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ABSTRACT
We propose a novel class of kernels to identify tactical pat-
terns in multi-trajectory data such as soccer games. For-
mally, we introduce a group of R-convolution kernels called
Spatio-Temporal Convolution Kernels composed of a tempo-
ral and a spatial kernel. The particular choice of the com-
ponent kernels depends on the application at hand. For the
purpose of clustering player and ball trajectories in soccer we
propose a probability product kernel on the empirical distri-
butions of the objects to serve as spatial kernel and a Gaus-
sian kernel as temporal kernel. Empirically, we observe bet-
ter clusterings compared to baseline methods and high clus-
ter consistencies with (inefficient) Dynamic Time Warping-
based methods. In terms of tactical patterns we identify
interpretable clusters corresponding to long and short game
initiations on either sides of the field.

1. INTRODUCTION
Tracking moving objects is a prerequisite for analysing co-

ordination and drawing conclusions on optimality, strategy,
and tactics. Applications are not restricted to sports ana-
lytics but also include video surveillance, animal migration
and traffic analysis. In all these applications the movement
of (interesting) groups of objects is more informative than
the trajectory of a single object.

By contrast, existing approaches on trajectory analyses
often focus on the analysis of trajectories from single ob-
jects [3,7,9,13,14]. Junejo et al. [9] represent trajectories as
a set of two-dimensional coordinates. Using Hausdorff dis-
tance and graph-cuts trajectories are then recursively par-
titioned. Fu et al. [3] resample trajectories to obtain con-
stant between-point distances. The corresponding points of
two trajectories are compared using a Gaussian RBF Ker-
nel, whereby the longer trajectory is cut to the length of
the shorter one. Hirano et al. [7] use multi-scale match-
ing together with a rough clustering to analyse trajecto-
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ries. Grimson et al. [13] represent trajectories by a bag-
of-positions/directions similar to the bag-of-words represen-
tation of documents in natural language processing. The
spatial domain is discretized and the number of occurrences
of each position/direction in a trajectory is counted. A se-
mantic topic model called Dual-HDP is used to find semantic
regions that are considered building blocks of trajectories.
Wei et al. [14] use role models and a bilinear spatio-temporal
basis model to represent team movement to cluster goal scor-
ing opportunities in soccer.

We propose multi-purpose kernels to represent, find and
compare groups of related trajectories. Representing tra-
jectories as a set of time/positions-tuples, we employ an
R-convolution kernel with two main components: a spatial
component comparing snapshots of an arbitrary number of
objects and a temporal component introducing a temporal
order on these snapshots. Empirically, we evaluate our ap-
proach on team tactics in soccer. Note that this is a par-
ticularly challenging task as the data is noisy and often un-
structured due to the continuous nature of the game and
individual short-term goals of the players. For lack of space,
we focus on game initiations, however, similar results are
obtained for scoring opportunities.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our method by deriving a so called Spatio-
Temporal Convolution Kernel. In Section 3 we deploy our
method to identify tactical patterns in a soccer game and
Section 4 concludes.

2. PROPOSED APPROACH

2.1 Trajectory Representation
Multi-object trajectory analysis deals with a possibly vary-

ing number of moving objects Ot in a metric space X, e.g.
X = R2, over a period of time T ⊂ R+. A multi-object
trajectory is composed of snapshots of the positions of the
objects at multiple times, defined by Definition 1.

Definition 1. Assume there is a constant number of groups
K, such that at any time every object can be associated with
one of the groups k ∈ {1, ...,K}. Then the group-oriented
snapshot of all objects at time t is denoted by

xt ∈ P(X)K =: X .

We will call X the snapshot space. The positions of all
objects of a particular group k ∈ {1, ...,K} is denoted by

xt(k) ∈ P(X),



where the members of group k in snapshot xt are denoted by
Oxt(k) ⊂ Ot.

