2005) investigated supervised clus-
tering with structural support vector machines and Joachims and Hopcroft
(2005) examined upper bounds on the error of correlation clustering.

Several discriminative algorithms have been studied that utilize joint
spaces of input and output variables. These include max-margin Markov
models (Taskar et al., 2004a), kernel conditional random fields (Lafferty et al.,
2004), and support vector machines for structured and interdependent out-
put spaces (Tsochantaridis et al., 2005). These methods utilize kernels to
compute the inner product in input-output space. This approach allows for
the capturing of arbitrary dependencies between inputs and outputs. An
application-specific learning method is constructed by defining appropriate
features, and choosing a decoding procedure that efficiently calculates the
argmax, exploiting the dependency structure of the features.

8.2 Learning to Cluster

The goal is to find a procedure that assigns a cluster membership to each
new email of a stream. A ground truth exists for this clustering problem:
All jointly created instances of the same template should be grouped. Indi-
vidually written emails should form singleton clusters. The ground truth is
observable for the training set.

Thus, we are given n sets of training instances x1, . . . , xn, xi ∈ X , where
the i-th set xi consists of Ti messages xi = {xi1, . . . , xiTi

} with xij ∈ Ω.
For each set we are also given the correct clustering as an adjacency matrix
yi ∈ Y(xi), with [yi]jk = 1 if messages xij and xik are elements of the same
cluster, and 0 otherwise. The output alphabet is binary, Σ = {0, 1}. The
joint feature representation is detailed in Section 3.2.4 and defined as

Φ(x , y) =
T∑

j=1

j−1∑
k=1

[y]jkψ(xj, xk), (8.1)

where ψ : Ω×Ω→ R
d denotes the vector of pairwise feature functions drawn

from pairs of objects. Examples of components of ψ are the tf.idf similarity
of the message bodies, the edit distance of the subject lines, or the similarity
of color histograms of images included in the messages.

As mentioned in Section 3.2.4, the decoding problem in Equation 8.2 (see
also Equations 3.36-3.38) of finding the adjacency matrix which maximizes

8.2. LEARNING TO CLUSTER 113

the inner-cluster similarities is NP-complete,

ŷ = argmax
ȳ∈Y(xi)

f(xi, ȳ) = argmax
ȳ∈Y(xi)

〈w,Φ(xi, ȳ)〉. (8.2)

A common approach is to approximate the discrete variables by relaxing the
binary edge labels [y]jk to continuous variables [z]jk ∈ [0, 1]. We obtain the
optimization problem

max
z̄∈Z(x)

〈w,Φ(x , z̄)〉

s.t. ∀jkl (1− [z̄]jk) + (1− [z̄]kl) ≥ (1− [z̄]jl)

∀jk [z̄]jk ∈ [0, 1].

We refer to this decoding strategy as LP decoding. Taking a margin-rescaling
approach and substituting the normalized loss function ∆total into the approx-
imate inference problem leads to the loss augmented approximate inference
problem (Taskar et al., 2005)

max
z̄∈Z(x)

∆total(y , z̄) + 〈w,Φ(x , z̄)〉

= max
z̄∈Z(x)

∑
k<j

|[y]jk − [z̄]jk|∑
k′ 6=j[y]k′k

+ 〈w,Φ(x , z̄)〉

= max
z̄∈Z(x)

∑
j,k<j

[y]jk∑
k′ 6=j[y]k′k︸ ︷︷ ︸

=:κ

+
∑
j,k<j

[z̄]jk

(
〈w,ψ(xj, xk)〉 −

2[y]jk − 1∑
k′ 6=j[y]k′k︸ ︷︷ ︸
=:[ζ]jk

)
,

where z̄ ranges over all relaxed adjacency matrices which satisfy

∀j, k, l : [z̄]jk + [z̄]kl − [z̄]jl − 1 ≤ 0

∀i, k : [z̄]jk − 1 ≤ 0

∀i, k : −[z̄]jk ≤ 0.

Integrating these constraints into the objective function leads to the corre-
sponding Lagrangian

L(z̄,λ,µ,ν) =κ+
∑
j,k<j

[z̄]jk (〈w, ψ(xj, xk)〉 − [ζ]jk)

−
∑
j,k,l

λjkl([z̄]jk + [z̄]kl − [z̄]jl − 1)

−
∑
j,k

µjk([z̄]jk − 1) +
∑
j,k

νjk[z̄]jk

=κ+ λT1 + µT1 + (Sw − ζ −Aλ− µ+ ν)T z̄,

114CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

where we used S shorthand for the pairwise similarity matrix with elements
[S]jk,m = ψm(xj, xk)

T and A is a coefficient matrix defined as

[A]j′k′,jkl =

+1 : if (j′ = j ∧ k′ = k) ∨ (j′ = k ∧ k′ = l)
−1 : if j′ = j ∧ k′ = l

0 : otherwise.
The substitution of the derivatives with respect to the components of z into
the Lagrangian and elimination of ν removes its dependence on the primal
variables and we resolve the corresponding dual that is given by

min
λ,µ

κ+ λT1 + µT1

s.t. (Sw − ζ −ATλ− µ) ≤ 0

λjkl,µjk ≥ 0.

Strong duality holds and the minimization over λ and µ can be combined
with the minimization over w. The integration into structured support vector
machines finally leads to Optimization Problem 8.1.
Optimization Problem 8.1 (LP-SVM) Given a set of n labeled cluster-
ings (x1, y1), . . . , (xn, yn) and C > 0, the integrated LP approximation SVM
optimization problem is defined as

min
w,ξ,λi,µi

1

2
||w||2 + C

n∑
i=1

ξi

subject to the constraints

∀n
i=1 〈w,Φ(xi, yi)〉+ ξi ≥ κi + λT

i 1 + µT
i 1

∀n
i=1 Siw − ζi ≤ AT

i λi + µi

∀n
i=1∀

Ti
jkl=1 [λi]jkl ≥ 0

∀n
i=1∀

Ti
jk=1 [µi]jk ≥ 0.

Optimization Problem 8.1 can be solved directly using standard QP-solvers.
Because of the cubic number of triangle inequalities, the number of Lagrange
multipliers [λi]jkl in Optimization Problem 8.1 is cubic in the number of
emails Ti per set. Finley and Joachims (2005) chose a similar approach but
arrive at an iterative algorithm to learn the weight vector. The iterative
algorithm represents only a subset of the constraints and therefore achieves
a speed-up at training time. In our case, the training samples are modestly
sized whereas, at application time, a high-speed stream has to be processed.
Therefore, we will develop a linear decoder in the next section. The linear de-
coder will also reduce the complexity of the parameter optimization problem
from cubic to quadratic.

8.3. CLUSTERING OF STREAMING DATA 115

Table 8.2: Sequential Clustering Algorithm

Input: Messages x1, . . . , xT

1 I n i t i a l i z e C ← {}
2 f o r j = 1, . . . , T
3 cj ← argmaxc∈C

∑
xk∈c〈w,Φ(xk, xj)〉

4 i f
∑

xk∈cj
〈w,Φ(xk, xj)〉 < 0

5 C ← C ∪ {{xj}}
6 e l s e
7 C ← C \ {cj} ∪ {cj ∪ {xj}}
8 e n d i f
9 end

Output: Clustering C.

8.3 Clustering of Streaming Data
In our batch detection application, incoming emails are processed sequen-
tially. The decision on the cluster assignment has to be made immediately,
within an SMTP session, and cannot be altered thereafter. Because of the
high volume of the email stream, any decoding algorithm requiring more than
linear execution time in the number of emails processed would be prohibitive.

We therefore impose the constraint that cluster membership cannot be
reconsidered once a decision has been made in the decoding procedure. When
the partitioning of all previous emails in the window is fixed, a new message
is processed by either assigning it to one of the existing clusters, or creating a
new singleton batch. Algorithm 8.2 details this approach; the initially empty
partitioning C becomes a singelton cluster when the first message arrives.
Every new message then either groups onto an existing cluster cj or extends
C by forming its own singelton cluster {xt}, respectively.

In general, given a fixed clustering of x1, . . . , xT−1, the decoding problem
of finding the y that maximizes Equation 3.35 reduces to

max
y

T∑
j=1

j−1∑
k=1

[y]jksim(xj, xk) =

max
y

T−1∑
j=1

j−1∑
k=1

[y]jksim(xj, xk) + [y]Tksim(xT , xk). (8.3)

The first term depends only on the clustering of previous messages and is
constant. Finding the maximum in Equation 8.3 therefore amounts to as-

116CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

signing it to the cluster which is most similar to xT or, if no existing cluster
has positive total similarity, establishing a new singleton cluster.

In terms of the adjacency matrix yi of the i-th input, the task is to find
entries for the T -th row and column, realizing the optimal clustering of xT .
We denote the set of matrices that are consistent clusterings and are equal
to the i-th example, yi, in all rows/columns except for the T -th row/column,
by YT (xi). If we denote the potential new cluster (which is empty before
inserting xT) with c̄, YT (xi) is of the size |C ∪ {c̄}| ≤ Ti. Finding the new
optimal clustering can be expressed as the following maximization problem.

Decoding Strategy 8.1 Given Ti instances x1, . . . , xTi
, similarity measure

simw : (xj, xk) 7→ r ∈ R, and a clustering of instances x1, . . . , xTi−1, the
sequential decoding problem is defined as

ŷ = argmax
ȳ∈YT (xi)

Ti−1∑
k=1

[ȳ]Tiksimw(xTi
, xk). (8.4)

Now we derive an optimization problem that requires the sequential cluster-
ing to produce the correct output for all training data. Optimization Problem
8.2 constitutes a compact formulation for finding the desired optimal weight
vector by treating every message as the most recent message, in order to
utilize the available training data as effectively as possible.

Optimization Problem 8.2 Given n labeled clusterings, C > 0, the se-
quential SVM optimization problem is defined as

min
w,ξ

1

2
‖w‖2 + C

∑
i,j

ξij

subject to the constraints

∀n
i=1,∀

Ti
j=1,∀ȳ ∈ YT (xi) 〈w,Φ(xi, yi)〉+ ξij ≥ 〈w,Φ(xi, ȳ)〉+ ∆total(yi, ȳ).

Note that Optimization Problem 8.2 has at most
∑n

i=1(Ti)
2 constraints and

can efficiently be solved with standard QP-solving techniques.

8.4 Experimental Results
In this section we evaluate the performance and benefit of batch detection on
a collection of emails. We compare our learning methods with the iterative
learning procedure for supervised clustering by Finley and Joachims (2005)

8.4. EXPERIMENTAL RESULTS 117

and perform an error analysis. We evaluate how the identification of email
batches can actually support the classification of emails as spam or non-
spam. Furthermore, we assess the execution time of the presented decoding
methods. Quadratic programs are solved with CPLEX.

8.4.1 Email Batch Data

Email batch detection is performed at a mail transfer agent that processes
a dense stream of messages. Standard email collections such as the Enron
corpus or the TREC spam collection are collected from final recipients and
therefore exhibit different characteristics. A mail transfer agent experiences
many large batches over a short period of time. Existing spam corpora
were harvested over a longer period from clients and contain fewer and more
scattered copies of each batch. We therefore create an email corpus that re-
flects the characteristics of an email stream, but remedies the obvious privacy
concerns that would arise from simply recording an email stream at a mail
transfer agent. We do record the email stream for a short period of time, but
only extract spam messages from this record. We randomly insert non-spam
messages from the Enron collection and batches of newsletters. We remove
the headers except for the sender address, MIME part information, and the
header size.

