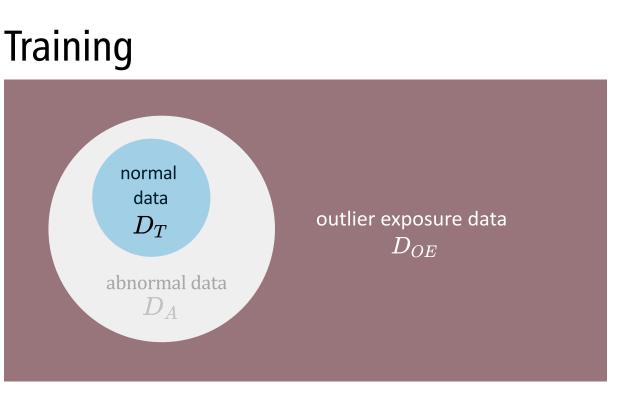
When more is less: Adverse Effects in Outlier Exposure

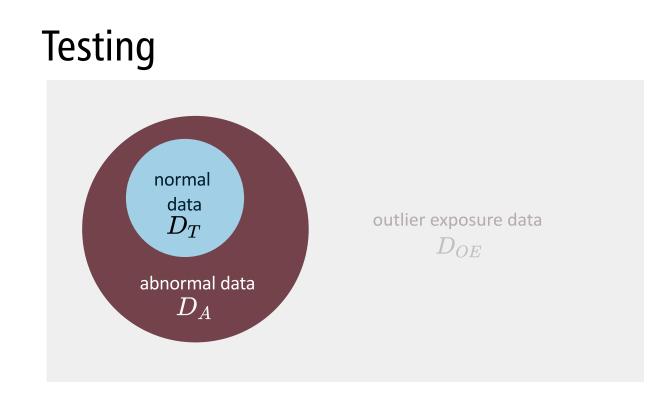
In **Anomaly detection** often only normal data samples are given during training. A recent strategy, named **Outlier Exposure (OE)**, tries to overcome the sparsity of the given data by including an auxiliary dataset of outliers. Experimentally we discover the impact of different classes, when used in the OE dataset. Further, we show that even using more classes in the OE dataset during training can result in decreasing the performance.

Methodology of Outlier Exposure

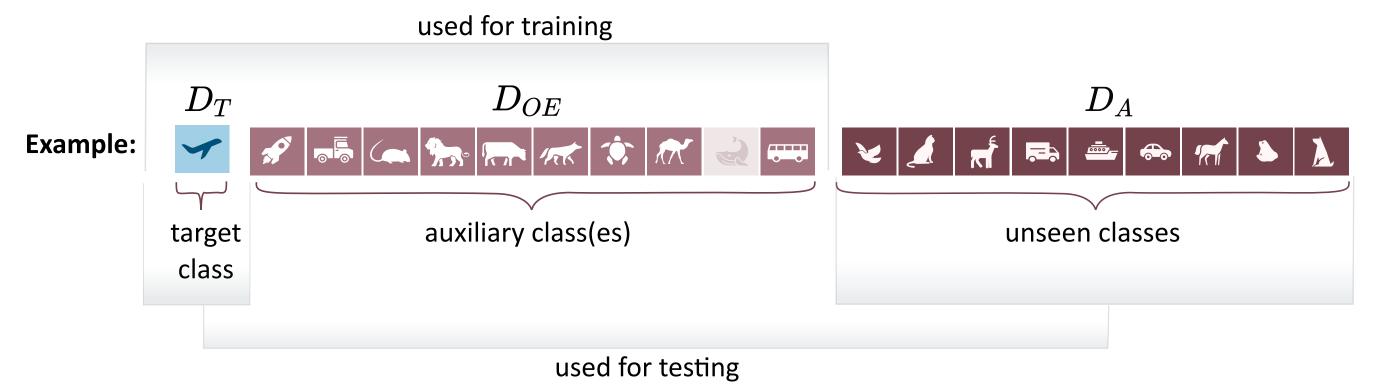
The original thought of the OE approach derived from the idea that, for a natural image AD problem, one has a huge amount of random natural images at hand which are likely not normal, which could be used as examples for anomalies (Hendrycks et al. 2019). The idea is as follows: Besides the samples from the normal class, we use additional data from another dataset.



We train the models using the train set of the normal class and up to 10 classes of the outlier exposure dataset.