Instead of an ordered sequence of snapshots we will use a
set of time/snapshot-tuples to represent trajectories. Thus,
time is explicitly represented in contrast to the implicit rep-
resentation as sequences. Using Definition 1, trajectories are
defined by Definition 2.

Definition 2. A trajectory is defined as a finite subset
P = {t1, xt1), ..., (tn, xtn)} ⊂ [0, 1]×X , such that the trajec-
tory set P contains only one snapshot per point in time and
the time-scale is normalized to [0, 1].

2.2 Spatio-Temporal Convolution Kernel
In this section we develop a kernel on the space of (time-

normalized) multi-trajectories P([0, 1]×X ). Each of the
trajectories consists of a set of snapshots associated with
a relative time stamp. The basic idea is to perform a pair-
wise comparison of the snapshots in the two sets. Therefore,
first, we need a way to compare snapshots and, second, we
need to know, which snapshots of the two trajectory sets
to compare with each other. At first sight, Dynamic Time
Warping (DTW) [1] seems to be a suitable candidate as it
computes the best alignment of the snapshots. However,
besides the high computational costs of DTW, the obtained
similarity measure is not a Mercer kernel, i.e. does not corre-
spond to an inner product in some Hilbert Space. Although
there is anecdotal evidence that learning with indefinite ker-
nels can lead to good results in some application, theoretical
guarantees only exist for positive definite kernels.

We propose to compare every snapshot of the first trajec-
tory to every snapshot of the second one and to weight the
similarities according to their offset in relative time. For-
mally, this is done using an R-convolution kernel [6] on the
two sets representing the trajectories. In order to use an
R-convolution kernel we need to define a function R,

R : N× [0, 1]×X × P([0, 1]×X )→ {0, 1},

relating the trajectory sets to their components:

R(n, t, x, P ) =

{
1 if |P |= n ∧ ∃(s, ys) ∈ P : (t, x) = (s, ys)

0 otherwise

The R-convolution kernel is then given by

k(P,Q) =
∑

(n,t,x)∈R−1(P ),

(m,s,y)∈R−1(Q)

kN(n,m) · k[0,1](t, s) · kX (x, y) (1)

with R−1(P ) = {(n, t, x) : R(n, t, x, P ) = 1}. The term
kN accounts for differences in the length of trajectories by
normalization, i.e. kN = 1

nm
. Finally, the R-convolution

kernel simplifies to

k(P,Q) =
1

|P ||Q|
∑

(t,xt)∈P,(s,ys)∈Q

k[0,1](t, s) · kX (xt, ys) (2)

The definition of the Spatio-Temporal Convolution Kernel
(STCK) in Equation (2) leaves two degrees of freedom. First,
the definition of the spatial kernel kX that determines when
snapshots are similar. Second, the choice of the temporal
kernel k[0,1] that determines the way in which the snapshots
of two sequences are combined and thus the importance of
ordering and speed.

The actual choice of both kernels depends on the appli-
cation at hand. In our case of soccer analytics, we propose
to compare the K groups separately for the spatial kernel
and to sum up the individual contributions

kX (xt, yt) =
1

K

K∑
k=1

kG(xt(k), yt(k)). (3)

According to Definition 1, kernel kG needs to compare two
sets of a possibly varying number of positions. This could
be done straight forwardly using a Gaussian RBF Kernel
(or any other kernel on R2) on the centroids of the posi-
tions. Besides the need of defining the width parameter
σS this kernel has the drawback, that the distribution of
the objects around their centroid is not taken into account.
We deal with both problems by using a probability prod-
uct kernel [8] on the Gaussian distributions, which are fit-
ted to the positions of the objects of the two groups. We
denote these distributions, respectively their density func-
tions, by N (µxt(k),Σxt(k)) and N (µyt(k),Σyt(k)), respec-
tively gxt(k) and gyt(k). The probability product kernel
(with ρ = 1/2) between two Gaussian distributions provides
a closed-form in terms of the means and covariance matrices
and is given by