The final corpus contains 2,000 spam messages, 500 Enron messages, and
500 newsletters (copies of 50 distinct newsletters). We manually group these
emails into 136 batches with an average of 17.7 emails, and 598 remaining sin-
gleton mails. We implement 47 feature functions. They include the TFIDF
similarity, equality of sender, equality of the MIME type, and differences in
letter-bigram-counts.

We design a cross-validation procedure such that no elements of the same
newsletter or spam batch occur in both the training and test set at any time.
To this end, we construct each test set by using one non-singular batch,
and filling the test sample with singletons and emails of other batches to a
total size of 100. Batches with more than 50 emails are divided over several
test sets, to ensure a reasonable mixture of emails from the test batch and
other emails. Overall, there are 153 test sets. For each of these test sets,
nine training sets x1, . . . , x9 are generated by sampling randomly from the
remaining emails, excluding emails from the test batch in case of split test
batches. All reported results are averaged over the results from each of the
153 training/test combinations.

118CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

Figure 8.1: Average loss for window size T = 100.

Figure 8.2: Fraction of the loss induced by the learning algorithm (simi-
larity matrix) and the decoding.

8.4.2 Batch Identification
We compare the parameter vectors obtained by four strategies. Parame-
ters are estimated by solving Optimization Problem 8.1 (compact), solving
Optimization Problem 8.2 (sequential), and by using the iterative training
algorithm of Finley and Joachims (2005) (iterative). As an additional base-
line, we train a pairwise classifier (pairwise) as follows: Each pair of emails
within a set constitutes a training example, with label +1 if they belong to
the same cluster, and −1 otherwise. A linear SVM is trained on these pairs,
and the weight vector is directly used as the parameter of the similarity mea-
sure. The final clustering is then obtained by one of the decoding strategies,
using the similarity matrix obtained from pairwise learning. Note that the
pairwise classifier is identical to PCC in Finley and Joachims (2005).

8.4. EXPERIMENTAL RESULTS 119

Figure 8.3: Classification accuracy with batch information.

Though three of the four optimization problems refer to a specific decod-
ing strategy, we evaluate each of them with every decoder for comparison.
We study three decoders: the LP decoder, the sequential decoder (Decoding
Strategy 8.1), and the greedy agglomerative clustering described in Finley
and Joachims (2005). Figure 8.1 shows the average normalized loss per mail
of these combinations with standard errors. For this problem, there are no
significant differences between either of these training and decoding meth-
ods. The sequential decoder operates under the constraint of linearity, and
it would be plausible to assume that it incurs a higher loss than the LP de-
coding on average. The data suggests that this might be the case, but the
difference is at most slight and by no means significant.

Figure 8.2 gives more insight into the characteristics of the compared
methods. On the y-axis, the number of disagreeing edges with respect to
the true clustering is depicted. The hatched areas indicate the number of
disagreements between the true clustering and the signs of the similarity ma-
trix induced by the weight vector and the pairwise features. The similarity
matrix serves as input to the decoder; the decoder transforms it into a con-
sistent partitioning. The bars indicate the numbers of incorrect edges after
clustering.

It is apparent that the simplest learning method, pairwise learning, leads
to the fewest wrong edges before clustering, but the induced similarity matrix
is furthest away from being a consistent partitioning. This corresponds to the
intuition that the training constraints of pairwise learning refer to individual
links instead of the entire partitioning. The iterative algorithm leads to
similarity matrices which are significantly nearer to a consistent clustering
(i.e., the bars are shorter). The similarity measures learned by the compact

120CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

Figure 8.4: Computation time for adding one email depending on window
size.

optimization problems lead to a similarity matrix with still more disagreeing
edges, while yielding comparable error rates after decoding. This indicates
that the decoding step has to resolve fewer inconsistencies, making it more
robust to approximations.

8.4.3 Classification Using Batch Information
We evaluate how the classification of emails as spam or non-spam benefits
from the identification of batches. As a baseline, we train a linear support
vector machine with the word-counts of the training emails as features. We
remove all email header information except for the subject line in order to
eliminate artefacts from the data collection procedure.

We construct a collective filter that sums up the word counts of all emails
in a batch, and includes four additional features: the size of the batch, a
binary feature indicating whether the batch is larger than one, a binary
feature indicating whether the subject of all emails in the batch is identical,
and a binary feature indicating whether the sender address of all emails in
the batch is identical. This results in all emails within the same batch having
the same feature representation.

We examine how the classification performance is affected by the batch

8.5. CONCLUSIONS 121

detection. As an upper bound, we investigate the performance of the col-
lective classifier given perfect clustering information, based on the manual
clustering. In addition, we assess how sensitive the benefit of collective clas-
sification is with respect to the accuracy of the clustering. In the setting
of clustering with noise, each email is collectively classified in a cluster that
contains an increasing number of wrongly clustered emails.

Figure 8.3 shows the area under the ROC curve (AUC) for the classifiers
under investigation. The performance of the collective classifier based on
a perfect clustering can be seen on the right hand side of the graph (ideal
clustering at 0% noise). The difference between the collective classification
based on a perfect clustering and a classification based on the inferred clus-
terings is not significant. The collective classifiers perform indistinguishably
well; the sequential and LP decoder perform alike. We can see that using
ideal batch information, the risk of misclassification (1 - AUC) is reduced
by 43.8%, while with non-ideal batch information obtained through approxi-
mate clustering a reduction of 41.4% is still achieved. Even though the AUC
of the baseline appears high already, a 40% reduction of the risk in spam
filtering is a substantial improvement!

8.4.4 Clustering Runtime
Efficiency is an important aspect in clustering on streams, especially in iden-
tifying spam batches. The window size has to be sufficiently large to contain
at least one representative of each currently active batch. The time required
to cluster one additional email depending on the window size is therefore a
crucial criterion for selecting an appropriate clustering method.

Figure 8.4 illustrates the observed time required for processing an email by
LP decoding and sequential decoding with respect to the window size. While
the computation time of the LP approximation grows at least cubically, the
time for an incremental update for a single email with sequential decoding
grows only linearly. Due to the different time scales of the two methods (note
that the upper right graph shows micro-seconds instead of seconds), we use a
logarithmic time scale to plot the curves in a single diagram (bottom graph).

8.5 Conclusions
We devised a sequential clusering algorithm and two integrated formulations
for learning a similarity measure to be used with correlation clustering. First,
we derived a compact optimization problem based on the LP approximation
to correlation clustering to learn the weights of the similarity measure. Start-

122CHAPTER 8. SUPERVISED CLUSTERING OF STREAMING DATA

ing from the assumption that decisions for already processed emails cannot
be reconsidered, we devised an efficient clustering algorithm that is linear
in the number of emails in the window. From this algorithm we derived a
second integrated method for learning the weight vector.

Our empirical results indicate that there are no significant differences be-
tween the learning or decoding methods in terms of accuracy. Yet the inte-
grated learning formulations optimize the weight vector more directly to yield
consistent partitionings. Using the batch information obtained from decod-
ing with the learned models, email spam classification performance increases
substantially over the baseline with no batch information. The efficiency
of the sequential clustering algorithm makes supervised batch detection at
enterprise-level scales, with millions of emails per hour and thousands of
recent emails as reference, feasible.

Chapter 9

Conclusions

This thesis dealt with semi-supervised prediction models for structured out-
put spaces. We lifted the techniques of classical semi-supervised learning to
the structured setting and devised novel, semi-supervised algorithms based on
state-of-the-art approaches in structural learning. The presented approaches
either implement the consensus maximization principle or rely on a cluster
assumption in the data. Empirical results showed that the semi-supervised
algorithms outperform appropriate baselines in many application areas, in-
cluding multi-class classification, named entity recognition, and natural lan-
guage parsing.

We introduced the co-learning setting with univariate function approxi-
mation as a special case of learning in structured output spaces. In contrast
to many other multi-view approaches, our formulation required only the un-
labeled data to be equal in all views whereas the labeled examples may differ
from view to view. We devised an exact closed form solution to co-regularized
least squares regression that scales cubic in the number of labeled and un-
labeled instances. Since being cubic in the unlabeled sample size is not
a desirable property, we proposed an approximate, semi-parametric coRLSR
that scales only linear in the number of unlabeled instances. Semi-parametric
coRLSR also provides a solution in closed form. Additionally, we derived a
distributed optimization scheme where participants keep their labeled exam-
ples private and only have to agree on unlabeled data. We provided results on
convergence properties of the distributed optimization where only predictions
on unlabeled examples need to be shared among the participants. Empiri-
cally, we showed that both semi-supervised algorithms significantly outper-
form fully-supervised RLSR. Although the exact, non-parametric coRLSR
led to lower root mean squared errors than the semi-parametric approxima-
tion, the latter can be trained in large-scale, allowing for a further decrease
in errors.

123

124 CHAPTER 9. CONCLUSIONS

We generalized the consensus maximization principle to learning in struc-
tured output spaces and devised the semi-supervised co-perceptron. Appli-
cations to named entity recognition tasks showed that random features splits
perform significantly better than splitting the features into token and surface
clue views. Nevertheless, even for the weak split, co-perceptron outperformed
its fully supervised counterpart. We derived co-support vector machines by
taking a large margin approach in joint input-output space. CoSVMs allow
the inclusion of arbitrary loss functions and enforce confident predictions
by maximizing the margin. We derived primal and dual optimization prob-
lems for 1- and 2-norm coSVMs with slack rescaled losses. Empirical results
showed that coSVMs outperform every single-view baseline method in multi-
class, named entity recognition, and natural language parsing tasks, where
we applied various loss functions.

To explore the benefit of explicitly assuming a cluster structure in the
data, we studied structural transductive learning. Lifting the classical trans-
ductive approach to the structured domain in a one-to-one relation renders
the optimization problem intractable for practical applications. As a remedy,
we translated the constrained and non-differentiable optimization problem
into an unconstrained and differentiable objective function. Although the
∇TSVM criterion is no longer convex, it now can be efficiently optimized by
gradient-based techniques. As a by-product, we also devised unconstrained
and differentiable variants of structural SVM and structural coSVM. Empir-
ically, unconstrained optimization led to a significant decrease in execution
time compared to standard approaches solved by quadratic programming. In
terms of performance, ∇TSVM failed to make use of the unlabeled data in
many settings due to poor local minima found by non-convex optimization
and due to inappropriate cluster assumptions. From the direct comparison
with multi-view support vector machines we conclude that co-learning rep-
resents an appealing alternative to cluster-based semi-supervised learning in
settings where the latter is known to be inappropriate.

We showed in a case study on email batch detection the benefit of ex-
ploiting the cluster structure when the task at hand preserves a cluster as-
sumption. We thus translated the problem into a supervised clustering task
and derived a solution based on a separating margin. The resulting sup-
port vector machine used loss-augmented inference to implement a relaxed
variant of correlation clustering. The cubic number of constraints rendered
the optimization intractable, however, the initial solution did not exploit the
streaming nature of the data. We devised a linear time approximation by
effectively utilizing the sequential data. The sequential approach is shown to
perform as well as all other baseline methods but its execution time makes it
uniquely scalable for practical applications. Moreover, we showed that hav-

125

ing the batch information by the sequential clustering can lead to a significant
reduction of the spam misclassification risk.