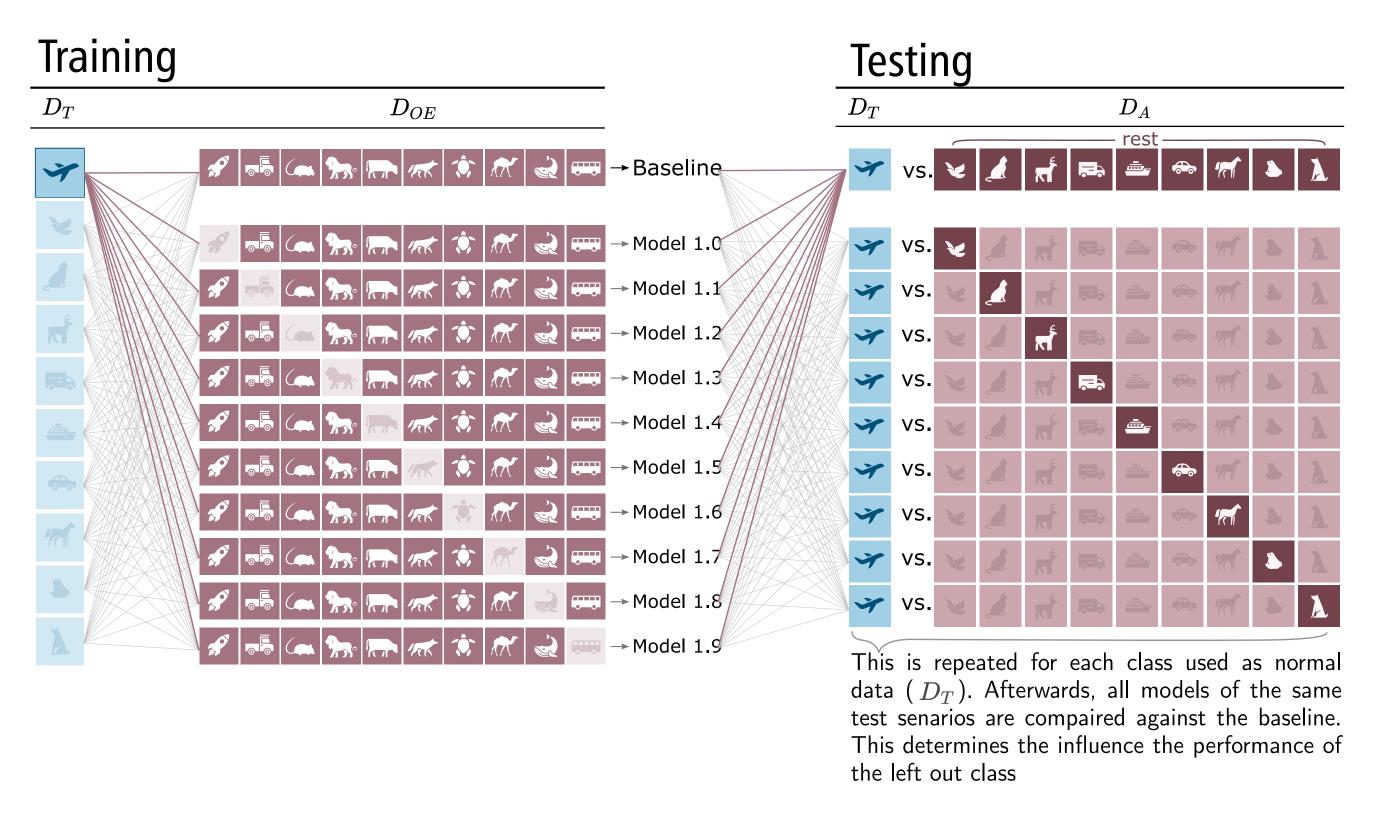
We test in a one vs. rest manner using the test set of the normal class and the 9 remaining classes as anomalous.



The models are trained on the target class as well as on the classes in the outlier exposure dataset, while test data includes the test set of the target class and the remaining classes of the considered dataset.