kG(xt, yt) =

∫
R2

(gxt(z)gyt(z))
1/2 dz = 2|Σ∗|

1
2 |Σxt |

− 1
4 |Σyt |

− 1
4

· exp

(
−1

4

(
µTxtΣ

−1
xt µxt + µTytΣ

−1
yt µyt − µ

∗TΣ∗µ∗
))

with Σ∗ = (Σ−1
xt + Σ−1

yt )−1 and µ∗ = Σ−1
xt µxt + Σ−1

yt µyt
1. If

the covariance matrix is ill-conditioned or singular, we use
a simple shrinking scheme with shrinkage parameter α to
achieve non-singularity

Σ = (1− α) · Σ + α · Tr(Σ)

2
I2.

There exist different strategies to choose an optimal value
for α (see [2, 11]), but for our purposes it suffices to deploy
a constant 0.1. In case of Tr(Σ) = 0 the following scheme is
used:

Σ = (1− α) · Σ + α · σ2
MIN · I2,

with an application specific parameter σ2
MIN .

As for the temporal kernels the situation is much eas-
ier, because the space is fixed to the one-dimensional interval
[0, 1]. We will briefly discuss possible options for the tem-
poral kernel and their implications.

• Constant Kernel k[0,1](t, s) = 1: If a constant kernel is
applied the Spatio-Temporal Convolution Kernel col-
lapses to a set kernel on the two sets of snapshots ig-
noring order at all.

• Uniform Kernel k[0,1](t, s) = I{|t−s|<w}: If a uniform
kernel is used every snapshot of the first trajectory is
just compared to those snapshots of the second trajec-
tory, which are close in time. The choice of w deter-
mines how close snapshots have to be.

• Gaussian Kernel k[0,1](t, s) = exp
(
− 1

2σ2
T
|t− s|2

)
: In

case of a Gaussian Kernel every snapshot of the first
1In order to simplify the notation the index k has been omit-
ted.
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Figure 1: Exemplary game initiations: The trajectory of
the ball (black), the four players of interest (red) and their
centroid (blue) are depicted.

trajectory is compared to every snapshot of the second
trajectory, but the closer they are in (relative) time,
the more important their similarity is.

Based on our experiments with artificial data we propose
a Gaussian kernel as temporal kernel.

2.3 Kernelized K-Medoids
For clustering we use a kernelized version of the K-Medoids

algorithm [10], which has consistently outperformed spectral
clustering in our tests. Similar to K-Means, K-Medoids is
a partitional clustering algorithm, which aims to minimize
the distance between the instances and the cluster centers
they are associated to. K-Medoids chooses only instances it-
self as cluster centers and therefore only needs the distances
between all instances as input, which are derived from the
kernel using

dist(x, y) = k(x, x)− 2k(x, y) + k(y, y) (4)

Medoids are then initialized randomly and an iterative opti-
mization procedure similar to the K-Means algorithm is used
to find a local minimum. This process is repeated 200 times
and the clustering with the lowest within-cluster distance
serves as the final clustering.

3. EXPERIMENTAL RESULTS
The goal of this section is to identify movements patterns

in a soccer match through the analysis of tracking data. In
particular, we analyse tracking data from the soccer match
between 1. FC Kaiserslautern and Hannover 96 from the
2011/12 Bundesliga Season (Matchday 17). The data con-
sists of two dimensional positions of players, ball and referees
at 25 frames per second, which amounts to roughly 135000
positions per object and match.