Building on this line of research there are many problems that are promis-
ing candidates for future investigations and extensions of the presented re-
sults. An exciting direction of semi-supervised structured learning deals with
missing values in input and/or output structures. Exemplary applications
include sequence labeling tasks with only partially annotated input and out-
put sequences, network completion tasks aiming at amending incomplete link
structure, and alignment tasks such as machine translation. These tasks do
not necessarily exhibit a one-to-one relation between observations and labels.
For instance, in machine translation, a token in the source language may be
mapped to several tokens in the target language and vice versa. Moreover,
several correspondences between observations and labelings may not be ob-
served in the training data. The limit is, of course, a fully unsupervised
setting, where no information about true labelings is available.

Another related area is learning under covariate shift. In this setting,
training and test data are drawn from different distributions. Recently, this
setting has gained more and more attention, however, previous work focuses
on classical supervised learning with univariate response variables. Applying
the lessons learned to the structured domain is promising in the presence of
scarce and expensive labeled data. Moreover, learning under covariate shift
is also highly connected to transfer learning that might be of substantial
interest in future applications. The underlying idea is to train a model on
one domain and apply it to another.

Last but not least, discriminative structured prediction models are still
computationally expensive – and the proposed semi-supervised extensions in
particular. Techniques to speed up training processes significantly and al-
lowing for large-scale experiments are therefore of great interest for achieving
high predictive accuracy.

126 CHAPTER 9. CONCLUSIONS

Bibliography

S. Abney. Bootstrapping. In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, 2002.

Y. Altun, M. Johnson, and T. Hofmann. Discriminative learning for label
sequences via boosting. In Advances in Neural Information Processing
Systems, 2003a.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vec-
tor machines. In Proceedings of the International Conference on Machine
Learning, 2003b.

Y. Altun, T. Hofmann, and A. J. Smola. Gaussian process classification for
segmenting and annotating sequences. In Proceedings of the International
Conference on Machine Learning, 2004a.

Y. Altun, T. Hofmann, and A.J. Smola. Exponential families for conditional
random fields. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 2004b.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi–supervised
learning for structured variables. In Advances in Neural Information Pro-
cessing Systems, 2006.

Y. Altun, T. Hofmann, and I. Tsochantaridis. SVM learning for interdepen-
dent and structured output spaces. In Machine Learning with Structured
Outputs, 2007.

S. Baluja. Probabilistic modeling for face orientation discrimination: Learn-
ing from labeled and unlabeled data. In Advances in Neural Information
Processing Systems, 1998.

N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learn-
ing, 56(1–3):89–113, 2004.

127

128 BIBLIOGRAPHY

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. In
Proceedings of the IEEE Symposium on Foundations of Computer Science,
2002.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance
functions using equivalence relations. In Proceedings of the International
Conference on Machine Learning, 2003.

S. Barnett. Matrix Methods for Engineers and Scientists. MacGraw-Hill,
1979.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi–supervised
learning on large graphs. In Proceedings of the Conference on Learning
Theory, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric
framework for learning from labeled and unlabeled examples. Journal of
Machine Learning Research, 7:2399–2434, 2006.

K. Bennet and A. Demiriz. Semi–supervised support vector machines. In
Advances in Neural Information Processing Systems, 1998.

D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

S. Bickel and T. Scheffer. Multi–view clustering. In Proceedings of the IEEE
International Conference on Data Mining, 2004.

S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on biased
samples. In Advances in Neural Information Processing Systems, 2007.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable
string similarity measures. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining, 2003.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

C. M. Bishop. Pattern Recognition in Machine Learning. Springer, 2006.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co–
training. In Proceedings of the Workshop on Computational Learning The-
ory, 1998.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for opti-
mal margin classifiers. In Proceedings of the Workshop on Computational
Learning Theory, 1992.

BIBLIOGRAPHY 129

Z. Bosnic, I. Kononenko, M. Robnic-Sikonja, and M. Kukar. Evaluation of
prediction reliability in regression using the transduction principle. In The
IEEE Region 8 EUROCON 2003: Computer as a Tool, 2003.

L. Bouttou, C. Cortes, J. Denker, I. Guyon H. Drucker, L. Jackel, Y. le Cun,
U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparision of classi-
fier methods: A case study in handwriting digit recognition. In Proceedings
of the International Conference on Pattern Recognition, 1994.

S. Boyd and L. Vandenberghe. Convex Optimization. Camebridge University
Press, 2004.

U. Brefeld and T. Scheffer. Co–EM support vector learning. In Proceedings
of the International Conference on Machine Learning, 2004.

S. Brin, J. Davis, and H. García-Molina. Copy detection mechanisms for dig-
ital documents. In Proceedings of the International Conference on Man-
agement of Data, 1995.

M. Brückner and W. Dilger. A soft Bayes perceptron. In Proceedings of the
International Joint Conference on Neural Networks, 2005.

O. Chapelle. Training a support vector machine in the primal. Neural Com-
putation, 19:1155–1178, 2006.

O. Chapelle and A. Zien. Semi–supervised classification by low density sep-
aration. In Proceedings of the International Workshop on Artificial Intel-
ligence and Statistics, 2005.

O. Chapelle, V. Vapnik, and J. Weston. Transductive inference for estimating
values of functions. In Advances in Neural Information Processing Systems,
1999.

O. Chapelle, M. Chi, and A. Zien. A continuation method for semi–
supervised SVMs. In Proceedings of the International Conference on Ma-
chine Learning, 2006a.

O. Chapelle, B. Schölkopf, and A. Zien. Semi–supervised Learning. MIT
Press, 2006b.

M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383,
2005.

130 BIBLIOGRAPHY

Z. Chi. Statistical properties of probabilistic context–free grammars. Com-
putational Linguistics, 25(1):131–160, 1999.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

S. Clark and J. R. Curran. Parsing the wsj using ccg and log-linear models.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2004.

M. Collins. Discriminative reranking for natural language processing. In
Proceedings of the International Conference on Machine Learning, 2000.

M. Collins. Ranking algorithms for named-entity extraction: Boosting and
the voted perceptron. In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics, 2002.

M. Collins and N. Duffy. Convolution kernels for natural language. In Ad-
vances in Neural Information Processing Systems, 2002.

M. Collins and Y. Singer. Unsupervised models for named entity classi-
fication. In Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, 1999.

R. Collobert and S. Bengio. Links between perceptrons, MLPs and SVMs. In
Proceedings of the International Conference on Machine Learning, 2004.

D. Cooper and J. Freeman. On the asymptotic improvement in the out-
come of supervised learning provided by additional nonsupervised learning.
IEEE Transactions on Computers, C-19:1055–1063, 1970.

J. Cooper, A. Coden, and E. Brown. A novel method for detecting similar
documents. In Proceedings of the Annual Hawaii International Conference
on System Sciences, 2002a.

J. Cooper, A. Coden, and E. Brown. Detecting similar documents using
salient terms. In Proceedings of the International Conference on Informa-
tion and Knowledge Management, 2002b.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:
273–297, 1995.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Proba-
bilistic Networks and Expert Systems. Springer, 1999.

BIBLIOGRAPHY 131

F. Cozman, I. Cohen, and M. Cirelo. Semi–supervised learning of mixture
models. In Proceedings of the International Conference on Machine Learn-
ing, 2003.

K. Crammer and Y. Singer. On the algorithmic implementation of multi-class
kernel-based vector machines. Journal of Machine Learning Research, 2:
265–292, 2001.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-
chines and other kernel-based learning algorithms. Cambridge University
Press, 2000.

E. Damiani, S. de Capitani di Vimercati, S. Paraboschi, and P. Samarati.
P2P-based collaborative spam detection and filtering. In Proceedings of
the International Conference on Peer-to-Peer Computing, 2004.

J. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.
The Annals of Mathematical Statistics, 43:1470–1480, 1972.

S. Dasgupta, M. Littman, and D. McAllester. PAC generalization bounds
for co–training. In Proceedings of Neural Information Processing Systems,
2001.

A. P. Dawid. Conditional independence in statistical theory. Journal of the
Royal Statistical Society, Series B, 41:1–31, 1979.

V. de Sa. Learning classification with unlabeled data. In Proceedings of
Neural Information Processing Systems, 1994.

E. D. Demaine and N. Immorlica. Correlation clustering with partial infor-
mation. In Proceedings of the International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems and International
Workshop on Randomization and Approximation Techniques in Computer
Science, 2003.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series
B, 39:1–38, 1977.

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-
nal of Machine Learning Research, 7:1–30, 2006.

T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional ran-
dom fields via gradient tree boosting. In Proceedings of the International
Conference on Machine Learning, 2004.

132 BIBLIOGRAPHY

T.G. Dietterich. Machine learning for sequential data: A review. In Proceed-
ings of the Joint IAPR International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition, 2002.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd edition).
John Wiley, 2001.

B. Efron. The geometry of exponential families. The Annals of Statistics,
6(2):362–376, 1978.

D. Emanuel and A. Fiat. Correlation clustering – minimizing disagreements
on arbitrary weighted graphs. In Proceedings of the Annual European Sym-
posium on Algorithms, 2003.

J. D. R. Farquhar, D. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmák.
Two view learning: SVM–2K, theory and practice. In Advances in Neural
Information Processing Systems, 2006.

T. Finley and T. Joachims. Supervised clustering with support vector ma-
chines. In Proceedings of the International Conference on Machine Learn-
ing, 2005.

G. D. Forney. The Viterbi algorithm. Proceedings of IEEE, 61(3):268–278,
1973.

Y. Freund and R. E. Shapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

Y. Freund, R. Iyer, R. E. Shapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. In Proceedings of the International
Conference on Machine Learning, 1998.

K. Fukunga. Introduction to Statistical Pattern Analysis. Academic Press,
1990.

G. Fung and O. L. Mangasarian. Proximal support vector machines. In
Proceedings of the International Conference on Knowledge Discovery and
Data Mining, 2001.

J. Fürnkranz. Round robin ensembles. Intelligent Data Analysis, 7(5):385–
404, 2003.

S. Geman and M. Johnson. Dynamic programming for parsing and estimation
of stochastic unification-based grammars. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2002.

BIBLIOGRAPHY 133

C. Gentile. A new approximate maximal margin classification algorithm.
Journal of Machine Learning Research, 2:213–242, 2001.

R. Ghani. Combining labeled and unlabeled data for multiclass text cat-
egorization. In Proceedings of the International Conference on Machine
Learning, 2002.

C. L. Giles, G. M. Kuhn, and R. J. Williams. Special issue on dynamic
recurrent neural networks. IEEE Transactions on Neural Networks, 5(2),
1994.

S. Goldman and Y. Zhou. Enhancing supervised learning with unlabeled
data. In Proceedings of the International Conference on Machine Learning,
2000.

A. Gray and M. Haahr. Personalised, collaborative spam filtering. In Pro-
ceedings of the Conference on Email and Anti-Spam, 2004.

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Cluster-
ing data streams: Theory and practice. IEEE Transactions on Knowledge
and Data Engineering., 15(3):515–528, 2003.

J. Hakenberg, S. Bickel, C. Plake, U. Brefeld, H. Zahn, L. Faulstich, U. Leser,
and T. Scheffer. Systematic feature evaluation for gene name recognition.
BMC Bioinformatics, 6(1):S9, 2005.