Influence of OE Classes: Training and Testing

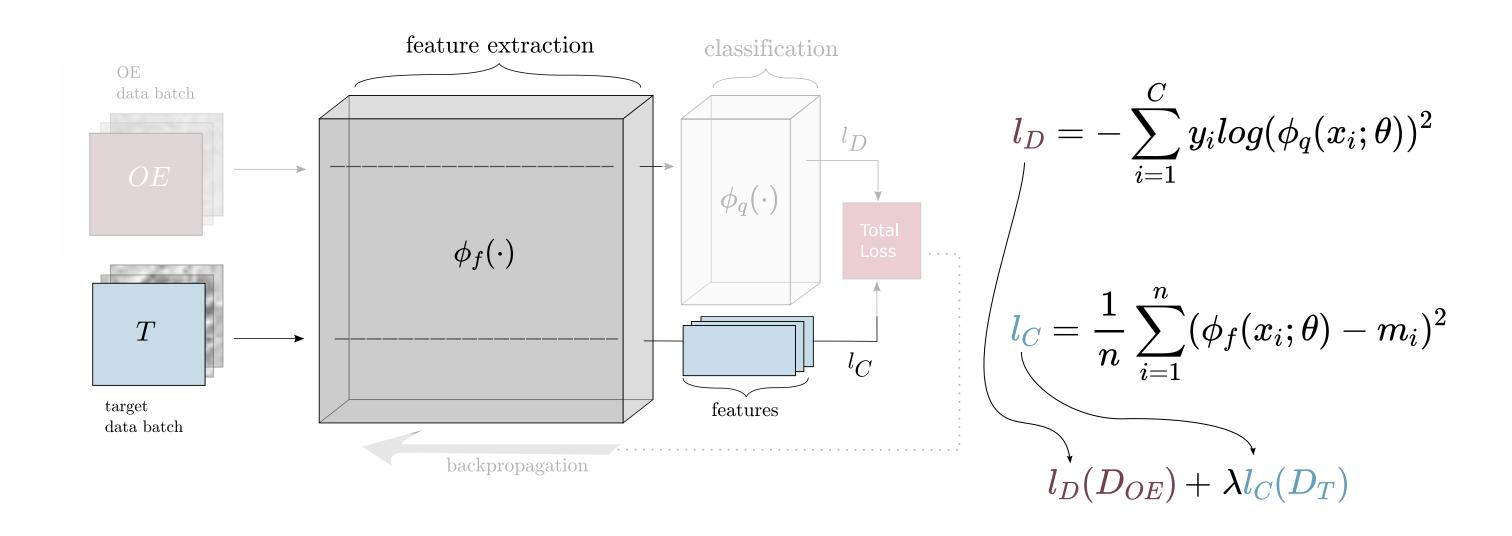
We study multiple variations of training data and its effects on the performance. We observe signicant dependencies of the target data and data used as OE that may either foster or prohibit predictive performance.



Jennifer Matthiesen, Ulf Brefeld

Network Architecture

The network $\phi_f(\cdot)$ extracts features from both datasets, while additional layers of $\phi_q(\cdot)$ are used for the auxiliary data to calculate l_D .



Using additional data during training, we propose a composite loss to address the two desired characteristics: comparativeness and descriptiveness (cf. Patel et al.).

- ullet The **descriptive loss** l_D is calculated by the the cross entropy loss over all classes C.
- ullet The **compactness loss** $oldsymbol{l_C}$ is computed by the squared intra-batch distances. m_i is the mean vector of the rest of the features of the regarded sample.

Preliminary Results

Training with/ without whales						Training with/ without wolves					
Cls. in training:	D_{OE}	# 5 Ca	n nt			Cls. in training:	D_{OE}	# • • • • • • • • • • • • • • • • • •	m ras	* M	
Cls. in testing:	D_T	D_A	AUC	$\mathrm{AUC}_{\mathrm{all}}$	diff.	Cls. in testing:	$\overline{D_T}$	D_A	AUC	$\mathrm{AUC}_{\mathrm{all}}$	diff.
	plane	rest	82.1	79.6	2.5		plane	dog	83.9	87.1	- 3.2
	$\overline{\mathrm{bird}}$	rest	73.7	71.3	2.4		bird	dog	60.5	60.6	- 0.5
	deer	rest	75.9	73.3	2.6		deer	dog	68.1	72.2	- 4.1
	cat	rest	73.1	74.2	-1.1		cat	\log	54.3	54.9	- 0.6

- Using whales in D_{OE} results in a worse performance.
- When we try to distinguish between a target class and dogs, it is better when wolves are present in D_{OE} .
- When we try to distinguish between a target class and cats, it is better when wolves are present in D_{OE} .
- If both D_T and D_A are animals, it is good to have cattles in D_{OE} .

Conclusion

Increasing the variety of alternative classes (anomalies) should increase performance, but it does not.

Using more classes in the OE dataset during training can result in decreased performance.

Check out the abstract for more information!