3.1 Sequence Extraction and Model Setup
In a first step, we need to identify and extract sequences

corresponding to game initiations from the full game. Game
initiations start with the goal keeper passing the ball. First,
the goal keeper is recognized as the player with the highest
average absolute position in the x-coordinate. The time of
the pass is set to the moment at which the distance between
the ball and the goalkeeper exceeds a predefined thresh-
old DIST THRESHOLD. Game initiations end with the
team loosing possession, a stoppage or the start of the next
game initiation as defined above. Furthermore, game ini-
tiations end after a maximum length of MAX LENGTH.
After the extraction process sequences with a length below
MIN LENGTH are excluded. In this study we set
DIST THRESHOLD = 0.1, MAX LENGTH = 250 and

MIN LENGTH = 12, which is equivalent to 2.5-5 meters
and 10 and 0.5 seconds. For clustering, the trajectories of
the ball as well as the four most defensive players is used.
These players usually make up the back four of the team and
their behaviour during the game initiations is of particular
interest to sports scientists (see [4]). The four players are
associated with one group and the ball makes up a second
group in the sense of Definition 1.

Figure 1 depicts two exemplary situations. The resulting
numbers of game initiations for are 35 for the home team
and 54 for the away team.

3.2 Parameter Selection
The number of clusters is choosen using the Hartigan in-

dex [5] and silhouette plots [12], which give better results
than for example information criteria. This leads to 5 clus-
ters for the game initiations of the home team and 3 clusters
for the away team. For the temporal kernel we set σT = 0.5,
which leads to some tolerance for speed differences, but still
represents the ordering of the snapshots appropriately. We
set σ2

MIN to the average variance of two objects’ positions
in a snapshot, i.e. to 0.1816, respectively to 0.2081.

3.3 Results
We compare the Spatio-Temporal Convolution Kernel de-

rived in Section 2 with three baselines. First, a straight
forward extension of Junejo et al. [9] to the multi-object
scenario, i.e. Hausdorff distance on the set of positions of
the trajectory (short: Junejo). Instead of the hierarchical
clustering employed in [9] kernelized K-Medoids is used. The
second baseline is inspired by Grimson et al. [13]. We use a
Bag-of-Position as well as Bag-of-Directions representation
for the the trajectories of each group. To keep it simple, we
use a Multinomial Mixture Model and Expectation Maxi-
mization for clustering instead of a semantic topic model
like Dual-HDP (short: MM ). Additionally, we also compare
our method with Dynamic Time Warping in combination
with the product probability kernel as local distance mea-
sure (short: DTW ).
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Figure 2: Adjusted rand index between our method and the
baseline methods for the game initiations of the home(left)
and away team (right)

Figure 2 shows the Adjusted Rand Index between the four
methods. Note that in both cases the differences between
the STCK and DTW are only small, while the Multino-
mial Mixture Model identifies significantly different clusters.
Juenjo et al. finds similar clustering in one case. Figure 3
depicts the medoid, respectively the most likely trajectory,
of each cluster and the average silhouette measure per clus-
ter. The average silhouette is higher for STCK and DTW
than for Junejo et al. indicating more distinctive clusters.
For the the game initiations of the home team, all methods
but the multinomial mixture model identify similar repre-
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Figure 3: Medoids and average per cluster silhouette of the game initiations of the home team (top) and away team (bottom).
The initiations make up 5 receptively 3 clusters indicated by the colors. The dotted line depicts the ball trajectory, the solid
line the trajectory of the team centroid.

sentative trajectories. The method identifies clusters cor-
responding to a player carrying the ball forward on either
side of the field and long (high) passes by the goalkeeper
(to the left/right). Additionally, there is usually a cluster
containing short game initiations, which terminate by the
goalkeeper being in possession again.

4. CONCLUSION
We proposed novel class of R-convolution kernels for clus-

tering spatio-temporal data that were composed of a tem-
poral and a spatial kernel. The latter has been designed
to represent the snapshot of a group of objects by the em-
pirical distribution of the positions of the group members,
while the temporal kernel introduced a temporal order on
these snapshot distributions. Empirical results based on ball
and player trajectories in soccer showed that we can achieve
higher cluster separation compared to the baseline methods
and identify clusters corresponding to long and short game
initiations on either side of the field.
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