J. M. Hammersley and P. E. Clifford. Markov random fields on finite graphs
and lattices. Unpublished manuscript, 1971.

S. Har-Peled, D. Roth, and D. Zimak. Constraint classification for multi–class
classification and ranking. In Advances in Neural Information Processing
Systems, 2002.

D. Haussler. Convolution kernels on discrete structures. Technical Report
UCS-CRL-99-10, University of California, Santa Cruz, 1999.

R. Herbrich. Learning kernel classifiers: Theory and Algorithms. MIT Press,
2002.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for
ordinal regression. In In Proceedings of the International Conference on
Articial Neural Networks, 1999.

134 BIBLIOGRAPHY

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of research of the National Bureau of Standards,
49:409–436, 1952.

A. Jakulin and I. Bratko. Testing the significance of attribute interactions. In
Proceedings of the International Conference on Machine Learning, 2004.

E. T. Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620–630, 1957.

T. Joachims. Learning to Classify Text using Support Vector Machines.
Kluwer, 2002.

T. Joachims. Transductive learning via spectral graph partitioning. In Pro-
ceedings of the International Conference on Machine Learning, 2003.

T. Joachims. A support vector method for multivariate performance mea-
sures. In Proceedings of the International Conference on Machine Learning,
2005.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the
Conference on Knowledge Discovery and Data Mining, 2006.

T. Joachims. Transductive inference for text classification using support vec-
tor machines. In Proceedings of the International Conference on Machine
Learning, 1999a.

T. Joachims. Making large-scale SVM learning practical. In Advances in
Kernel Methods – Support Vector Learning. MIT Press, 1999b.

T. Joachims and J. Hopcroft. Error bounds for correlation clustering. In
Proceedings of the International Conference on Machine Learning, 2005.

M. Johnson. PCFG models of linguistic tree representations. Computational
Linguistics, 24(4):613–632, 1998.

M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler. Estimators for
stochastic "unification-based" grammars. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 1999.

M. I. Jordan. Serial order: A parallel distributed processing approach. Tech-
nical Report 8604, Institute for Cognitive Science, University of California,
San Diego, 1987.

BIBLIOGRAPHY 135

M. I. Jordan and T. J. Sejnowski. Graphical Models: Foundations of neural
computation. MIT Press, 2001.

B. Juang and L. Rabiner. Hidden Markov models for speech recognition.
Technometrics, 33:251–272, 1991.

T. Kasami. An efficient recognition and syntax algorithm for context-free lan-
guages. Technical Report AFCLR-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA, 1965.

S. S. Keerthi and D. M. DeCoste. A modified finite Newton method for fast
solution of large scale linear SVMs. Journal of Machine Learning Research,
6:341–361, 2005.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal
of the Scociety for Industrial Applied Mathematics, 8:703–712, 1960.

J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov chains
(second edition). Springer, 1976.

M. Kockelkorn, A. Lüneburg, and Tobias Scheffer. Using transduction and
multi–view learning to answer emails. In Proceedings of the European Con-
ference on Principle and Practice of Knowledge Discovery in Databases,
2003.

A. Kolcz, A. Chowdhury, and J. Alspector. The impact of feature selection
on signature-driven spam detection. In Proceedings of the Conference on
Email and Anti-Spam, 2004.

U. Kressel. Pairwise classification and support vector machines. In Advances
in Kernel Methods – Support Vector Learning, 1999.

B. Krishnapuram, D. Williams, Y. Xue, A. Hartemik, and L. Carin. On semi–
supervised classification. In Advances in Neural Information Processing
Systems, 2004.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: represen-
tation and clique selection. In Proceedings of the International Conference
on Machine Learning, 2004.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

136 BIBLIOGRAPHY

Q. V. Le, A. J. Smola, T. Gärtner, and Y. Altun. Transductive gaussian
process regression with automatic model selection. In Proceedings of the
European Conference on Machine Learning, 2006.

C. Lee, S. Wang, F. Jiao, R. Greiner, and D. Schuurmans. Learning to
model spatial dependency: Semi–supervised discriminative random fields.
In Advances in Neural Information Processing Systems, 2007.

B. Leskes. The value of agreement, a new boosting algorithm. In Proceedings
of the Conference on Learning Theory, 2005.

D. J. C. MacKay. Introduction to Gaussian processes. Neural Networks and
Machine Learning, 168:133–165, 1998.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large an-
notated corpus of English: the Penn treebank. Computational Linguistics,
19:313–330, 1993.

M. P. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Fer-
guson, K. Katz, and B. Schasberger. The Penn treebank: Annotating
predicate argument structure. In ARPA Human Language Technology
Workshop, 1994.

D. McAllester, M. Collins, and F. Pereira. Case-factor diagrams for struc-
tured probabilistic modeling. In Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence, 2004.

A. McCallum and K. Nigam. Employing EM in pool-based active learning
for text classification. In Proceedings of the International Conference on
Machine Learning, 1998.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models
for information extraction and segmentation. In Proceedings of the Inter-
national Conference on Machine Learning, 2000.

M. Meila. Comparing clusterings by the variation of information. In Pro-
ceedings of the Conference on Computational Learning Theory, 2003.

H. Meng, J. Shawe-Taylor, S. Szedmák, and J. D. R. Farquhar. Support vec-
tor machine to synthesise kernels. In Deterministic and Statistical Methods
in Machine Learning, 2004.

Y. Miyao and J. Tsujii. Maximum entropy estimation for feature forests. In
Proceedings of Human Language Technology Conference, 2002.

BIBLIOGRAPHY 137

D. Mladenic. Learning word normalization using word suffix and context
from unlabeled data. In Proceedings of the International Conference on
Machine Learning, 2002.

K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for ap-
proximate inference: An empirical study. In Proceedings of Uncertainty in
Aritifical Intelligence, 1999.

I. Muslea, C. Knoblock, and S. Minton. Active + semi–supervised learning =
robust multi–view learning. In Proceedings of the International Conference
on Machine Learning, 2002.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of
machine learning databases, 1998.

M. Ng, E. Chan, M. So, and W. Ching. A semi–supervised regression model
for mixed numerical and categorical variables. Pattern Recognition, 40(6):
1745–1752, 2007.

N. Nguyen and Y. Guo. Comparisons of sequence labeling algorithms and
extensions. In Proceedings of the International Conference on Machine
Learning, 2007.

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of
co–training. In Proceedings of Information and Knowledge Management,
2000.

Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M.
Mitchell. Text classification from labeled and unlabeled documents us-
ing EM. Machine Learning, 39(2/3):103–134, 2000.

A. B. Novikoff. On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, 1962.

C. Ordonez. Clustering binary data streams with k-means. In Proceedings
of the ACM SIGMOD workshop on Research Issues in Data Mining and
Knowledge Discovery, 2003.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

J. Platt. Probabilistic outputs for support vector machines and comparison
to regularized likelihood methods. In Advances in Large Margin Classifiers,
2000.

138 BIBLIOGRAPHY

T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. b. In Proceed-
ings of the Conference on Uncertainty in Geometric Computations, 2001.

A. Pozdnoukhov and S. Bengio. Semi–supervised kernel methods for regres-
sion estimation. In Proceedings of the IEEE International Conference on
Acoustic, Speech, and Signal Processing, 2006.

L. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–285, 1989.

W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66:622–626, 1971.

B. Raskutti, H. Ferra, and A. Kowalczyk. Combining clustering and co–
training to enhance text classification using unlabeled data. In Proceed-
ings of the SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine
learning. The MIT Press, 2006.

G. Rätsch and S. Sonnenburg. Large scale hidden semi-Markov SVMs. In
Advances in Neural Information Processing Systems, 2007.

R. M. Rifkin. Everything Old is new again: A fresh Look at Historical Ap-
proaches to Machine Learning. PhD thesis, MIT, 2002.

E. S. Ristad and P. N. Yianilos. Learning string edit distance. In Proceedings
of the International Conference on Machine Learning, 1997.

H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–408, 1958.

D. Roth and W. Yih. Integer linear programming inference for conditional
random fields. In Proceedings of the International Conference on Machine
Learning, 2005.

E. F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task:
language-independent named entity recognition. In Proceedings of the Con-
ference on Computational Natural Language Learning, 2002.

BIBLIOGRAPHY 139

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algo-
rithm in dual variables. In Proceedings of the International Conference on
Machine Learning, 1998.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for a
given task. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 1995.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theo-
rem. In Proceedings of the Annual Conference on Learning Theory, 2001.

D. Schuurmans, F. Southey, D. Wilkinson, and Y. Guo. Metric–based
approaches for semi–supervised regression and classification. In Semi–
Supervised Learning, 2006.

A. Schwaighofer and V. Tresp. Transductive and inductive methods for ap-
proximate Gaussian process regression. In Advances in Neural Information
Processing Systems, 2003.

R. Schwarz and Y. L. Chow. The n-best algorithm: An efficient and exact
procedure for finding the n most likely hypotheses. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Process-
ing, 1990.

M. Seeger. Learning with labeled and unlabeled data. (technical report,
University of Edinburgh, 2001.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pro-
nounce english text. Journal of Complex Systems, 1(1):145–168, 1987.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regres-
sion: Active data selection and test point rejection. In Proceedings of the
International Joint Conference on Neural Networks, 2000.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. Tech-
nical Report CIS TR MS-CIS-02-35, University of Pennsylvania, 2003.

B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in re-
ducing the small sample size problem and mitigating the Hughes phe-
nomenon. IEEE Transactions on Geoscience and Remote Sensing, 32:
1087–1095, 1994.

140 BIBLIOGRAPHY

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub–
gradient solver for SVM. In Proceedings of the International Conference
on Machine Learning, 2007.

L. Shen, A. Sarkar, and A. K. Joshi. Using ltag based features in parse
reranking. In Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing, 2003.

H. Shin, N. J. Hill, and G. Rätsch. Graph based semi–supervised learning
with sharper edges. In Proceedings of the European Conference on Machine
Learning, 2006.

V. Sindhwani, P. Niyogi, and M. Belkin. A co–regularized approach to semi–
supervised learning with multiple views. In Proceedings of the ICML Work-
shop on Learning with Multiple Views, 2005a.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: From trans-
ductive to semi–supervised learning. In Proceedings of the International
Conference on Machine Learning, 2005b.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. An annotation scheme for
free word order languages. In Proceedings of the Conference on Applied
Natural Language Processing, 1997.

A. J. Smola and I. R. Kondor. Kernels and regularization on graphs. In
Proceedings of the Annual Conference on Computational Learning Theory,
2003.

A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Tech-
nical Report NC2-TR-1998-030, 1998, NeuroCOLT2, 1998.

J. A. K. Suykens. Least squares support vector machines for classification
and nonlinear modelling. Neural Network World, 10, 2000.

C. Swamy. Correlation clustering: Maximizing agreements via semidefinite
programming. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, 2004.

S. Szedmák and J. Shawe-Taylor. Synthesis of maximum margin and multi–
view learning using unlabeled data. In Proceedings of the European Sym-
posium on Artificial Neural Networks, 2006.

B. Taskar, C. Guestrin, and D. Koller. Max–margin Markov networks. In
Advances in Neural Information Processing Systems, 2004a.

