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1 Motivation

A common approach to generative modeling intro-
duces latent variables z and defines a joint genera-
tive model p(x, z) = p(x|z)p(z), where p(x) refers
to the data distribution and p(z) is a known prior
distribution. In variational autoencoders (VAEs)
(Kingma and Welling, 2014; Rezende et al., 2014)
the joint model allows us to optimize a lower bound
L, called ELBO, on the data log-likelihood. The
ELBO consists of a reconstruction error involving
the decoder pθ(x|z) and of the Kullback-Leibler
(KL) divergence between the variational posterior
qϕ(z|x) and the prior p(z). Convenient choices for
the amortized variational posterior and the prior
are Gaussians with diagonal covariance matrices,
since given these choices it is straightforward to
compute the KL divergence in closed-form.
Approaches to increase the power of VAEs focus

on more expressive prior distributions and/or vari-
ational posteriors. A recent idea is to use implicit
rather than prescribed distributions for the vari-
ational posterior (Mescheder et al., 2017; Huszár,
2017). Since the KL can no longer be calculated in
closed-form, it is estimated via density ratio esti-
mation: during training, KL estimation is reduced
to a classification problem in an inner loop.
In this abstract, we propose to use implicit KL

estimates to answer the question: How does infor-
mation, i.e. the mutual information I(x, z) between
x and z, propagate within a VAE decoder?

2 Idea

Let f1, . . . , fL be the deterministic transformations
composing an L-layer decoder. We further denote
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the posterior, prior and latent representations as
qϕ,0, p0, and z0, respectively. Our key observation
is: within the decoder of a VAE, intermediate rep-
resentations zk = fk(zk−1) for k = 1, . . . , L can
be considered random variables. Via samples from
the prior p0 and posterior qϕ,0, we thus observe
implicit distributions p1, . . . , pL and qϕ,1, . . . , qϕ,L
within the decoder. These distributions relate to
priors and variational posteriors respectively, which
all now also (partially) depend on θ. With this, we
arrive at ELBOs L1, . . . ,LL that are of the same
form as the standard ELBO L, but that are wrt.
implicit distributions from within the decoder:

Lk(x) =Eqϕ,k(zk|x) [log pθ(x|zk)]
−KL (qϕ,k(zk|x)∥pk(zk)) .

We further observe that expected log-likelihoods
are independent of which representation zk is used:
it holds that Eqϕ,k(z|x) [log pθ(x|zk)] has the same
value for all k = 0, . . . , L, as all higher level latent
variables deterministically depend on qϕ,0 and θ.

We note that having access to implicit KL terms
in the decoder allows us to have different lower
bounds on p(x). We thus gain insight in the prop-
agation of information in the decoder.

3 Methodology

Using density ratios rk(zk) =
qϕ,k(zk|x)
pk(zk)

, the in-

termediate KL divergences KL (qϕ,k(zk|x)∥pk(zk))
can be rewritten as

Eqϕ,k(zk|x)

[
log

qϕ,k(zk|x)
pk(zk)

]
= Eqϕ,k(zk|x) [log rk(zk)] .

For k > 0, where sampling is possible but densi-
ties are not explicitly known, implicit distributions
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can be used. The problem of density ratio estima-
tion is reduced to a binary classification problem
(Bickel et al., 2007).

Density ratio estimation For each x in the
training data, let samples from the prior distribu-
tion pk(zk) be labeled as 0 and samples from the
variational posterior distribution qϕ,k(zk|x) be la-
beled as 1. The task of the classifier Dk(zk,x) is
to output the probability that a sample zk is from
the variational posterior. Assuming an equal class
prior, the optimal classifier is

D⋆
k(zk,x) =

qϕ,k(zk|x)
qϕ,k(zk|x) + pk(zk)

.

Hence, the KL divergences KL (qϕ,k(zk|x)∥pk(zk))
can be approximated by

Eqϕ,k(zk|x) [logDk(zk,x)− log(1−Dk(zk,x))] .

Without explicit access to the densities, the classi-
fiersDk have to be learned from the labeled samples
and the expectation has to be estimated via Monte
Carlo sampling.

4 Preliminary experiment

In a preliminary experiment, we estimate KL di-
vergences and mutual information in a trained and
in an untrained decoder on synthetic data.

Metrics Classification allows us to estimate the
KL divergence for every intermediate representa-
tion zk (k = 0, . . . , L). For k = 0, where we have
access to densities, we validate the estimate against
the closed-form KL.
Next to KL (qϕ,k(zk|x)∥pk(zk)), the KL diver-

gence between the aggregated variational posterior
qϕ,k(z) = Ep(x)qϕ,k(zk|x) and the prior pk(zk) is
also of interest. To estimate KL (qϕ,k(zk)∥pk(zk))
we also resort to density ratio estimation similar as
described above, but with classifiers Dk(zk) that
are independent of x. With both divergences, we
can further estimate the mutual information (MI)

I(x, zk) =Ep(x) [KL (qϕ,k(zk|x)∥pk(zk))]
−KL (qϕ,k(zk)∥pk(zk)) .

For details on the aggregated variational posterior
and mutual information wrt. VAEs see Hoffman
and Johnson (2016) and Dieng et al. (2019).
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Figure 1: Estimated metrics in the decoder (means
and standard errors are over five runs)

Data and model details We train a VAE on
data sampled from a two-component Gaussian mix-
ture model in two dimensions. We use a diago-
nal Gaussian for qϕ(z|x), an isotropic Gaussian for
pθ(x|z) and standard Gaussian for p(z). The archi-
tectures for the variational posterior and decoder
are 2 − 16 − 16 − 2 · 16 and 16 − 16 − 16 − 2, re-
spectively. All layers are linear and have GELU
(Hendrycks and Gimpel, 2016) activations except
the output layers. We estimate quantities in inter-
mediate layers before the activations. Classifiers for
the density ratio estimation are also fully-connected
neural networks.

Results We estimate the metrics in the VAE de-
coder once after training the VAE and once after
randomly re-initializing the decoder. For results see
Figure 1. We observe that the trained decoder pre-
serves information, while the random decoder loses
information that is present in latent space.

5 Conclusion and outlook

In this abstract, we leveraged ideas for training
VAEs with implicit variational posteriors to study
the propagation of information in VAE decoders.
Our key observation was to introduce KL diver-
gences in terms of intermediate representations of
the decoder.

While experimenting, we noticed that the propa-
gation of information in randomly initialized de-
coders differs for different decoder architectures.
We deem it interesting, whether the preservation
of information within those decoders can serve as
an indicator for the difficulty of training them.
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