BIBLIOGRAPHY 141

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max–margin
parsing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2004b.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning struc-
tured prediction models: A large margin approach. In Proceedings of the
International Conference on Machine Learning, 2005.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regu-
larization method. Soviet Math. Dokl., 4:1035–1038, 1963.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector
machine learning for interdependent and structured output spaces. In
Proceedings of the International Conference on Machine Learning, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin
methods for structured and interdependent output variables. Journal of
Machine Learning Research, 6:1453–1484, 2005.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

J. Verbeek and N. Vlassis. Gaussian fields for semi–supervised regression and
correspondence learning. Pattern Recognition, 39(10):1864–1875, 2006.

S.V.N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. Mur-
phy. Accelerated training of conditional random fields with stochastic
meta-descent. In Proceedings of the International Conference on Machine
Learning, 2006.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means
clustering with background knowledge. In Proceedings of the International
Conference on Machine Learning, 2001.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF
Regional Conference Series in Applied Mathematics. SIAM, Philadelphia,
1990.

J. Weston and C. Watkins. Multi–class support vector machines. Tech-
nical Report CSD-TR-98-04, Department of Computer Sciences, Royal
Holloway, University of London, 1998.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression
to linear prediction and beyond. In Learning and Inference in Graphical
Models, 1999.

142 BIBLIOGRAPHY

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning,
with application to clustering with side-information. In Advances in Neural
Information Processing Systems, 2002.

L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans. Discriminative unsu-
pervised learning of structured predictors. In Proceedings of the Interna-
tional Conference on Machine Learning, 2006.

Y. Yang. An evaluation of statistical approaches to text categorization. In-
formation Retrieval, 1(1/2):69–90, 1999.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised
methods. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 1995.

A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman. BioCreative task
1A: Gene mention finding evaluation. BMC Bioinformatics 2005, 6(1):
S2, 2005.

D. H. Younger. Recognition and parsing of context free languages in time
n3. Information and Control, 10(2):189–208, 1967.

D. Zhou, B. Schölkopf, and T. Hofmann. Semi–supervised learning on di-
rected graphs. In Advances in Neural Information Processing Systems,
2005.

F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. Kubiatowicz.
Approximate object location and spam filtering on peer-to-peer systems.
In Proceedings of Middleware, 2003.

Y. Zhou and S. Goldman. Democratic co–learning. In Proceedings of the
International Conference on Tools with Artificial Intelligence, 2004.

Z.-H. Zhou and M. Li. Semi–supervised regression with co–training. In
Proceedings of the International Joint Conference on Artificial Intelligence,
2005.

X. Zhu. Semi–supervised learning in literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2005.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi–supervised learning using
gaussian fields and harmonic functions. In Proceedings of the International
Conference on Machine Learning, 2003.

Appendix A

Univariate Learning Algorithms

The presented framework of learning in joint input-output spaces covers clas-
sical learning algorithms as special cases. The model f : X ×Y → R returns
a real value for any input output pair (x , y) detailing how good output y
fits to the input x . Thus, for a given input, f imposes a ranking on the
output space. For instance, identifying input x as a query and Y as a set of
documents, f may be used directly for information retrieval tasks.

Moreover, the proposed framework also contains classical learning scenar-
ios such as regression and classification as special cases. On one hand, the
objective

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ) (A.1)

naturally reduces to a regression setting when Y(x) = R for all x ∈ X , that
is, returning the most likely function value at input x . On the other hand,
Equation A.1 reduces to binary classification when the output space contains
precisely two elements, that is, Y = {+1,−1}.

In this section, we review classical supervised learning algorithms allow-
ing for a dual representation that depends only on inner products in some
feature space. We assume that every input example xi is translated into a
d-dimensional feature vector xi = (xi,1, . . . , xi,d)

T. The algorithms are ex-
tended to semi-supervised learning and/or to deal with structured output
spaces in previous chapters. We begin with a derivation of regularized least
squares regression in Section A.1 followed by two binary classification algo-
rithms, the perceptron (Section A.2) and support vector machines (Section
A.3).

143

144 APPENDIX A. UNIVARIATE LEARNING ALGORITHMS

A.1 Regularized Least Squares Regression
In this section, we introduce regularized least squares regression (RLSR)
(Rifkin, 2002) from a Bayesian point of view. Regularized least squares re-
gression is also referred to as ridge regression (Saunders et al., 1998), least
squares support vector machines (Suykens, 2000), and proximal support vec-
tor machines (Fung and Mangasarian, 2001).

Function approximation from a Bayesian perspective frequently implies
a standard linear regression model with Gaussian noise

f(x) = 〈w,x〉, y = f(x) + ε. (A.2)

We call x ∈ R
d the observed input vectors, y ∈ R the real valued outputs

(targets), and w the vector of weights. Equation A.2 implies that the weight
vector w is normal to the seeked regression plane. From A.2 it is also clear
that such a regression hyperplane has to pass through the origin. However,
this is a strong assumption on the form of the model and if this is inappro-
priate, the model may perform poorly. We can overcome this drawback by
augmenting every input vector x by a constant element c ∈ R and define
x̃ = (c, x1, . . . , xd)

T. In the following we continue with the notation x wether
we use augmented input vectors or not.

The noise term in Equation A.2 is assumed to be iid Gaussian with zero
mean and variance σ2

ε ∼ N(0, σ2). (A.3)

Solving Equation A.2 for ε implies that y − f(x) is also iid Gaussian with
zero mean and variance σ2. That is, given n pairs (x1, y1), . . . , (xn, yn) with
xi ∈ X and y ∈ R, the conditional likelihood of the targets y = (y1, . . . , yn)T

can be written as

p(y|x1, . . . ,xn;w) =
n∏

i=1

p(yi|xi;w)

=
n∏

i=1

1√
2πσ

exp

{
−(yi − 〈w,xi〉)2

2σ2

}

=
1

(2πσ2)n/2
exp

{
− 1

2σ2
‖y −Xw‖2

}
, (A.4)

where the input vectors are aggregated in the n× d-matrix X with elements
[X]ij = xij, such that the i-th row of X contains the i-th input vector xi.
Notice that the likelihood only factorizes over the instances because of the
independence assumption.

A.1. REGULARIZED LEAST SQUARES REGRESSION 145

A simple way to find good parameters is maximizing the likelihood di-
rectly with respect to the weights w leading to the optimization problem

w? = argmax
w

p(y|x1, . . . ,xn;w). (A.5)

However, maximum likelihood will inevitably lead to poor generalization per-
formance for high-dimensional problems. As seen in Section 2.1, a remedy is
often achieved by regularization that we will incorporate in terms of a prior
on the weights.

In a Bayesian approach we need to define a prior on the weights, express-
ing beliefs about parameters before looking at the data. We favor sparse
models, having zero weights for redundant and irrelevant features and thus
apply a zero mean Gaussian prior and the identity as covariance matrix

w ∼ N(0, 1).

Note that this special choice of a covariance matrix implies an independency
of the components of w. According to Bayes’ Theorem, the posterior distri-
bution of the weights can be written in terms of likelihood and prior

p(w|y,x1, . . . ,xn) =
p(y|x1, . . . ,xn;w)p(w)

p(y|x1, . . . ,xn)
.

The denominator is a normalization term given by the marginalized likelihood
over all values of w

p(y|x1, . . . ,xn) =

∫
p(y|x1, . . . ,xn;w)p(w)dw.

However, for our purposes it suffices to compute the most likely weight vector.
We thus drop the normalization and address our goal directly by applying
the argument of the maximum which is also called the maximum a posteriori
(MAP) estimator,

argmax
w

p(w|y,x1, . . . ,xn) = argmax
w

p(y|x1, . . . ,xn;w)p(w).

The log-posterior distribution is proportional to

ln p(w|y,x1, . . . ,xn) ∝ −n
2

ln (2πσ2)− 1

2σ2
‖y −Xw‖2 − n

2
ln(2π)− 1

2
wTw

∝ − 1

σ2
‖y −Xw‖2 −wTw.

In other words, under the assumptions of Gaussian noise and mutual inde-
pendence of the weights, the maximizer of the posterior distribution of the

146 APPENDIX A. UNIVARIATE LEARNING ALGORITHMS

weights is equivalent to the minimizer of a regularized least squares regres-
sion,

argmax
w

p(w|y,x1, . . . ,xn) = argmin
w
‖y −Xw‖2 + σ2‖w‖2, (A.6)

where the variance of the noise acts as a regularization constant. According
to the representer theorem we already know that the minimizer of Equation
A.6 allows for the representation

w =
n∑

i=1

αik(xi, ·) ⇒ Xw = Kα, (A.7)

withα = (α1, . . . , αn)T and kernel matrix K with elements [K]ij = k(xi,xj) =
〈ψ(xi), ψ(xj)〉 defined by an arbitrary feature mapping ψ(x). Plugging A.7
into A.6 leads to Equation A.8 that has to be minimized with respect to
every αi.

Q(α) = ‖y −Kα‖2 + σ2αTKα (A.8)

Setting the derivative of Q with respect to vector α to zero yields the mini-
mizer of A.6 and A.8 in terms of α. Using the symmetry of K, we have

∂ Q

∂α
= −2Ky + 2KTKα+ 2σ2Kα

!
= 0

2KTKα+ 2σ2Kα=2Ky(
K + 1σ2

)
α = y.

Since K is positive definite, Q is a convex function and the unique solution
given by

α? =
(
K + 1σ2

)−1
y. (A.9)

The matrix (K + 1σ2) is regular for some σ2 > 0 and its inverse can be
computed by standard techniques in time O(n3).

We showed that, from a Bayesian perspective, minimizing the squared
error is equivalent to maximizing the likelihood under the assumption that
the targets are generated from a smooth function with added Gaussian noise.
Notice that the solution of RLSR is equivalent to the mean of a Gaussian
process (MacKay, 1998; Rasmussen and Williams, 2006). However, the latter
provides a more sophisticated inference due to a more powerful framework.

A.2. PERCEPTRONS 147

A.2 Perceptrons
Perceptrons (Rosenblatt, 1958; Duda et al., 2001), also known as single-layer
networks (Bishop, 1995), form the elementary unit of artificial neural net-
works that are made up of several layers of interconnected perceptrons. A
perceptron is a linear discriminant function f(x) = 〈w,x〉 that classifies
an instance x into a class y ∈ {+1,−1} by applying the signum opera-
tor to the decision function y = sign(f(x)). Given n training instances
(x1, y1), . . . , (xn, yn), with xi ∈ R

d and yi ∈ {+1,−1}, a perfect separation
of the two classes can be expressed as a set of inequalities,

∀n
i=1 yif(xi) ≥ 0.

To achieve this goal, the perceptron incrementally processes one training
example at a time, performing an update step whenever an example is mis-
classified. The perceptron algorithm is initialized with w(0) = 0. When the
i-th instance is erroneously classified, that is yif(xi) ≤ 0, the weights w(t)

are updated according to the rule

w(t+1) ← w(t) + η(t)yixi, (A.10)

with an appropriate sequence (η(t))t=1,...,∞ that is also called the learning
rate. It has been shown that η(t) = 1/t preserves some advantages in terms
of convergence rate and the number of updates (Robbins and Monro, 1951;
Fukunga, 1990). However, when we apply a constant learning rate η(t) = 1
for any t, the perceptron algorithm is also guaranteed to converge to a correct
solution if such a solution exists. This is the case if the training data is linearly
separable, that is, if both classes can be perfectly separated by a hyperplane.
The number of update steps needed is at most t ≤ (r/γ)2 ‖w(opt)‖2 (Novikoff,
1962), where the variable r denotes the radius of the smallest hypersphere
enclosing the data points and γ is the functional margin (Section A.3).

Reverse engeneering of the perceptron algorithm shows that the weight
vector can be written in terms of dual variables αi ∈ N0 counting how many
times example i has been used for an update, that is, w =

∑n
i=1 αiyjxi.

Applying this equality to the decision function obtains the dual

f(x) = 〈w,x〉 = 〈
n∑

i=1

αiyixi,x〉 =
n∑

i=1

αiyi〈xi,x〉.

The inner product can be computed efficiently by a kernel function

k(xi,xj) = 〈ψ(xi), ψ(xj)〉

148 APPENDIX A. UNIVARIATE LEARNING ALGORITHMS

Table A.1: Dual Perceptron Algorithm

Input: Labeled data (x1, y1), . . . , (xn, yn).

1 I n i t i a l i z e a l l αi = 0 .
2 repeat
3 f o r i = 1, . . . , n

4 i f yi

(∑n
j=1 αjyjk(xj ,xi)

)
< 0

5 Increment αi ← αi + 1
6 end
7 end
8 u n t i l convergence

Output: Trained hypothesis f(x).

that also allows for implicit feature mappings ψ(x). The dual update rule in
case of misclassifying the i-th example is then given by incrementing αi ←
αi + 1, see Algorithm A.1.

The perceptron minimizes the empirical risk with 0/1 loss evading discon-
tinuities in the involved gradients by an incremental procedure. Minimizing
the 0/1 frequently leads to ill-posed problems with no unique solution. Due
to the incremental nature of the perceptron, the ordering of the training
data highly determines the final location of the solution hyperplane. For
this reason, several extensions to the perceptron have been proposed such
as weight averaging (Brückner and Dilger, 2005) which leads to more stable
solutions and provides better generalization abilities (Freund and Shapire,
1999; Gentile, 2001) or incorporating margins (Duda et al., 2001). Collobert
and Bengio (2004) indicate the equivalence of regularized margin percep-
trons and support vector machines, although their optimization algorithms
are different.

A.3 Support Vector Machines
Support vector machines (SVMs) (Boser et al., 1992; Vapnik, 1998) are lin-
ear large margin classifiers; their solution is the (unique) hyperplane realizing
the maximal margin (the minimal distance) between two classes given the
separating hyperplane. This intuitive solution combined with the potential
use of kernel functions and sound theoretical results has led to an appealing
framework and finally to their success. Support vector learning has strong
connections to perceptrons and two-layer neural networks (Cortes and Vap-

A.3. SUPPORT VECTOR MACHINES 149

nik, 1995; Collobert and Bengio, 2004) and has been extended to other do-
mains such as multi-class classification (Crammer and Singer, 2001), ordinal
regression (Herbrich et al., 1999), and function approximation (Smola and
Schölkopf, 1998).

Given n instances (x1, y1), . . . , (xn, yn), with xi ∈ Rd and yi ∈ {+1,−1},
and a linear hypothesis

f(x) = 〈w,x〉+ b, (A.11)

where, for the sake of completeness, we make explicit use of a threshold b
and refer to Poggio et al. (2001) for details on which settings benefit from a
threshold and which do not.

Assume for a moment that our n data points are linearly separable. Then
the goal of support vector learning is to maximize the minimal distance
between the instances and the hyperplane. An indicator is the functional
margin γ̄ that is defined as the smallest decision value1 across the sample

γ̄ = min
1≤i≤n

yif(xi) ⇒ ∀n
i=1 yi(〈w,xi〉+ b) ≥ γ̄. (A.12)

The solution vector w can be scaled arbitrarily. Thus, to ensure uniqueness
of the solution, we scale the functional margin by the norm of the weights and
derive the geometrical margin γ = γ̄/‖w‖ that is invariant against scaling
of w and equivalent to the Euclidean distance between the hyperplane and
the nearest point. To find the maximal margin we need to maximize γ by
either maximizing γ̄ for a fixed weight vector or minimizing ‖w‖ for a fixed
functional margin. Support vector learning approaches usually follow the
latter and minimize the norm of the weight vector subject to the constraints
A.12 for fixed γ̄ = 1.

In general, however, the data will not be linearly separable. To deal
with arbitrary input problems, nonnegative slack variables ξ = (ξ1, . . . , ξn)T

can be incorporated into the constraints A.12 allowing pointwise relaxations
for margin violations. Notice, that incorporating slack variables can be in-
terpreted as using (squared) hinge loss as an upper bound of 0/1-loss. The
primal soft-margin support vector optimization problem is defined as follows.

Optimization Problem A.1 Given labeled examples (x1, y1), . . . , (xn, yn),
with xi ∈ X and yi ∈ {+1,−1}, a feature mapping ψ : X → F , and constants
C > 0 and r ∈ {1, 2}

min
w,ξ

1

2
‖w‖2 +

C

rn

n∑
i=1

ξr
i

1Notice that in case of linearly separable data this value is always positive.

150 APPENDIX A. UNIVARIATE LEARNING ALGORITHMS

subject to the constraints

∀n
i=1 yi (〈w, ψ(xi)〉+ b) ≥ 1− ξi

∀n
i=1 ξi ≥ 0.

The parameter C determines the trade-off between margin maximization
and error minimization and r penalizes errors linearly or quadratically. The
second term in the objective, the sum of the slack variables, upper bounds the
empirical error with 0/1-loss since ξi ≥ 1 holds in case of a misclassification.
Notice that we can express the slacks equivalently by ξi = (1 − yif(xi))

r
+

which is precisely the hinge loss for r = 1 and the quadratic loss for r = 2
that both upper bound the 0/1 loss (see Figure 2.1).

The constraints of Optimization Problem A.1 can be integrated into the
objective by the theorem of Lagrange (Boyd and Vandenberghe, 2004). The
result is the so-called Lagrangian and given by

Q(w, b, ξ,α,β) =
‖w‖

2

2

+
C

rn

n∑
i=1

ξr
i −

n∑
i=1

βiξi

−
n∑

i=1

αi (yi (〈w, ψ(xi)〉+ b)− 1 + ξi)

where α = (α1, . . . , αn)T and β = (β1, . . . , βn)T are called Lagrange mul-
tipliers. It can be shown that the saddle point of the Lagrangian coincides
precisely with the minimum of Optimization Problem A.1 (Boyd and Van-
denberghe, 2004).

We describe the derivation of the dual SVM optimization problem for
linear penalities in greater detail. For r = 1 we derive

∂Q

∂ξi
=
C

n
− αi − βi

!
= 0 ⇒ βi =

C

n
− αi (A.13)

which, with αi ≥ 0 and βi ≥ 0, leads to the so-called box-constraints 0 ≤ αi ≤
C
n

. Substituting A.13 into the Lagrangian eliminates its direct dependence
on the slack variables

Q(w, b,α) =
1

2
‖w‖2 −

n∑
i=1

αiyi (〈w, ψ(xi)〉+ b) +
n∑

i=1

αi. (A.14)

Repeating this procedure of differentiating and substituting with respect to
the threshold b yields a simplified form that no longer depends explicitly on

A.3. SUPPORT VECTOR MACHINES 151

the latter (Equation A.15)

Q(w,α) =
1

2
‖w‖2 −

n∑
i=1

αiyi〈w, ψ(xi)〉+
n∑

i=1

αi. (A.15)

Instead, we capture the influence of variable b implicitly by the constraint

∂Q

∂b
=

n∑
i=1

αiyi
!
= 0. (A.16)

Finally, we remove the dependence of A.15 on the primal weight vector by
taking the derivative with respect to the entire vector w. We resolve

∂Q

∂w
= w −

n∑
i=1

αiyiψ(xi)
!
= 0 ⇒ w =

n∑
i=1

αiyiψ(xi). (A.17)

Again, substituting the relation A.17 obtains the dual Lagrangian that de-
pends only on the dual variables, the Lagrange multipliers. Introducing
kernel k(x,x′) = 〈ψ(x), ψ(x′)〉, we have

Q(α) =
1

2
‖w‖2 −

n∑
i=1

αiyi〈w, ψ(xi)〉+
n∑

i=1

αi

=
1

2

(
n∑

i=1

αiyiψ(xi)

)2

−
n∑

i=1

n∑
j=1

αiαjyiyjk(xi,xj) +
n∑

i=1

αi

=
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj). (A.18)

We will refer to the equivalent vector notation of Equation A.18 given by

Q(α) = 1Tα− 1

2
αTYKYα, (A.19)

with diagonal matrix Y where [Y]ii = yi and gram matrix K given by [K]ij =
k(xi,xj). Notice that Equation A.17 is in line with the representer theorem.
The corresponding dual optimization problem is stated as follows.

Optimization Problem A.2 (L1 Dual SVM) Given n labeled examples
(x1, y1), . . . , (xn, yn), with xi ∈ X and yi ∈ {+1,−1}, kernel matrix K with
[K]ij = 〈ψ(xi), ψ(xj)〉, and parameter C > 0,

min
α

1Tα− 1

2
αTYKYα

subject to the constraints ∀n
i=1 0 ≤ αi ≤ C

n
and yTα = 0.

152 APPENDIX A. UNIVARIATE LEARNING ALGORITHMS

For r = 2 the calculations are very similar. We only present the resulting
optimization problem with the observation that the derivative with respect
to the slack variables does not vanish as before, but can be augmented into
the kernel matrix by K′ = K + 1

n
C

. The interested reader is directed to
one of the excellent text books on support vector machines (Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2002; Joachims, 2002).

Optimization Problem A.3 (L2 Dual SVM) Given n labeled examples
(x1, y1), . . . , (xn, yn), with xi ∈ X and yi ∈ {+1,−1}, kernel matrix K with
[K]ij = 〈ψ(xi), ψ(xj)〉, and parameter C > 0,

min
α

1Tα− 1

2
αTYK′Yα

subject to the constraints ∀n
i=1 0 ≤ αi and yTα = 0, with K′ = K + 1

n
C

.

It is desirable to minimize optimization Problem A.2 or A.3 instead of Op-
timization Problem A.1 for r = 1, 2, respectively, since the duals exhibit
simpler constraints and allow the use of standard quadratic programming
techniques (Boyd and Vandenberghe, 2004). For instance, one only has to
optimize n dual variables compared to dim(ψ) primal variables. The overall
time needed for the computation of the solution is in O(n3). In the case of
large sample sizes, decomposition techniques may lead to significant speed-
ups (Platt, 2000; Joachims, 1999b) as well as focusing on linear optimization
(Joachims, 2006). Recently, approaches optimizing SVMs in the primal yield
excellent results in terms of execution time and accuracy (Keerthi and De-
Coste, 2005; Chapelle, 2006; Shalev-Shwartz et al., 2007).

Appendix B

Viterbi Decoding

In this section we prove that for label sequence learning problems, decoding
the top scoring output sequence

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ) (B.1)

can be performed by a Viterbi algorithm (Forney, 1973; Schwarz and Chow,
1990) in O(T |Σ|2), where f is a generalized linear model

f(x , y) = 〈w,Φ(x , y)〉. (B.2)

For notational convenience we will use the notation for Φ(x , y) introduced
by Altun et al. (2003b). Given two labels σ, τ ∈ Σ, we define

φA
σ,τ (yt−1, yt) = [[yt−1 = σ ∧ yt = τ]] (B.3)
φB

σ,j(xt, yt) = [[yt = σ]]ψj(xt) (B.4)

As described in Section 3.2.2, ψj(x) extracts characteristics of x (e.g., feature
ψ234(x) = 1 if token xt starts with a capital letter and 0 otherwise). We will
refer to the vector ψ(x) = (. . . , ψj(x), . . .)

T and denote the inner product by
means of k(x, x′) = 〈ψ(x), ψ(x′)〉.

Analogously to Equation 3.23, Altun et al. (2003b) define the joint feature
representation Φ(xi, yi) of the i-th sequence as the sum of all feature vectors
Φ(xi, yi|t) = (. . . , φA

σ,τ (yi,t−1, yi,t), . . . , φ
B
σ,j(xi,t, yi,t), . . .)

T extracted at time t

Φ(xi, yi) =

Ti∑
t=1

Φ(xi, yi|t). (B.5)

The feature map in Equation B.5 gives rise to the following inner product in
input-output space that decomposes into a label-label and a label-observation

153

154 APPENDIX B. VITERBI DECODING

part,
〈Φ(x , y),Φ(x ′, y ′)〉

=
∑
s,t

∑
σ,τ

[[ys−1 = σ ∧ ys = τ]] · [[y′t−1 = σ ∧ y′t = τ]]

+
∑
s,t

∑
σ

[[ys = σ]]ψ(xs) · [[y′t = σ]]ψ(x′t)

=
∑
s,t

[[ys−1 = y′t−1 ∧ ys = y′t]] +
∑
s,t

[[ys = y′t]]k(xs, x
′
t). (B.6)

The Viterbi algorithm uses dynamic programming to maintain a trellis in
which nodes correspond to hidden states versus times. Each entry stores
the score of the most probable path leading to that node at a certain time,
see Figure B.1. Once the computation reaches the end of the sequence, it
backtracks the most likely path through the trellis and returns the highest
scoring label sequence that generates the input sequence. The following
Proposition B.1 shows that the argument of the maximum can be computed
by a Viterbi algorithm.
Proposition B.1 Given n input-output pairs of sequences of length Ti for
1 ≤ i ≤ n, let Σ denote the output alphabet with |Σ| < ∞. Let f be defined
as

f(x , y) =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ)
(
〈Φ(xi, yi),Φ(x , y)〉 − 〈Φ(xi, ȳ),Φ(x , y)〉

)
,

with the joint feature map Φ(x , y) as in Equation B.5. Then for all αi(ȳ) ≥ 0
and any x ∈ X ,

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ)

can be computed with a Viterbi algorithm in time O(T |Σ|2).
Proof The model f has the form

f(x , y) =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ)
(
〈Φ(xi, yi),Φ(x , y)〉 − 〈Φ(xi, ȳ),Φ(x , y)〉

)

=
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ)

(∑
s,t

([[yi,s = yt]]− [[ȳs = yt]]) k(xi,s, xt)

+
∑
s,t

[[yi,s−1 = yt−1 ∧ yi,s = yt]]− [[ȳs−1 = yt−1 ∧ ȳs = yt]]

)
.

155

We make the dependency on labels σ, τ ∈ Σ explicit by summing over all
transitions and observation states

f(x , y) =
∑

σ,τ∈Σ

∑
i

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ)
(∑

s,t

([[yi,s = σ]]− [[ȳs = σ]]) [[yt = τ]]k(xi,s, xt)

+
∑
s,t

(
[[yi,s−1 = σ ∧ yi,s = τ]]− [[ȳs−1 = σ ∧ ȳs = τ]]

)
[[yt−1 = σ ∧ yt = τ]]

)
.

The transition scores from label σ to label τ are now given by

a(σ, τ) =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ)
(Ti∑

t=1

[[yi,t−1 = σ ∧ yi,t = τ]]− [[ȳt−1 = σ ∧ ȳt = τ]]
)

and observation scores for label ys = σ and observation xs by

b(σ, x) =
n∑

i=1

Ti∑
t=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αi(ȳ) ([[yi,t = σ]]− [[ȳt = σ]]) k(xi,t, x).

The hypothesis f(x , y) can be rewritten in terms of transition scores a(σ, τ)
and observation scores b(σ, x)

f(x , y) =
∑

σ,τ∈Σ

a(σ, τ)
T∑

s=1

[[ys−1 = σ ∧ ys = τ]]︸ ︷︷ ︸
=:fa(x ,y)

+
T∑

s=1

∑
σ∈Σ

[[ys = σ]]b(σ, xs)︸ ︷︷ ︸
=:fb(x ,y)

.

where fa weights the occurences of neighboring labels in y by corresponding
scores of the model and fb determines how well observations xs fit to their
labels ys given the model. To decode the top scoring sequence we define

δt(σ) = max
y1,...,yt−1

f(x , y1, . . . , yt−1, yt = σ), (B.7)

that is, δt(σ) denotes the top scoring partial sequence up to position t − 1
where yt = σ. We first show by induction that

δt+1(σ) = max
τ∈Σ

[δt(τ) + a(τ, σ)] + b(σ, xt+1) (B.8)

holds. The initialization is simply given by

δ0(σ) = 0, ∀σ ∈ Σ

δ1(σ) = max
τ∈Σ

[δt(τ) + a(τ, σ)] + b(σ, xt+1)

= a(ε, σ) + b(σ, x1).

156 APPENDIX B. VITERBI DECODING

The recursion step is given for 2 ≤ t ≤ T by

δt(σ) = max
y1,...,yt−1

f(x , y1, . . . , yt−1, yt = σ)

= max
y1,...,yt−1

∑
τ,τ̄∈Y

a(τ, τ̄)
t−1∑
s=2

[[ys−1 = τ ∧ ys = τ̄]]

+
∑
τ∈Σ

a(τ, σ)[[yt−1 = τ ∧ yt = σ]]

+
t−1∑
s=1

∑
τ∈Σ

[[ys = τ]]b(τ, xs) + [[yt = σ]]b(σ, xt)

= max
σ?

max
y1,...,yt−2

∑
τ,τ̄∈Y

a(τ, τ̄)
t−2∑
s=2

[[ys−1 = τ ∧ ys = τ̄]]

+
∑
τ∈Σ

a(τ, σ?)[[yt−2 = τ ∧ yt−1 = σ?]]

+ a(σ?, σ)[[yt−1 = σ? ∧ yt = σ]]

+
t−2∑
s=1

∑
τ∈Σ

[[ys = τ]]b(τ, xs) + b(σ?, xt−1) + b(σ, xt)

= max
σ?

[
max

y1,...,yt−2

f(x , y1, . . . , yt−2, yt−1 = σ?) + a(σ?, σ)

]
+ b(σ, xt)

= max
σ?

[δt−1(σ
?) + a(σ?, σ)] + b(σ, xt).

Thus, the top scoring sequence has the score

max f(x , y) = max
σ∈Σ

δT (σ).

We only sketch the extension to the argument of the maximum since it is
analoguous to the regular Viterbi algorithm. We introduce path variables
ϕt(σ) that are initialized by ϕ1(σ) = ε for all σ ∈ Σ. The sequence ϕt(σ) is
then defined recursively for 2 ≤ t ≤ T by

ϕt(σ) = argmax
σ?∈Σ

[δt−1(σ
?) + a(σ?, σ)] .

Once the δt(σ) of Proposition B.1 are fixed, the optimal label sequence can
be found by backtracking

y?
T = argmax

σ∈Σ
δT (σ)

y?
t = ϕt+1(y

?
t+1) for t = T − 1, . . . , 1.

157

Figure B.1: Visualization of a trellis over the alphabet Σ = {σ1, . . . , σk}.

Given the transition matrix [A]σ,τ = a(σ, τ) and the observation matrix
[Bx]σ,t = b(σ, xt) for input x , the computation of δ and ϕ for a fixed t and
σ ∈ Σ involves visiting |Σ| predecessors; thus, for a sequence of length T the
time needed is in O(T |Σ|2). This concludes the proof. �

In V -view learning, the joint decision function used for inference is given
by

f(x , y) = f 1(x , y) + f 2(x , y) + . . .+ fV (x , y) (B.9)

We show in Proposition B.2 that Proposition B.1 also holds for the joint
decision function.

Proposition B.2 The prediction ŷ of the joint decision function

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ) = argmax
ȳ∈Y(x)

[
f 1(x , ȳ) + . . .+ fV (x , ȳ)

]
(B.10)

with f v(x , y) = 〈wv,Φv(x , y)〉 for v = 1, . . . , V , where Φv is defined in Equa-
tion B.5, can be computed by a Viterbi decoding.

Proof According to Proposition B.1 all views v = 1, . . . , V provide transition
scores from label σ to label τ ,

av(σ, τ) =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
i (ȳ)

(Ti∑
t=1

[[yi,t−1 = σ ∧ yi,t = τ]]− [[ȳt−1 = σ ∧ ȳt = τ]]
)

︸ ︷︷ ︸
=:const(i,σ,τ,ȳ)

158 APPENDIX B. VITERBI DECODING

and observation scores

bv(σ, x) =
n∑

i=1

Ti∑
t=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αv
i (ȳ) ([[yi,t = σ]]− [[ȳt = σ]])︸ ︷︷ ︸

=:const(i,t,σ,ȳ)

kv(xi,t, x),

for observing xs while in state ys = σ. The joint transition scores are defined
over all V views given by

a(σ, τ) =a1(σ, τ) + . . .+ aV (σ, τ)

=
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

α1
i (ȳ) const(i, σ, τ, ȳ) +

n∑
i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

α2
i (ȳ) const(i, σ, τ, ȳ)

+ . . .+
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

αV
i (ȳ) const(i, σ, τ, ȳ).

Rearranging the terms leads to

a(σ, τ) =
n∑

i=1

∑
ȳ∈Y(xi)

ȳ 6=yi

(
α1

i (ȳ) + . . .+ αV
i (ȳ)

)
const(i, σ, τ, ȳ).

Similarly, the joint observation scores have the form

b(σ, x) =
∑
i,t

∑
ȳ∈Y(xi)

ȳ 6=yi

(
α1

i (ȳ)k1(xi,t, x) + . . .+ αV
i (ȳ)kV (xi,t, x)

)
const(i, t, σ, ȳ).

In terms of the joint score functions the joint hypothesis f(x , y) can be writ-
ten in the well known form

f(x , y) =
∑

σ,τ∈Σ

a(σ, τ)
T∑

s=1

[[ys−1 = σ ∧ ys = τ]] +
T∑

s=1

∑
σ∈Σ

[[ys = σ]]b(σ, xs).

Applying Proposition B.1 proves the claim. �

Appendix C

Cocke-Kasami-Younger Parsing

In this chapter, we show that the top scoring parse tree ŷ for a given input
sentence x given by

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ) (C.1)

can be decoded with a Cocke-Kasami-Younger (CKY) algorithm with respect
to a weighted context-free grammar G in Chomsky normal form (Kasami,
1965; Younger, 1967). In the following we make use of the generalized linear
model

f(x , y) = 〈w,Φ(x , y)〉 (C.2)

and the joint feature mapping Φ(x , y) defined in Equation 3.29. Note that
all results are easily generalizable to feature mappings that include complex
(local) features. Before we present the main result of this chapter let us
briefly introduce some common notation that may help to understand the
further derivations.

Definition C.1 Let G = (N , T ,Σ, S) be a context-free grammar as in Def-
inition 3.3. For any production (A → α) ∈ Σ and any u, v ∈ (N × T)∗ we
write uAv ⇒G uαv to indicate that uαv can be directly derived from uAv
given G. If α1, . . . , αm ∈ (N × T)∗ and

α1 ⇒G α2, α2 ⇒G α3, . . . , αm−1 ⇒G αm,

holds, we write α1 ⇒∗
G αm, where ⇒∗

G denotes the reflexive and transitive
closure of ⇒G.

We now show the main result of this chapter.

159

160 APPENDIX C. COCKE-KASAMI-YOUNGER PARSING

Proposition C.1 Let G = (N , T ,Σ, S) be a PCFG in Chomsky normal
form defined in Definitions 3.4 and 3.5 that generates sentences x ∈ X with
x = x1, . . . , xT and parse tree y ∈ Y(xi). Moreover, let f be defined as in
Equation C.2 and Φ as in Equation 3.29. Then for any x ∈ X ,

ŷ = argmax
ȳ∈Y(x)

f(x , ȳ) = argmax
ȳ∈Y(x)

〈w,Φ(x , ȳ)〉,

can be computed with a CKY algorithm in time O(|Σ|T 3) where T is the
length of x .

Proof Let y[i,j] ∈ Σ ∪ {∅} denote the (non-terminal) root of the parse y[i,j]

that generates the subsequence x[i,j] = xi, . . . , xj with 1 ≤ i ≤ j ≤ T or ∅
if such a parse does not exist. We denote by ysub

[i,j] the subtrees of y[i,j] below
root y[i,j] as shown in Figure C.1. We define variable δi,j(A) that gives us the
score of joining optimal subtrees ysub

[i,j] by a production with head A ∈ N

δi,j(A) = max
ysub
[i,j]

∈Y(x[i,j])
f(x , ysub

[i,j], y[i,j] = A). (C.3)

We show that Equation C.3 requires the existence of two optimal parses
B ⇒∗

G xi, . . . , xk and C ⇒∗
G xk+1, . . . , xj with respect to k and production

rule (A → BC) ∈ Σ. If there is no rule A → BC or the parse rooted in
either B or C does not exist, then the local probability P (A → BC) = 0.
In this case we define lnP (A→ BC) = ln 0 := −∞ and thus δi,j(A) = −∞.
We now show that for every pair (i, j), i ≤ j, either

δi,i(A) = 〈w,Φ(x , A→ xi)〉,

for i = j or

δi,j(A) = max
i≤k<j

B,C:(A→BC)∈Σ

[〈w,Φ(x , A→ BC)〉+ δi,k(B) + δk+1,j(C)] ,

for i < j holds.

Initialization: For i = j we consider the parse below y[i,i] = A that generates
token xi, i.e., A ⇒∗

G xi. This holds if and only if Σ contains a production
A → xi since by Definition 3.5 only unary rules are allowed to produce
terminals. Thus, we initialize

δi,i(A) = 〈w,Φ(x , A→ xi)〉, ∀1 ≤ i ≤ T. (C.4)

Note that if there is no such rule (A → xi) ∈ Σ, or equivalently P (A →
xi) = 0, the inner product in Equation C.4 is not well defined and we define
δi,i(A) = −∞ instead.

161

Figure C.1: Illustration of the notation used in Proposition C.1

Recursion: To produce the subsequence xi, . . . , xj for 1 ≤ i < j ≤ T we have
to apply binary rules (see again Definition 3.5) and hence y[i,j] has to be the
head of a binary rule. We resolve

δi,j(A) = max
ysub
[i,j]

∈Y(x[i,j])
f(x , ysub

[i,j], y[i,j] = A)

= max
ysub
[i,j]

∈Y(x[i,j])
〈w,Φ(x , ysub

[i,j], y[i,j] = A)〉

= max
i≤k<j

ysub
[i,j]

∈Y(x[i,j])

〈w,Φ(x , A→ y[i,k]y[k+1,j])〉+ 〈w,Φ(x , ysub
[i,j])〉

= max
i≤k<j

y[i,k],y[k+1,j]∈N

[
〈w,Φ(x , A→ y[i,k]y[k+1,j])〉

+ max
y[i,k]∈Y(x[i,k])

〈w,Φ(x , y[i,k])〉+ max
y[k+1,j]∈Y(x[k+1,j])

〈w,Φ(x , y[k+1,j])〉
]

= max
i≤k<j

B,C:(A→BC)∈Σ

[
〈w,Φ(x , A→ BC)〉+ max

y[i,k]∈Y(x[i,k])
f(x , y[i,k], y[i,k] = B)

+ max
y[k+1,j]∈Y(x[k+1,j])

f(x , y[k+1,j], y[k+1,j] = C)

]
= max

i≤k<j
B,C:(A→BC)∈Σ

[〈w,Φ(x , A→ BC)〉+ δi,k(B) + δk+1,j(C)] .

Termination: Finally, we consider the case i = 1 and j = T , that is the
generation of x1, . . . , xT which is precisely the input x . By definition S ∈ N

162 APPENDIX C. COCKE-KASAMI-YOUNGER PARSING

is the only start symbol in G, thus,

δ1,T (S) = max
ysub
[1,T]

∈Y(x)
f(x , ysub

[1,T], y[1,T] = S)

= max
y∈Y(x)

f(x , y)

Taking the argument of the maximum decodes the top scoring parse for
subsequence xi, . . . , xj with head A (Equation C.5).

ϕi,j(A) = argmax
i≤k<j

B,C:(A→BC)∈Σ

[〈w,Φ(x , A→ BC)〉+ δi,k(B) + δk+1,j(C)] (C.5)

Thus, we can compute the top scoring parse tree for a given input sentence
according to

argmax
ȳ∈Y(x)

f(x , ȳ) = ϕ1,T (S).

Note that if δ1,T (S) = −∞ or equivalently ϕ1,T (S) = ∅ a valid path S ⇒∗
G x

does not exist.
The variables δi,j have to be computed for all pairs 1 ≤ i, j ≤ n where for

each pair (i, j) an appropriate i ≤ k < j has to be found. Moreover, every
δi,j has to be evaluated for every σ ∈ Σ and therefore the overall time needed
for the computation of the argmax is O(|Σ|T 3). �

One might think of variable y as a programming table, also known as a
chart. Figure C.2 shows the solution of the CKY algorithm for the sentence
"Curiosity kills the cat" where l = 4 − j + 1. Compare this solution
with the corresponding parse tree in Figure 3.4.

163

Figure C.2: Chart displaying the solution of the CKY algorithm.

164 APPENDIX C. COCKE-KASAMI-YOUNGER PARSING

Abbrevations

Sets and operations on sets:
N set of all natural numbers, 1, 2, 3, . . .

R,R+
0 set of all real numbers and set of nonnegative

real numbers
A ∪B,A ∩B,A−B set union, intersection, and difference

|A| number of elements in the set A

Matrices, vectors, and scalars:
K,A, . . . matrices
α,x, . . . column vectors
AT,xT transpose of a matrix, row vector

η, λ, y, . . . scalars
‖x‖, |a| norm of vector x and absolute value of a

〈x, x̄〉, xTx̄ inner product of x and x̄
0,1 vectors of all zeros and ones
1 identity matrix

[A]ij element in i-th row and j-th column of A

Complex variables:
x , y , z structured input and output variables
X domain of complex inputs

Y ,Y(x) structured output space, induced output
space for input x

Φ(x , y) joint feature mapping

165

166 APPENDIX C. COCKE-KASAMI-YOUNGER PARSING

Acknowledgment

Foremost, I would like to thank Tobias Scheffer for his tireless pursuit of
excellence in any facet of academic life, his invaluable guidance, and for
giving me the opportunity to work in a stimulating research context. I would
also like to thank Thomas Gärtner and Alex Zien for inspiring discussions,
thought-provoking questions, and of course for pushing our ideas forward
together. I enjoyed working with you a lot!

I am profoundly grateful to Michael Brückner, Peter Haider, Thoralf
Klein, and Christina Limbird for thoroughly proofreading the final version of
this thesis. I also deeply appreciate the support of all current and previous
members of Tobias’ research group at Humboldt-Universität zu Berlin and
later at Max-Planck-Institute in Saarbrücken, including Christoph Büscher,
Laura Dietz, Isabel Drost, Marcel Gestewitz, Thoralf Klein, Sascha Schulz,
and Peter Siemen. Special thanks also to Steffen Bickel and Michael Brück-
ner for sharing the office and their thoughts with me. To Uwe Dick and Peter
Haider a big thank you for letting me win a two-digit number of shots in our
tabletop soccer rounds: keep it up guys!

My biggest thanks go to my family and all my friends who had absolutely
nothing to do with this thesis but nonetheless affectionately listened to my
ups and downs at many unlikely hours. To Poldi, thank you for giving me
such a great time next to you.

167

168 APPENDIX C. COCKE-KASAMI-YOUNGER PARSING

Selbstständigkeitserklärung

Hiermit erkläre ich, dass

(i) ich die vorliegende Dissertationsschrift selbstständig und ohne uner-
laubte Hilfe verfasst habe;

(ii) ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe
oder einen solchen besitze;

(iii) mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät II der Humboldt-Universität zu Berlin gemäß des amtlichen
Mitteilungsblattes Nr. 34/2006 bekannt ist.

Ulf Brefeld
Berlin, 27. Juli 2007

	Introduction
	Structured Learning
	Semi-supervised Prediction Models for Structured Data
	Contributions
	Outline
	Previously Published Work

	Problem Setting
	Supervised Machine Learning
	Semi-supervised Multi-view Learning

	Learning in Joint Input-Output Spaces
	Graphical Models
	Markov Random Fields
	Conditional Random Fields
	Generalized Linear Models in Multiple Views

	Joint Feature Representation
	Multi-class Classification
	Label Sequence Learning
	Natural Language Parsing
	Supervised Clustering

	Co-regularized Least Squares Regression
	Related Work
	Efficient Co-Regression
	Non-Parametric Least Squares Regression
	Semi-parametric Approximation
	Relation to RLSR

	Distributed CoRLSR
	Block Coordinate Descent CoRLSR
	Analysis of Distributed CoRLSR

	Empirical Evaluation
	UCI Experiments
	Results for KDD Cup 2004 data set

	Conclusions

	Co-perceptrons
	Related Work
	Generalized Perceptrons
	Co-perceptrons
	Empirical Results
	Biocreative Data Set
	Spanish News Wire
	Execution Time
	Feature splits

	Conclusions

	Co-support Vector Learning
	Related Work
	SVMs for Structured Output Variables
	Co-support Vector Machines
	Optimization Strategy
	Empirical Results
	Multi-Class Classification
	Named Entity Recognition
	Natural Language Parsing
	Execution Time

	Conclusions

	Transductive Support Vector Machines
	Unconstraint Optimization
	Unconstrained Transductive SVMs
	Unconstraint CoSVM Optimization
	Experiments
	Execution Time
	Multi-class Classification
	Artificial Sequential Data
	Named Entity Recognition

	Discussion
	Comparison with CoSVMs
	Conclusions

	Supervised Clustering of Streaming Data
	Related Work
	Learning to Cluster
	Clustering of Streaming Data
	Experimental Results
	Email Batch Data
	Batch Identification
	Classification Using Batch Information
	Clustering Runtime

	Conclusions

	Conclusions
	Univariate Learning Algorithms
	Regularized Least Squares Regression
	Perceptrons
	Support Vector Machines

	Viterbi Decoding
	Cocke-Kasami-Younger Parsing

